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Scalable Human-Robot
Interactions in Active
Sensor Networks

S
patially distributed sensors provide bet-
ter coverage, faster response to dynam-
ically changing environments, better
survivability, and robustness to failure.
Taking an extra step to a decentralized

system provides further benefits of scalability,
modularity, and performance.

Our active sensor network is a collection of
sensing platforms connected into a network. Some
or all of the network components have actuators
that we can control, making them, in this sense,
active. A mobile robot with onboard sensors and
a communication facility is an example of an

active component. So is a video
camera with adjustable pan, tilt,
and zoom.

We investigate the scalability
of an important aspect of an
ASN: interaction with human
operations. Specifically, we’d
like to know the conditions

under which human interaction with the ASN
won’t jeopardize the overall system’s scalability. 

Active sensor networks
We envision an ASN engaged in various infor-

mation-gathering tasks: from traditional data
fusion activities such as map building and target
tracking to control-related exploration and
search. So, an ASN as we’ve defined it must be
built on two algorithms: data fusion and con-
trol. The individual nodes link to form a tree
network. The decentralized data fusion network

propagates all new information about the envi-
ronment through local communication links.
The acyclic network topology allows optimal
fusion of information while avoiding double-
counting. The DDF algorithm ensures that each
network node contains the same consistent
belief about the world’s state (ignoring infor-
mation propagation delays).

We can extend the DDF architecture to incor-
porate a decentralized control layer by defining a
team reward function and by placing a local deci-
sion-making module at each platform (see the
“Why Decentralized?” sidebar).1 The control
objective is typically to maximize the network’s
total information gain, subject to certain state
and control constraints. We can incorporate other
objectives—such as energy use, and safety—using
utility theoretic methods. Modeling of platforms,
sensors, and the environment as a set of contin-
uous states, along with the use of information as
payoff, lets us formulate the information acqui-
sition problem as a standard optimal-control
problem.

To fully leverage the decentralized approach,
all aspects of the system must be decentralized.
For an unmanned ASN, this applies to the data
fusion and control algorithms. When interacting
with human operators, decentralization must also
extend to human-robot interactions.

Human-robot interactions
In any multirobot, multisensor system, human-

robot interaction aims

Decentralized sensor networks promise virtually unlimited scalability 
and can tolerate individual component failures. An experimental active
sensor network that leverages environment-centric modes of human-
robot interaction can keep up with a network’s arbitrary growth.

Alexei A. Makarenko, Tobias
Kaupp, and Hugh F. Durrant-Whyte
Australian Research Council Centre
of Excellence for Autonomous 
Systems



• To present the user with information
about the world that the system collects

• To let human operators influence the
actions of many information-gather-
ing robots during their operation 

To date, little research has covered the
instance of many operators interacting
with many robotic platforms. Most work
has focused on applying techniques
developed for one-to-one human-robot
interaction with small teams of humans

and robots. Consequently, scalability has
remained a secondary issue. (See the
“Related Research” sidebar for details.)

We aim to build a system that scales
to large numbers, even if it forces us to
sacrifice some of the richness of human-
robot interactions. Later, we’d like to
bring some of the richness back into the
picture. 

Operator’s role in DDF
When designing an ASN, presenting

the world picture built by a decentral-
ized system to a human operator poses a
challenge. You must do it without mak-
ing the operator’s station a communica-
tion or processing bottleneck.

In broad terms, you can query a net-
work for two types of information: about
the environment and about network
components. We’d like to emphasize that
the former doesn’t increase in size as the
network grows and the latter does.

This leads to our definition of scalable

64 PERVASIVEcomputing http://computer.org/pervasive

S E N S O R  A N D  A C T U AT O R  N E T W O R K S

C ompared to a centralized or a distributed system, a

decentralized system has these constraints:1

• No single central information fusion or coordination

center; no node should be central to the network’s

successful operation.

• No common communication facility; nodes can’t

broadcast results, and communication must be kept

strictly node-to-node. Although, technically, a com-

mon communication facility violates a decentralized

system’s constraints, a broadcast medium is often a

good model of real communication networks. See

Figure A for an example of a communication network

implementation. 

• Sensor nodes don’t have global knowledge of

sensor network topology; nodes should know

only about connections in their own immediate

neighborhood.

