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Abstract – The paper presents an algorithm for Bayesian de-
centralized data fusion (BDDF) and its extension to information-
theoretic control. The algorithm is stated for a feature represented
by a general probability density function. Several specific rep-
resentations are then considered – Gaussian, discrete, Certainty
Grid, and hybrid. Well known algorithms for these representations
are shown to fit the general BDDF pattern. Stating the algorithms
in Bayesian terms has a practical advantage of allowing a generic
software implementation. It is also hoped that a clear general
formulation will stimulate extensions to efficient non-parametric
representations of arbitrary distributions. The algorithms are de-
scribed in the context of the Active Sensor Network architecture
– a modular framework for decentralized cooperative data fusion
and control. The approach is illustrated with the results of two
deployment scenarios with an indoor sensor network.

Keywords: Decentralized data fusion, decentralized control, sen-
sor networks, mobile robots.

1 Introduction

Large numbers of autonomous sensing platforms connected
into a network promise better spatial coverage, higher re-
sponsiveness, survivability and robustness compared to a
single vehicle solution. The need for such systems exists
in many applications involving tasks in which timely fu-
sion and delivery of heterogeneous information streams is
of critical importance. Examples include military and civil-
ian surveillance, fire fighting, intelligent buildings, etc.

The Active Sensor Network (ASN) project at the Univer-
sity of Sydney aims to combine decentralized data fusion
and control algorithms into a unified yet flexible system ar-
chitecture suitable for a wide range of sensing tasks. The
ASN can be described from three viewpoints: the architec-
ture [1], the algorithms, and the concrete implementation
[2]. The focus of this paper is on the algorithmic side of the
framework but the general approach is briefly described to
provide the necessary background.

We seek a solution to the problem of distributed infor-
mation gathering (DIG). We consider a distributed phe-
nomenon which can be described by a state vectorx. There
is a set of heterogeneous robotic platforms equipped with
sensors and actuators. There is also a set of operators who
observe the phenomenon directly using human senses or by

interacting with the network through a user interface (UI).
All entities, human and robotic, are thought of as members
of a team.

ASN is an architecture forcooperative autonomoussens-
ing platforms. Autonomy implies that a platform is able to
work in isolation and does not rely on infrastructure ser-
vices, remote control, or other external inputs. Cooper-
ative means that the platforms share common goals and,
when possible, work together to achieve them. Platforms
are likely to have different capabilities but each comes
equipped with power, processing and communication facil-
ities, sensors and actuators. Each one fuses local obser-
vations with information communicated from neighboring
nodes into a synchronized view of the world. Similarly,
each one makes local control decisions based on the knowl-
edge of local platform capabilities and the global synchro-
nized world view.

The fundamental principle of the ASN architectural style
is decentralization. Compared to a centralized or a dis-
tributed system, a decentralized system is characterized by
two key constraints [3]: a) no central services and facilities
and b) no knowledge of global topology. The resulting sys-
tem offers a number of advantages over other architectures.
Scalability: the computational and communication load at
each node is independent of the size of the network.Ro-
bustness:no element of the system is mission critical, so
that the system is survivable in the event of run-time loss of
components.Modularity: components can be implemented
and deployed independently from each other.

The ASN system is composed of software components
communicating asynchronously with each other. Compo-
nent types correspond roughly to the functional breakdown.
With respect to the environment information, a compo-
nent can be a Source (producer), a Sink (consumer), or a
Fuser/Distributor. Similarly, with respect to control com-
mands, a component can be a Source (decision maker) or a
Sink (controlled object). A particular component can play
several of these roles at once. To make the reference clear,
the component types will be capitalized.

This paper is organized as follows. A brief review of
related work is given first. Sec. 3 describes the ASN data
fusion layer. It includes the description of Bayesian decen-



tralized data fusion algorithm and its application to several
probability density function (pdf) representations. Sec. 4
describes two algorithms to decentralized control. Sec. 5
demonstrates the architecture in two sets of experiments on
an indoor sensor network.

2 Related Work
In terms of data fusion algorithms, Bayesian non-linear fil-
tering is clearly stated for a single sensing platform in [4].
A broad review of distributed data fusion architectures can
be found in [5]. An interesting query-response approach
to distribute a particle filter is given in [6]. A general data
fusion framework is proposed in [7] but its extension to a
decentralized case is not clear.