By explicitly stating that no resource can be centralized,

decentralized systems largely avoid problems associated with

resource sharing. Conflicts do arise as a result of concurrent

decision-making. Ben Grocholsky proposed one possible mech-

anism for resolving these conflicts.2 It uses special negotiation

channels maintained between decentralized controllers. By

exchanging individual expected information gains, the con-

trollers converge to a globally optimal action plan.

To a large extent, decentralization’s principles and benefits

have been demonstrated experimentally. Stewart Grime and

Hugh Durrant-Whyte demonstrated the original ideas of

channel filters on a model process control plant comprising

over 150 distributed sensors.3 More recently, Salah Sukkarieh

and colleagues experimentally validated an application for

tracking point targets on the ground using four custom-built

Unmanned Aerial Vehicles.4 They flew up to three of these air-

craft simultaneously during a three-year flight program, with

up to six nodes operating concurrently and in real time.
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W e place active sensor networks at the intersection of the con-

verging fields of multirobot systems, sensor networks, and

human-robot interactions. Figure B shows this overlap graphically.

Research in interactions between human and multirobot sys-

tems (Area II in Figure B) has mostly been limited to communica-

tion of one or several humans with a small number of robots. One 

of the most active research areas is adjustable autonomy, which

aims to span the gap between teleoperation and full autonomy.

Michael Goodrich and his colleagues surveyed adjustable autonomy

and mixed-initiative methods for a two-robot system.1 Terrence

Fong and his colleagues developed a system called collaborative

control, which calls for bidirectional communications through a

human-robot dialogue.2 This system is a form of teleoperation,

which compensates for conventional approaches’ limitations by

integrating human expertise into the control loop. With respect to

scalability, this approach suffers from increased communication

traffic and the human operator’s physical limits to offer assistance

to several robots simultaneously. 

Kevin Dixon and his colleagues describe a software framework

that provides a real and virtual environment for running and man-

aging multiple heterogeneous mobile robot systems called RAVE

(real and virtual environment).3 They use three GUIs with different

authority levels to interact with the system and describe experi-

ments with up to eight robots.

Khaled Ali and his colleagues propose a component-centric

method that is scalable.4 They address the multiagent system’s

global behavior—either by adding a behavior or by changing the

robots’ behavioral settings—in the context of reactive robot control.

Goodrich and colleagues use a similar approach, by letting the user

add goal and threat icons that the system treats as new behaviors.1

The work of Ashley Tews and his colleagues is the only one we’ve

seen that directly addresses scalability in a system composed of

hundreds of entities.5 Here, scalability refers to the communication

bandwidth between humans and robots that must be kept low for

large numbers of entities in the system. They propose that the

amount of communication increases with decreasing robot auton-

omy, tighter human-robot coupling, and the number of robots.

They suggest that a large-scale interaction mechanism must allow

for many-to-many, one-to-many, and one-to-one interactions.

Additionally, it must allow heterogeneous robot teams and differ-

ent levels of human-robot coupling.

Usually, a human operator is not considered in the context of

passive sensor networks (Hairong Qi and her colleagues give a

good review6). Wolfgang Rencken and his colleagues describe a

decentralized data fusion system of four cameras tracking moving

targets.7 This work explicitly considers a human operator, so it falls

into Area III. The system provides the human operator with a global

view of the network state. An adaptive task allocation algorithm

queues targets that the network or operator must track or classify.

Decentralized control doesn’t factor into this work.

Intelligent spaces is another active research area that often falls

into Area IV. Joo-Ho Lee and Hideki Hashimoto describe goals and

scenarios very similar to ours but don’t address scalability and the

precise mechanism of data fusion.8
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robot interactions. At the intersection lie (I) active sensor net-

works and human interface with (II) multirobot systems, (III)

sensor networks, and (IV) ASN.



as applied to a sensor network. We call
an architecture scalable with the net-
work’s size if the computation and com-
munication requirements don’t increase
as you add new components to the net-
work. So, if we can map an environ-
ment with 10 platforms, the algorithms
will let us do it with 1,000—the extra
platforms improving the speed and
robustness.

There’s no denying that the amount of
information depends on the environ-
ment’s size and type. If we want to
observe and map a large, complex, and
dynamically changing world, we must
have facilities that can deal with the
information flow. Even though the ASN
architecture doesn’t address these issues
directly, we can take some steps to
reduce the burden. For example, we
could use data compression, decrease
spatial resolution, or reduce the inter-
nodal update rate.