In terms of application this work is most closely related
to the field of sensor networks (SN) [8]. It is convenient to
view the SN research by dividing it into three broad cate-
gories: multi-robot systems (MRS), macro SN (MSN) and
micro SN (µSN). Small to medium team sizes (up to 100
platforms) in MRS are best handled by centralized and hi-
erarchical approaches to data fusion and control [9, 10].
Very large team sizes, envisioned forµSN, require decen-
tralized approaches. However, due to limited processing
power the issues of information fusion (or “aggregation”)
are either not addressed or handled in a non-probabilistic
fashion. The Directed Diffusion (DD) protocol [11] prop-
agates data from sources to sinks and its non-probabilistic
data aggregation approach is typical: duplicate target lo-
cation estimates are suppressed by the intermediate nodes.
Platforms are usually static, so control issues are not con-
sidered.

The MSN field is the closest to this work. The original
ideas of channel filters used in present work were demon-
strated on a model process control plant comprising over
150 distributed sensors [12]. More recently, Decentralized
Data Fusion (DDF) was applied to tracking ground targets
using four purpose-built fixed-wing Unmanned Aerial Ve-
hicles [13]. Up to three of them were flown simultaneously
during a three year flight program with up to six fusion
nodes operating simultaneously and in real time. The pro-
gram also dealt with such issues as track initialization and
deletion, delayed and asequent data [14], timing, etc. De-
centralized control (DC) was added to DDF in [15]. This
work extends the DDF and DC, which are limited to Gaus-
sian uncertainties, to the general Bayesian case.

In military systems, Cooperative Engagement Capabil-
ity (CEC) is an operational US Navy multi-sensor tracking
system [16]. It uses a fully connected architecture which
limits its scalability. Tactical Component Network (TCN)
[17] advocates in-network processing similar to DDF but
algorithmic details are not available.

3 Bayesian Decentralized Data Fusion
(BDDF) Algorithm

This section describes the algorithm underlying the data fu-
sion layer of the ASN architecture. It fulfills the function of
sensing, fusion, and dissemination of information.
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Fig. 1: Structural diagram of the data fusion layer.

3.1 Architecture and Interfaces

Data fusion design involves making many architectural
choices, including: data fusion method, distribution in pro-
cessing and storage, communication topology, type of ex-
changed information, degree of preprocessing, and many
others. Listing our choices in the same order, the ASN ap-
proach to data fusion is: Bayesian, decentralized in process-
ing and storage, over a tree or general network, utilizing
both scan-to-track and track-to-track fusion, feature-based.

Because ASN is component-based, understanding inter-
actions between components is required to understand the
fusion algorithm. Fig. 1 shows component types imple-
menting the data fusion layer of the system. Information
Sources observe the environment, Nodes fuse and distribute
information, Sinks request and use information, and Frames
are responsible for localization and other platform related
functions. The relationship between component types is de-
scribed by the services each type provides and requires.

The Fusing interface is provided by Nodes. It accepts
observations from Information Sources. Its multiplicity is
one-to-many and it accepts “scans” in the form of observa-
tion likelihoodsL(z | x), wherez is a particular observa-
tion andx is the underlying state. The Linkable interface
is used to connect Nodes into a network – the information
backbone of the system. It represents a strictly one-to-one
relationship between pairs of Nodes and exchanges tracks
in the form of apdf P (x) over the statex. The Informed
interface is used to serve information to information con-
sumers. It allows Sinks to specify quality of service (QoS)
requirements which Nodes attempt to satisfy. Its multi-
plicity is one-to-many and the main information flow is in
the form of track estimatesP (x). The Localized interface
plays an important role of providing global localization to
Information Sources. The localization method is chosen by
individual Frames. The next two sections describe the in-
ternal structure of Sensor and Node components.