Environment information
Any ASN’s primary goal is to collect

information about the environment, fuse
it into a consistent belief, and take actions
on the basis of this belief. The graphical
user-interface software presents this belief
to the human operator. For instance, in
a feature-tracking application, the GUI
would display the location of known fea-
tures with their corresponding uncer-
tainty. In a Certainty Grid representation,
the GUI would draw the spatial distrib-
ution of the variable of interest—for
example, the terrain’s traversability.

The underlying DDF architecture
makes this problem easy to solve. The
DDF algorithm ensures that each node
in a DDF network has the same com-
plete knowledge of the world. Conse-
quently, a GUI in a DDF network needs
to query only a single DDF node to
obtain the entire network’s knowledge.

The communication and computa-
tional load of any node is independent of
the number of network components. We

can say the same about the GUI interface,
which obtains its information from a  sin-
gle DDF node. We easily gain this impor-
tant property because of the DDF archi-
tecture’s special structure.

Component information
The amount of information about the

nodes—such as their physical location
in space—grows proportionally to the
number of nodes in the network. So, a
GUI that collects and relies on state
information from network components
can’t scale to arbitrary size.

Information about network compo-
nents is always useful and often invalu-
able for debugging and status monitor-
ing. For example, system maintainers
might want to know a platform’s current
speed or fuel level, or a sensor’s status.
They might also want the ability to
change the components’ configuration
during runtime. However, relying on this
information makes the GUI a computa-
tional or communication bottleneck.

In addition to increasing bandwidth
requirements, keeping track of compo-
nent information also necessitates either
using a broadcast medium or a direct link
between every component and every GUI
station. However, both options go against
the philosophy of decentralization.

Other examples of component-specific
information include current or future
actions (plans), component models,  in-
dividual sensor observations, and deci-
sion policies.

Operator’s role in
decentralized control

Others have suggested several classi-
fication systems for the roles that a
human operator could play while inter-
acting with robots. For example, Jean
Scholtz identifies mechanic, supervi-
sory, and peer-to-peer levels of human-
robot interaction.2 Alternatively, an
operator could tell a robot or a group of
robots

• What to do
• What operating mode to switch to
• What outcomes to favor
• What additional information about

the world to use

Technically, we can implement all of
these options in a scalable fashion pro-
vided that we use attribute-based nam-
ing and have the proper communication
infrastructure.3 A tree network that the
DDF algorithm creates and maintains
also works for transmitting such com-
mand messages.

As before, we group the four options
into two broad categories: component-
and environment-centric. Consider, for
example, the following scenario: a fleet
of Unmanned Aerial Vehicles on an
information-gathering mission. An oper-
ator receives a phone call from an
observer on the ground reporting the
location of a thunderstorm cloud. The
operator’s goal is to modify the UAVs’
actions to reduce the risk of losing air-
craft because of the storm.

Component-centric control
With component-centric control, we

have various types of control options.
Under direct control, the operator sends
an action or a sequence of actions
through the network addressed to com-
ponents that possess the specified attrib-
utes. These commands execute directly
and don’t require autonomy on the part
of the platform beyond the ability to exe-
cute the tasks. This approach directly
extends the teleoperation or mechanic
mode of operation. It can be invaluable
in certain situations, but we can’t con-
sider it a primary control tool in large
decentralized sensor networks.

In the thunderstorm example, an oper-
ator queries all UAVs for their locations,
assumes direct control of the aircraft in
most immediate danger, and flies it back
to the base. Drawbacks to this approach
include both the amount of state infor-
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mation to be transmitted and the human
operator’s physical limitations in per-
forming teleoperation. Both points vio-
late a scalable system’s objectives.

Under mode switch control, the net-
work’s components operate autono-
mously most of the time but are period-
ically commanded to switch from one
preprogrammed action policy to another.
This control method falls under the
supervisory mode.

In our example, the operator sends a
command to change the action policy
from “observe” to “go home” mode.
The operator can make this command
unaddressed or attribute-addressed, for
example, “if close to a certain location.”

Under payoff change control, the oper-
ator sends a change in the utility function
to a subset of the network components
addressed by appropriate attributes. This
is also a supervisory control mode.

In the example, the operator sends out
a broadcast or attribute-addressed mes-
sage to decrease the reward for infor-
mation gain and increase the payoff
function’s risk aversion property. This,
of course, implies that the UAVs can rec-
ognize a dangerous situation (a thun-
derstorm cloud).