3.2 Sensor Realization

The Sensor component plays the role of an information
source. First, the Sensor reads a raw measurementz from
the sensing hardware and converts it into the global co-
ordinate frame. To perform the transformation, the Sen-
sor needs to know its current global pose. It is calculated
based on the current Frame pose (Localized interface) and
the known offset of the physical sensor. The next step is
to calculate an observation likelihoodLs(z | x) based on



the observation function. Optionally, initial data associa-
tion may be performed at the Sensor as well. Some sensors
may have extra information useful for data association that
may not be available at the Node. Finally, observations are
submitted to the Node through the Fusing interface.

3.3 Node Realization

Fig. 2 shows the internal structure and the interdependen-
cies between the subsystems of the Node component. The
three main internal parts are the local filter, several channel
filters, and the topology manager. The role of the local fil-
ter is to maintain the estimate of the state of the world. It
realizes two interfaces: Fusing and Informed, used by In-
formation Sources and Sinks respectively. Each Node has
one local filter. The channel filter is used to manage com-
munication between Nodes. It serves two main functions:
to keep track of information previously communicated be-
tween the nodes (“through the channel”), and to synchro-
nize incoming and outgoing information with the local fil-
ter. The topology manager is responsible for reconfigura-
tion of the network topology. The three subsystems will
be described in more detail below but first, the information
flow between the local and channel filters is described.

Fig. 3(a) shows four triggers for activity on Nodei. The
four activities occur asynchronously – the fact illustrated
in the Figure by separate “swim lanes”. The first two are
triggered by events external to the Node (arrival of obser-
vation and channel update messages), while the last two
are triggered internally. Local updates are executed when
local observations arrive. Channel filter updates are done
using time horizon. Node-to-Node synchronization is trig-
gered primarily by availability of information. Node-to-
Sink connections are updated based on the requested ac-
curacy (QoS). The algorithmic steps taken inside the local
and channel filters for each of the events will be described
in the sections below.

When an observationLs(z | x) arrives from one of the
local Sensors through the Fusing interface, it is passed to
the local filter where it is fused with the local estimate.
When a channel update message arrives from one of the
connected Nodes through the Linkable interface it is first
processed internally in the channel filter. Then the current
remote estimatePj(x | Zj) and the estimate of common in-
formation between the local and remote NodesPij(x) are
passed to the local filter.

When an internal event triggers synchronization between
the local filter and one of the channel filters, the current
local estimatePi(x) is passed to the channel filter. The
channel filters are periodically synchronized with the corre-
sponding remote channel filters on the linked Nodes. Two
possibilities exist for the form of the exchanged informa-
tion: the current estimatesPi(x) and Pj(x) or the new
information accumulated since the last updateMij(x) and
Mji(x). Transmitting the current state and not just the new
information offers a certain degree of robustness to packet
loss in the channel. All information contained in the lost
messages is implicitly present in future messages received
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Fig. 2: Internal structure of the Node component.

after communication link is re-opened. Transmitting only
the new information may save bandwidth for certain repre-
sentations. A mixed policy is also possible. In the following
discussion only the case of transmitting the full estimate is
considered.

When an internal event triggers a state update of Infor-
mation Sinks through the Informed interface, the current
local estimatePi(x) is passed to the Sink. The same choice
between sending the estimate or only the new information
applies here as well.

The scalability of this approach stems from the fact that
each node performs fusion. Incoming data from remote
nodes is assimilated by the local filterbeforebeing passed
on to the linked nodes. Therefore, no matter the number
of incoming messages, there is only a single outgoing mes-
sage to each node. Consequently, as the sensor network
grows in size, the amount of information sent down any
one channel remains constant and the system as a whole
can scale indefinitely. Each node stores a local copy of all
feature estimates. Thus, if the operation of the channel is
suspended, the filter simply accumulates information in an
additive fashion. When the channel is re-opened, the total
accumulated information in the channel is communicated in
one single message. This feature allows burst transmission
of data to reduce communication bandwidth requirements.

The operation of Node’s subsystems is described next.
The algorithmic steps in processing of incoming informa-
tion is described in terms of basic operations: associate,
predict, subtract, fuse. These will be defined for an arbi-
trarypdf in Sec. 3.4 and then more precisely for severalpdf
representations in Sec. 3.5.

3.3.1 Local Filter

The local filter generates state estimates on the basis of ob-
served, predicted and communicated information. Other
infrastructure such as channel filters and the topology man-
ager exist only to support the proper functioning of the local
filter. The local filter contains an array of Bayesian filters
representing individual features of the environment. Differ-
ent feature types may be stored side by side and the filters
may use differentpdf representations.

The local filter receives observations from one or more
local sensors as shown in the top row of Fig. 3(a). A se-
quence diagram in Fig. 3(b) shows the steps inside the local
filter. Observations arriving asynchronously are stored in a
buffer and the local filter is notified. Inside the local filter,
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they cause; (b) detailed sequence diagram for the local filter with a sensor observation; (c) and (d) abbreviated information
flow diagrams for local observation and channel update.

all features of the matching type are first predicted forward
to the observation time. Data association is performed by
matching the observation with the local estimate. The re-
sults of data association performed by the Sensor may also
be used. If there is no match to an existing feature, a new
one is created. Multiply associated observations are ig-
nored. With correct association, the local filter fuses the ob-
servation and the prediction assuming conditional indepen-
dence. The updated feature is marked as modified. Panel
(c) shows the same procedure in less detail.

Processing of a channel update is shown in panel (d). The
fusion procedure depends on whether the common informa-
tion contained in the two estimates is known. If it is, then
optimal fusion is possible. The common information is first
subtracted from the remote estimate and, if the information
gain is positive, the new information is fused with the latest
local estimate which has been predicted to the time hori-
zon. If common information is not known, then the two
estimates are fused conservatively.

3.3.2 Channel Filter

The channel filter maintains the information which is in
common between two directly linked nodes. The informa-
tion flow inside the channel filter is illustrated at the bottom
of Fig. 3. The common estimatePij(· | ·) is updated in two
cases: when nodei updates its local estimate through local
observations or information from nodes other thanj (c) and
when nodei receives information from nodej (d).

In the latter case, when nodei has information unknown
to nodej, a channel message is sent. The current local es-

timatePi(xk) is placed into the outgoing buffer and sent at
the appropriate time. The common estimate is updated ac-
cordingly. When a channel update message is received from
nodej, all estimates of common information are predicted
to the next time horizon, and data association is performed.
If there is no match to an existing feature, a new one is ini-
tialized. Multiply associated observations are ignored. If
a positive match is found, the remote estimate is predicted
to time horizon and placed into the local filter’s incoming
buffer.

3.3.3 Topology Manager

A long-lived distributed system must be able to reconfigure
during its life time. Common reasons for reconfiguration
are addition, exit and especially failure of components; mo-
tion of platforms and features, etc. A strictly reactive topol-
ogy control policy is currently implemented: connecting to
services and responding to service outages. Channel filters
require an acyclic network to function properly. Addition of
fusion Nodes does not present a problem but exit or failure
of Nodes in non-leaf positions may lead to cyclic networks
possibly causing overconfidence in feature estimates. A de-
centralized algorithm for rebuilding a tree network after a
Node failure is described in [18]. Proactive algorithms for
network topology control is a subject of future research.

3.4 Data Fusion Primitives

A closer examination of the data flow diagrams in Fig. 3
reveals that, regardless of the implementation of the proba-



bilistic filter, the BDDF algorithm can be expressed in terms
of five basic operations:

1. Data association
2. Prediction (motion update)
3. Scan-to-track fusion (fusing an estimate and an inde-

pendent observation)
4. Track-to-track fusion (fusing two estimates with

known common information)
5. Conservative track-to-track fusion (fusing two esti-

mates with unknown common information)

These basic operations will be referred to as DDF primi-
tives. In the remainder of this section we will define these
primitives for a generalpdf. The next section will special-
ize them to specificpdf representations, including Gaussian
point features.