As we’ve seen, for any component-cen-
tric method, the operator workload will
increase with the network’s size. We can
mitigate this effect somewhat with appro-
priate use of attribute-based naming. Its
use is limited, however, to the supervi-
sory level of interaction, and we particu-
larly can’t apply it to teleoperation.

Environment-centric control
Instead of component-centric control,

we suggest using what we call environ-
ment-centric control. In this mode, a
human operator enters information
about the environment that has become
available from outside of the network.
It’s then fused into the decentralized
belief about the world’s state and will
affect network components’ actions. In

this peer-to-peer mode, the operators
and network components act on the
same level of authority.

You can enter the information into the
network either as a raw observation that
a node will use to update the affected
states or, more directly, as a posterior of a
particular state. In the first case, the oper-
ator acts as a sensor submitting informa-
tion to a node. In the second, the opera-
tor plays the role of another node sending
feature updates through the DDF link.

In practice, a subtle difference exists
between these forms of information
input. Typically, you treat a single obser-
vation from a sensor with more caution
and perform sanity checks—such as
waiting for repeated observations, if
practical. It’s more difficult to verify an
update coming from another node

because the sources of information at
this point are completely anonymous.

In the UAV example, the operator can
enter that a thunderstorm has developed
at the specified location with a certain
probability. The operator could also enter
the raw observation of a cloud and let the
network fuse this information with its
current weather estimate. This, of course,
requires even more autonomy, such as a
weather model, from the platform.

Influencing the network components’
actions by providing them with additional
information is a natural extension of the
underlying ASN architecture. You need
only to transmit the information the oper-
ator enters to a single node, and the net-
work propagates it through the rest of the
system, potentially leading to actions by
far-removed components that can react
to the change.

Human networks
As long as human operators play the

roles of decentralized sensors or nodes,
there’s no restriction on the number of
operators simultaneously connected to
the network. However, the rules used to
construct the DDF network, intended to
prevent information double-counting,
also apply to human operators.

In sensor networks, we see encounter
double-counting most readily if a loop
in the information flow is formed. In
decision theory, this effect is called, not
surprisingly, rumor propagation. A way
to avoid this situation is by adhering to
a tree network topology.

When faced with a team of human
operators working in close contact with
each other, these rules could prove
harder to implement and enforce.

Network implementation
To demonstrate the decentralized

approach’s capabilities for sensor net-
works, we wanted to design a sufficiently
general and flexible system to let us build
various systems with minimal modifi-
cations. The architecture had to support
an ASN’s main aspects: data fusion,
control, and human interaction. (More
details are available elsewhere.4)

We identified the four fundamental
types of decentralized objects: 

• Frame: A physical object placed in the
physical world. It is the only physical
object, so to have a location in the
world, all other objects must be
attached to a frame.

• Node: An abstract object that pro-
cesses information and communicates
with other nodes to reach a consistent
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Our long-term project objective is to

cooperatively build and maintain a

multiattribute map of a dynamic environment.



belief about the world.
• Sensor: An abstract object that gathers

information from the environment.
• Controller: An abstract object that

maximizes a certain reward function
on the basis of the current state and
the known model of the world.

You can connect a sensor to a frame,
which means that it’s physically attached
to it with a known offset. You can con-
nect a node to a frame, meaning that the
processor located on the frame executes
its computations. A sensor can be con-
nected to a node, which means it sends its
observations to that node. When a node
is connected to another node, they estab-
lish and maintain a DDF link, which syn-
chronizes their belief about the world’s
state. Finally, a controller can connect to
a frame, node, and sensor. So, based on
the frame’s current pose, the sensor and
actuator models, and the current world
state supplied by the node, the controller
will issue commands to the actuator that

will maximize a certain reward function.1

You can attach any number of nodes,
sensors, and actuators to a single frame,
but each node, sensor, and controller is
assigned to one and only one frame. Like-
wise, an arbitrary number of sensors may
contribute their observations to a particu-
lar node, but any particular sensor sends
its observations only to a single node. The
current implementation is limited to a max-
imum of four DDF links per node. This
number suffices for creating an arbitrary
tree network and prevents the forming of
bottlenecks at highly connected nodes.