We consider an environment feature described by a state
vectorxk = x(tk). The state is unknown and has to be esti-
mated, it assumed to be Markovian. The feature is modelled
with a probabilistic state transition functionP (xk | xk−1).
Let zk = z(tk) be an observation of the feature with state
xk. The sensor likelihood function isL(zk | xk) and is as-
sumed to depend only on the state of the feature at the time
of the observation. The general Bayesian filtering problem
is to find the posterior probabilityP (xk | Zk,x0) at time
tk based on the initial prior and the history of observations.
The solution uses the recursive form of Bayes’ theorem:

P (xk | Zk,x0) =
P (zk | xk)P (xk | Zk−1,x0)

P (zk | Zk−1)
(1)

It is convenient to separate Eq. 1 into two parts: the motion
update whichpredictsthe state from one time step to the
next (the initial prior is omitted)

P (xk | xk−1,Zk−1) =∫
P (xk | xk−1)P (xk−1 | Zk−1)dxk−1 (2)

and the information update whichfusesthe information
from the predicted estimate and an independent observation

P (xk | Zk) =
1
C

L(zk | xk)P (xk | xk−1,Zk−1) (3)

The fusion of estimates (tracks) held by two Nodes re-
quires identification of new information contained in one
distribution relative to the other. The new information is
easy to calculate if the common information between the
two distributionsP (xk | Zk

i∩j) is known:

P (xk | Zk
j\i) =

1
C

P (xk | Zk
j )

P (xk | Zk
i∩j)

. (4)

The combined estimate based on the observations of both
Nodes can then be found:

P (xk | Zk
i∪j) = P (xk | Zk

i )P (xk | Zk
j\i). (5)

Channel filters are introduced specifically to maintain the
information common to two Nodes. If for some reason the
channel filter cannot be trusted, then it is necessary to per-
form a conservative fusion of the two distributions. One
way to do this is to simply keep the more informative one
of the two and discard the other one. Entropy can be a
measure of informativeness in this case. It is possible to
salvage more information under some circumstances (see
Sec. 3.5.1.)

Thedata associationstep is required if filtering uses ob-
servations of uncertain origin. It is often the most challeng-
ing part of the problem. Distance measures can be used for
general distributions [19] but this remains a research topic.

3.5 Specialized Representations
The BDDF algorithm is defined for an arbitrarypdf but im-
plementation details differ depending on thepdf represen-
tation. This section discusses specialization of DDF prim-
itives to Gaussian point features, discrete general distribu-
tions, Certainty Grids, and mixed representations.

3.5.1 Gaussian Point Features

Point features with Gaussian position uncertainty are most
commonly used in the context of DDF due to the algorith-
mic efficiency which they allow. Consider a discrete system
described in standard linear form

xk = Fkxk−1 + Gkwk; zk = Hkxk + vk, (6)

wherexk is the state vector at timetk, Fk is the state
transition matrix from timek − 1 to k, Gk the influence
matrix for process noise, andwk is the associated pro-
cess noise modelled as an uncorrelated white sequence with
E

[
wiwT

j

]
= δijQi. A vector of observationszk is ob-

tained at timetk according to the linear observation model
Hk with the associated observation noisewk modelled as
an uncorrelated white sequence withE

[
vivT

j

]
= δijRi.

By direct substitution of the Gaussianpdf into the log-
likelihood form of Bayes theorem, the information form of
the Kalman filter (KF) can be derived [18]. This algorithm,
called theInformation Filter(IF), is numerically equivalent
to the Kalman filter but is more suitable for decentraliza-
tion. In the IF, the standard statex and covariance matrixP
are replaced by the information matrixY = P−1 and the
information vector̂y = Yx.

For data association, a simple innovation-based gating
mechanism can be set up which dismisses new observations
if considered unlikely. Theprediction stage of the IF is
more complicated compared to the KF form

Yk,k−1 = Mk −MkGkΣ−1GT
k Mk

ŷk,k−1 = [1 −MkGkΣ−1GT
k ]F−T

k ŷk−1

+Yk,k−1Bkuk, (7)

with Σk = GT
k MkGk + Q−1

k andMk = F−T
k Yk−1F−1

k .
But theupdatestage is remarkably simple

ŷk,k = ŷk,k−1 +
∑

ik

Yk,k = Yk,k−1 +
∑

Ik (8)



where ik ≡ HT
k R−1

k zk and Ik ≡ HT
k R−1

k Hk. Track-
to-track fusionwith valid channel filter information is also
straightforward:

Yi∪j
k,k = Yi

k,k + Yi
k,k −Yi∩j

k,k−1

ŷi∪j
k,k = ŷi

k,k + ŷi
k,k − ŷi∩j

k,k−1 (9)

with Yi∩j andŷi∩j maintained by the channel filter. If the
channel filter is invalid then aconservative track-to-track
fusionmethod must be used. The Covariance Intersect (CI)
algorithm allows to combine two Gaussian random vari-
ables when the correlation between them is unknown [20]:

Yi∪j
k,k = ωYi

k,k + (1 − ω)Yj
k,k

ŷi∪j
k,k = ωŷi

k,k + (1 − ω)ŷj
k,k, (10)

whereω is selected based on a heuristic. The most com-
monly used heuristic is to selectω which minimizes the
determinant of the resulting covariance matrix.

3.5.2 General Discrete Distributions

Despite their computational advantages, parameterized
probability distributions are often inadequate, e.g. in non-
linear filtering [4] and discrete identification [21]. It is
quite easy in principle to decentralize the maintenance of
a general distribution but the computational and communi-
cation burden required in practice presents a problem. The
most common method of representing general distributions
in centralized data fusion is the spatial grid. In this case the
DDF primitives are the same as in Sec. 3.4 with the integral
in Eq. 2 replaced by a discrete sum.

3.5.3 Certainty Grids

The Certainty Grid (CG) [22] allows a simple and intuitive
representation of distributed spatial information such as oc-
cupancy for indoor spaces or traversability for the outdoors.
Formally, the certainty grid is a discrete-state binary ran-
dom field. Each element encodes the probability of the cor-
responding grid cellCi being in a particular state, e.g. oc-
cupiedŷ = log P (s(Ci) = occ), shown in log-likelihood
form. The representation can be extended (similar to [23])
to include more than two states. The decentralized CG may
be viewed as a decentralized identification problem [21]
and a special case of the discrete distributions discussed
above. The identification is performed between occupied
and empty states of each cell. Information accumulated by
the decentralized network is the certainty of occupancy of
each individual cell.

Data associationis not required because the “features”
(the CG cells) are referred to by their location. The loca-
tions of the cells in the OG map are assumed to be constant
and known, so thepredictionstep typical of target track-
ing applications is not necessary. It is possible, however,
to introduce a certain amount of information “forgetting”
or blurring [22]. The time scale associated with informa-
tion loss may reflect the expected dynamic aspect of the

environment. Any information entered into the map is not
permanent and has to be verified periodically. This feature,
combined with the ability of mobile platforms to seek out
new information, provides a limited ability of dealing with
non-static environments.

Scan-to-track fusionfuses local observations with the lo-
cal predicted estimate

ŷi
k,k = ŷi

k,k−1 +
∑

ik + C, (11)

whereC is a normalization constant.Track-to-track fusion
with known common information is a matter of simple ad-
dition and subtraction

ŷi∪j
k,k = ŷi

k,k−1 + ŷj
k,k−1 − ŷi∩j

k,k−1 + C. (12)

Conservative track-to-track fusionmust be employed if the
observation history is not known. No special algorithms are
available.

3.5.4 Mixed Representations

When choosing the rightpdf representation for a feature,
it is often possible to break up the state vector into inde-
pendent subsets and represent each subset with the most
appropriate representation. One use for a hybrid state is in
joint target tracking and classification algorithms [24]. In
[25], the identity of the target is represented by a a particle
filter and its position by a Gaussian. In another applica-
tion, data association and probability of track existence are
combined in the Integrated Probabilistic Data Association
(IPDA) algorithm [26]. These hybrid states and others can
be decentralized provided that required algorithms exist for
the representations chosen for each state subset.

4 Decentralized Control

The data fusion layer of the ASN leads to a synchronized
view of the state of the environment. Based on this belief,
sensing platforms equipped with actuators can make indi-
vidual control decisions to maximize the team utility func-
tion. Two algorithms have been examined within the ASN
framework: coordinated and cooperative control.

4.1 Coordinated Control

The coordinated control algorithm [15] predicts and max-
imizes the expected information gain from local sensors
without any knowledge of the choices made by other de-
cision makers. The ASN propagates observed information
influencing the locally optimized sensing plans. Conse-
quently, by simply activating the data fusion layer of ASN
and keeping the control policies independent at each plat-
form, a coordinated control solution is obtained. Zero-look-
ahead solution, or “information surfing”, is of special inter-
est because of the low computational effort required.
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Fig. 4: The experiments: the “motion” map (a) and point feature tracking (b). Blue lines stand for DDF links.