We use the term platform to describe
the combination of a frame and all other
components attached to it. A platform
is characterized by stable offsets of sen-
sors (relative to the frame’s motion) and
low communication costs (relative to the
interframe communication’s cost).

Our object definitions are by no means
unique, but we’ve found the level of
abstraction and granularity sufficient for
the type of networks we’ve set out to

build. The modular design allows plug-
and-play operation, which speeds up
design and setup. Once fully imple-
mented, this architecture will allow, for
example, plug-and-play sensor operation.
A sensor component designed to convert
laser scans into point features will con-
tinue working unmodified when the phys-
ical sensor is moved from an indoor robot
to an outdoor all-terrain vehicle, or
even a UAV. The localization service, pro-
vided by the frame component, abstracts
away localization and locomotion details.
Furthermore, the control module de-
signed to guide an indoor robot with a
laser sensor will also control a UAV with
a video camera if the world representa-
tion is the same. A set of standard inter-
faces between software objects hides the
underlying differences.

Figures 1a–d show several physical
components that constitute the indoor
ASN. In experiments, we’ve used up to
three indoor Pioneer 2 robots and one
stationary sensor unit. So far, we’ve
exclusively used SICK laser range finders
as sensors. It gives a planar range scan
with an angle of 180 degrees and a range
artificially limited to 2 meters. We’re
developing a vision sensor unit.

We installed the ASN in an office
space, approximately 20 meters on each
side. Our long-term project objective is
to cooperatively build and maintain a
multiattribute map of a dynamic envi-
ronment. We’ll be mapping distributed
properties of the environment—for
example, traversability, ambient light,
and network connection quality—as
well as discrete environmental features,
both stationary and moving.

Presently, several poles placed around
the office serve as stationary features.
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Figure 1. Elements of a practical 
decentralized ASN: (a) an indoor robot 
Pioneer 2 with a laser range finder mounted
on top; (b) a stationary sensor unit also with
a laser range finder; (c) a mobile GUI access
point running on an iPAQ handheld
computer; and (d) a stationary GUI access
point on a Linux workstation.

(a)

(c) (d)

(b)



The laser range finder can easily iden-
tify them as point features. The net-
work aims to find and localize the
point features. We implemented an
information-surfing controller on the
Pioneer robots.1 The controller tries to
minimize the total amount of uncer-
tainty in all features of the environ-
ment. It uses a zero look-ahead control
law that moves the platform in the
direction of the steepest ascent in the
information space.

All software components run as sep-
arate applications and communicate
using a common communication library
developed in our laboratory. We sup-
port communication over different
mechanisms: on the same processor and
networked, both wireless and con-
nected by a bus. The components use
a simple dynamic-configuration proto-
col to join the network on start-up. We
can perform component configuration
either at start-up or at any time during
the operation through the GUI.

The GUI in DDF
Our GUI’s first goal is to provide a

human controller with a view of the
environment as the ASN perceives it.
We’d also like, to the extent possible, to
show the network’s state.

Figure 2 compares the view of the
actual physical space with two views
available in the experimental GUI: the
world and network views. We imple-
mented two types of network access
points for the operator: a stationary GUI

on a desktop computer and a mobile
one running on an iPaq handheld com-
puter. All screen shots come from the
desktop version. The two GUIs’ func-
tionality is similar, but the information’s
presentation differs because of the iPaq’s
limited screen size and the peculiarities
of pen-based input.

The scenario involves four platforms:
two Pioneer robots, Mozzy and Hor-
net; a stationary sensor module, Fly;
and a ground station, Base (see Figure

2a). We equipped each of the two Pio-
neers with a laser range finder. Each
runs four ASN software components: a
Pioneer frame (�),Gaussian point node
(�), laser-to-point sensor (∆), and an
information-surfing controller (◊). The
stationary sensor unit has the same laser
sensor, but it can’t move so it doesn’t
need a controller and its frame module
is much simpler. To demonstrate the
network’s flexibility, we didn’t run the
software on Fly, presumably because its
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Figure 2. Three views of the same active
sensor network: (a) physical components in
the office environment, information links
are shown as lines; (b) world view in the
GUI; and (c) network topology in the GUI.
The network view shows several ASN 
components: frames (�), nodes (�), sensors
(∆), and controllers (◊), with corresponding
links. The world view shows mobile 
platforms connected by decentralized data
fusion links. The views also show point 
features known to the network with 
corresponding covariance ellipses.