4.2 Cooperative Control through Negotiation

An interesting extension of BDDF is a decentralized coop-
erative control scheme [27] which engages each decision
maker in anonymous negotiation based on propagation of
expectedobservation information through specialnegotia-
tion channels. These channels are identical to the regular
BDDF channels in all respects except that they exchange
expected information gains instead of the actual ones. Con-
troller components act as both sources and sinks of ex-
pected information. Nodes fuse and disseminate global es-
timates. The same BDDF primitives and specialized repre-
sentations apply.

Team decisions are reached as follows. Each decision
maker updates its sensing plan using a better-response pro-
cedure and communicates the change in expected observa-
tion information. Plans are withdrawn by submitting nega-
tive information gains. The negotiation cycle is repeated to
determine the sensing actions that optimize the team utility.
Experimental validation of this algorithm remains a subject
of future work.

5 Experiments

Two sets of indoor experiments differ in environment rep-
resentation, team makeup, and deployment patterns. Both
use a version of the BDDF algorithm and are implemented
using the ASN application framework.

The task in the first set of experiments is to build a dy-
namic map of motion in the office space stored in the Cer-
tainty Grid format (Sec. 3.5.3). The task is performed by
a team of stationary lasers and video cameras. Fig. 4(a)
shows the resulting “motion” map built by a system with
up to 39 components on 11 hosts. The dark (red) cells mark
the locations where motion has been detected. The office
layout is superimposed by hand for clarity.

The task in the second set of experiments is to estimate
locations of stationary point targets [28]. This time the team

is a mix of two Pioneer robots, a stationary sensor module
(all equipped with laser range finders), and two operators.
Fig. 4(b) shows the overall view of the system which in-
volved 13 components on 5 hosts: 3 nodes (blue circles)
execute the IF algorithm (Sec. 3.5.1); 3 Sensors convert
laser scans to Gaussian point observations; 2 Controllers
implement the coordinated information surfing algorithm
(Sec. 4.1). Features 0 and 1 in Fig. 5(a) were acquired by
the robotic Sensors, feature 2 is outside of the platforms’
sensor range and was entered by the operator. The mobile
platforms respond to the new information by driving to the
feature and observing it as shown in Fig. 5(b).

6 Conclusions

The BDDF algorithm presented in this paper extends decen-
tralized data fusion techniques to general probability distri-
bution. BDDF is a direct extension of DDF in that it uses
the idea of channel filters but without the limiting Gaussian
assumption. Similarly, the earlier work on decentralized
information-theoretic control is reformulated for the case
of arbitrary probability distributions.

Future work in the area of data fusion involves special-
izing BDDF to non-parametric representations of arbitrary
distribution. The general Bayesian formulation opens the
door for a generic Node implementation with a provision
for various representation plug-ins. On the control side, ex-
perimental validation of the cooperative control algorithm
is needed.
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Fig. 5: Tracking point features: operator enters feature 2 (left); platforms drive to and observe it (right).

References
[1] A Makarenko, A Brooks, SB Williams, HF Durrant-Whyte,

and B Grocholsky. An architecture for decentralized active
sensor networks. InIEEE ICRA, New Orleans, LA, 2004.

[2] A Brooks, A Makarenko, T Kaupp, S Williams, and
H Durrant-Whyte. Implementation of an indoor active sen-
sor network. InInt. Symp. on Exp. Robotics, Singapore,
2004.

[3] J Manyika and HF Durrant-Whyte.Data Fusion and Sen-
sor Management: a decentralized information-theoretic ap-
proach. Ellis Horwood, 1994.

[4] L Stone, C Barlow, and T Corwin.Bayesian multiple target
tracking. Artech House, London, 1999.

[5] ME Liggins II, C-Y Chong, I Kadar, MG Alford, V Van-
nicola, and S Thomopoulos. Distributed fusion architec-
tures and algorithms for target tracking.Proc. of the IEEE,
85(1):95–107, 1997.