(a)

(b) (c)

Ground
sensor Fly

Human
operator Tobie

Ground
station Base

Pioneer robot
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Stationary
point Target

Pioneer robot
Mozzy



processing power was insufficient. The
sensor module on Fly failed to find a
local node and connected to a remote
one. The remote node happened to be
running on the ground station, which
has no local sensors of its own.

In this example, a set of point features
represents the environment. The world
view (see Figure 2b) shows the two
known features and their position
uncertainty with relatively small ellipses.
The larger ellipse centered on Feature 1
represents the uncertainty of the recent
observation made by a sensor mounted
on Mozzy. The difference in the size of
the ellipses is due to the information
accumulation inherent in the data fusion
process.

In one respect, a GUI module differs
from other network components in that
it can accumulate nonlocal information
about the network, such as the global
topology shown in Figure 2c. We use this
information purely for visualization and
debugging purposes, so it doesn’t under-
mine the overall decentralized approach.
If the communication bandwidth limit
is reached due to the network’s size, we
can configure the network components
to stop sending their state updates to the
GUI. This doesn’t affect the information
about the environment’s state.

Human DDF node
The GUI’s second purpose is to let a

human operator influence the outcome
of actions of active components within
the ASN. In this demonstration, we con-
centrated on the environment-centric
control approaches.

Figure 3 shows manual input of fea-
ture information through the GUI. The
initial configuration is the same as in Fig-
ure 2. Figures 3a and 3b shows the com-
plete world view and the world view
without component information. In the
second case, the state information from
the components is neither transmitted to
nor stored by the GUI. This makes the
approach much more scalable at the cost
of decreased information at the opera-
tor’s disposal.

The ASN has information about two
features (numbered 0 and 1) displayed
with their uncertainty ellipses. The
human operator identifies the likely loca-
tion of a feature currently unknown to
the network, which lies outside the sen-
sor range of all platforms (Feature 2).

The operator draws an uncertainty
circle centered on the new feature’s most
probable location, and the software
interprets the circle’s radius to be equal
to three standard deviations of its posi-
tion uncertainty. This circle’s properties

are sent to the GUI node as a sensor
observation message, which is indistin-
guishable from messages submitted by
regular (robotic) sensors. We can send
this observation to any one (but only
one) node. In our implementation, the
operator can select the platform to
whose node the observation will be sent.
After initializing the new feature, the
node connected to the GUI informs all
other nodes about its existence.

In this example, the operator sends
two consecutive observation messages.
The second is more certain (the circle is
tighter), and the mean lies to the origi-
nal observation’s right (see Figure 3a).
The node associates the second obser-
vation with an existing feature and
fuses them. This behavior is identical to
what happens when observations arrive
from multiple sensors. The fact that
they’re entered by an operator (or sev-
eral operators) makes no difference.

Figure 3c displays the two mobile
platforms’ response to the human-
entered feature information. Guided by
an information-surfing controller, the
platforms converge onto it. Note that
the feature’s location has moved and its
uncertainty has decreased due to the
actual observations made by sensors
mounted on the robots.
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Figure 3. The human decentralized data fusion node in action. The operator enters a feature unknown to the sensor network: (a) the
platforms are superimposed on top of the world map; (b) only environment information is shown (this GUI mode is truly scalable);
(c) the two active nodes respond to the insertion of the new feature. They converge onto the feature and make observations.

(a) (b) (c)
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T
o truly demonstrate the ap-
proach’s scalability, we’d like
to increase the hardware net-
work’s size. Our short-term

goal is to build a robust and flexible
indoor sensor network, consisting of up
to 50 components similar to the ones
described in this article. Current devel-
opment efforts focus on implementing a

robust reconfiguration algorithm that
will allow long-term operation of the net-
work—well beyond a single computer’s
lifetime. 

Once we’ve built a network of cer-
tain size, we plan to look into sce-
narios that involve several human
operators simultaneously. An office
environment with constant human
interaction is a natural setting for such
experiments.

The architecture’s flexibility and mod-
ularity will also let us use it in other
environments—such as outdoors—and
apply it to other robotic platforms, such
as all-terrain vehicles, aircraft, and
underwater vehicles. Part of the chal-
lenge will be to consistently and effi-
ciently include human input.

Finally, it would be interesting to
examine the extent to which we can scale
the concepts of adjustable autonomy.
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