[6] M Rosencrantz, G Gordon, and S Thrun. Decentralized sen-
sor fusion with distributed particle filters. InUAI-03, 2003.

[7] H Carvalho, W Heinzelman, A Murphy, and C Coelho. A
general data fusion architecture. InInt. Conf. on Info. Fu-
sion, pages 1465–1472, 2003.

[8] H Qi, SS Iyengar, and K Chakrabarty. Distributed sensor
fusion – a review of recent research.J. of the Franklin Inst.,
388:655–668, 2001.

[9] RG Simmons, , and et al. Coordination for multi-robot ex-
ploration and mapping. InAAAI Nat. Conf. on AI, pages
852–8, Austin, TX, 2000.

[10] K Konolige, C Ortiz, R Vincent, A Agno, M Eriksen,
B Limketkai, M Lewis, L Brieseister, and E Ruspini. Centi-
BOTS: Large scale robot teams. InInt. Workshop on Multi-
Robot Systems, pages 193–204, Washington, DC, 2003.

[11] C Intanagonwiwat, R Govindan, D Estrin, J Heidemann, and
F Silva. Directed diffusion for wireless sensor networking.
IEEE/ACM Trans. on Networking, 11(1):2–16, 2003.

[12] S Grime and H Durrant-Whyte. Data fusion in decentralized
sensor networks.Control Eng. Practice, 2(5):849–63, 1994.

[13] S Sukkarieh, E Nettleton, J-H Kim, M Ridley, A Goktogan,
and HF Durrant-Whyte. The ANSER project: Data fusion
across multiple uninhabited air vehicles.Int. J. of Rob. Re-
search, 22(7/8):505–540, 2003.

[14] E Nettleton and H Durrent-Whyte. Delayed and asequent
data in decentralised sensing networks. InSPIE Photonics,
pages 1–9, Boston, MA, 2001.

[15] B Grocholsky, A Makarenko, T Kaupp, and HF Durrant-
Whyte. Scalable control of decentralised sensor platforms.
In Int. Workshop on Info. Processing in Sensor Networks,
pages 96–112, Palo Alto, CA, 2003.

[16] CB Sheehy. Data selectivity vital to operational picture.SIG-
NAL Magazine, (May), 2001.

[17] Solipsys Corp. Tactical component network: Overview.
White paper, http://www.solipsys.com/tcn.php, 2000.

[18] E Nettleton. Decentralised Architectures for Tracking and
Navigation with Multiple Flight Vehicles. PhD, U. of Syd-
ney, 2003.

[19] JN Kapur. Measures of Information and their Application.
John Wiley, 1994.

[20] S Julier and J Uhlmann. General decentralised data fusion
with covariance intersection (CI). In D Hall and J Llinas,
editors,Handbook of Data Fusion. CRC Press, 2001.

[21] J Berger.Statistical decision theory and Bayesian analysis.
Springer-Verlag, New York, 1985.

[22] A Elfes. Robot navigation: Integrating perception, environ-
mental constraints and task execution within a probabilistic
framework. InReasoning with Uncertainty in Robotics. Int.
Workshop, pages 93–129, Amsterdam, Netherlands, 1995.

[23] C Stachniss and W Burgard. Mapping and exploration with
mobile robots using coverage maps. InIEEE/RSJ IROS,
pages 467–472, Las Vegas, NV, 2003.

[24] S Challa and GW Pulford. Joint target tracking and clas-
sification using radar and esm sensors.IEEE Trans. on
Aerospace and Electronic Sys., 37(3):1039–1055, 2001.

[25] D Fox, J Hightower, L Liao, D Schulz, and G Borriello.
Bayesian filtering for location estimation.IEEE Pervasive
Comp. Mag., 2(3):24–33, 2003.

[26] D Musicki, R Evans, and S Stankovic. Integrated probabilis-
tic data association.IEEE Trans. on Auto. Contr., 39(6):1237
–41, 1994.

[27] B Grocholsky. Information-Theoretic Control of Multiple
Sensor Platforms. PhD, U. of Sydney, 2002.

[28] A Makarenko, T Kaupp, and HF Durrant-Whyte. Scalable
human-robot interactions in active sensor networks.IEEE
Pervasive Computing Mag., 2(4):63–71, 2003.


