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Abstract — The paper presents an algorithm for Bayesian deénteracting with the network through a user interface (Ul).
centralized data fusion (BDDF) and its extension to informationAll entities, human and robotic, are thought of as members
theoretic control. The algorithm is stated for a feature representgst 5 team.

by a geperal probability de_nsity function. _Seve_ral specific reP- ASN is an architecture farooperative autonomosens-
resentations are then considered — Gaussian, discrete, Certalm)é platforms. Autonomy implies that a platform is able to

Grid, and hybrid. Well known algorithms for these representation L . .
are shown to fit the general BDDF pattern. Stating the algorithmvgork in isolation and does not rely on infrastructure ser

in Bayesian terms has a practical advantage of allowing agenerYéceS’ remote control, or other external inputs. Cooper-

software implementation. It is also hoped that a clear generﬁllt've meanls that the platforms Shar(_a common goals and,
formulation will stimulate extensions to efficient non-parametriéhen possible, work together to achieve them. Platforms
representations of arbitrary distributions. The algorithms are deare likely to have different capabilities but each comes
scribed in the context of the Active Sensor Network architectugguipped with power, processing and communication facil-
—a modular framework for decentralized cooperative data fusidties, sensors and actuators. Each one fuses local obser-
and control. The approach is illustrated with the results of tw@ations with information communicated from neighboring

deployment scenarios with an indoor sensor network. nodes into a synchronized view of the world. Similarly,
Keywords: Decentralized data fusion, decentralized control, seRACh one makes local COI’]tI’O|.(.21.ECISIOnS based on the knowl-
sor networks, mobile robots. edge of local platform capabilities and the global synchro-

nized world view.

The fundamental principle of the ASN architectural style
is decentralization. Compared to a centralized or a dis-
Large numbers of autonomous sensing platforms connectabuted system, a decentralized system is characterized by
into a network promise better spatial coverage, higher revo key constraints [3]: &) no central services and facilities
sponsiveness, survivability and robustness compared taral b) no knowledge of global topology. The resulting sys-
single vehicle solution. The need for such systems exisesn offers a number of advantages over other architectures.
in many applications involving tasks in which timely fu-Scalability: the computational and communication load at
sion and delivery of heterogeneous information streamseach node is independent of the size of the netwdt&:
of critical importance. Examples include military and civilbustness:no element of the system is mission critical, so
ian surveillance, fire fighting, intelligent buildings, etc.  that the system is survivable in the event of run-time loss of

The Active Sensor Network (ASN) project at the UnivereomponentsModularity: components can be implemented
sity of Sydney aims to combine decentralized data fusi@md deployed independently from each other.
and control algorithms into a unified yet flexible system ar- The ASN system is composed of software components
chitecture suitable for a wide range of sensing tasks. Themmunicating asynchronously with each other. Compo-
ASN can be described from three viewpoints: the architegent types correspond roughly to the functional breakdown.
ture [1], the algorithms, and the concrete implementatiofith respect to the environment information, a compo-
[2]. The focus of this paper is on the algorithmic side of theent can be a Source (producer), a Sink (consumer), or a
framework but the general approach is briefly described Euser/Distributor. Similarly, with respect to control com-
provide the necessary background. mands, a component can be a Source (decision maker) or a

We seek a solution to the problem of distributed inforSink (controlled object). A particular component can play
mation gathering (DIG). We consider a distributed pheseveral of these roles at once. To make the reference clear,
nomenon which can be described by a state vectdhere the component types will be capitalized.
is a set of heterogeneous robotic platforms equipped withThis paper is organized as follows. A brief review of
sensors and actuators. There is also a set of operators wélated work is given first. Sec. 3 describes the ASN data
observe the phenomenon directly using human senses ofusion layer. It includes the description of Bayesian decen-

1 Introduction



tralized data fusion algorithm and its application to several e souce T e i
probability density functiondf) representations. Sec. 4 — % & .
describes two algorithms to decentralized control. Sec. § O R prrv=
demonstrates the architecture in two sets of experiments ¢ :

an indoor sensor network. 1y
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In terms of data fusion algorithms, Bayesian non-linear fil-
tering is clearly stated for a single sensing platform in [4].
A broad review of distributed data fusion architectures can
be fpupd in [5]. An int.eres.ting. query-response approaefl1  Architecture and Interfaces
to distribute a particle filter is given in [6]. A general data
fusion framework is proposed in [7] but its extension to Rata fusion design involves making many architectural
decentralized case is not clear. choices, including: data fusion method, distribution in pro-
In terms of application this work is most closely relate§€ssing and storage, communication topology, type of ex-
to the field of sensor networks (SN) [8]. It is convenient téhanged information, degree of preprocessing, and many
view the SN research by dividing it into three broad catéthers. Listing our choices in the same order, the ASN ap-
gories: multi-robot systems (MRS), macro SN (MSN) anBroach to data fusionis: Bayesian, decentralized in process-
micro SN ©SN). Small to medium team sizes (up to 106"g and storage, over a tree or general network, utilizing
platforms) in MRS are best handled by centralized and #oth scan-to-track and track-to-track fusion, feature-based.
erarchical approaches to data fusion and control [9, 10].Because ASN is component-based, understanding inter-
Very large team sizes, envisioned fo8N, require decen- actions between components is required to understand the
tralized approaches. However, due to limited processifighion algorithm. Fig. 1 shows component types imple-
power the issues of information fusion (or “aggregationylenting the data fusion layer of the system. Information
are either not addressed or handled in a non-probabilisgeurces observe the environment, Nodes fuse and distribute
fashion. The Directed Diffusion (DD) protocoi [11] prop_information, Sinks requeSt and use information, and Frames
agates data from sources to sinks and its non-probabilisti€ responsible for localization and other platform related
data aggregation approach is typical: duplicate target fétnctions. The relationship between component types is de-
cation estimates are suppressed by the intermediate nogegbed by the services each type provides and requires.
Platforms are usually static, so control issues are not con-The Fusing interface is provided by Nodes. It accepts
sidered. observations from Information Sources. Its multiplicity is
The MSN field is the closest to this work. The originaPhe-to-many and it accepts “scans” in the form of observa-
ideas of channel filters used in present work were demd#an likelihoodsZ(z | x), wherez is a particular observa-
strated on a model process control piant Comprising O\,t@?n andx is the Underlying state. The Linkable interface
150 distributed sensors [12]. More recently, Decentralizégiused to connect Nodes into a network — the information
Data Fusion (DDF) was applied to tracking ground targegickbone of the system. It represents a strictly one-to-one
using four purpose-built fixed-wing Unmanned Aerial Vetelationship between pairs of Nodes and exchanges tracks
hicles [13]. Up to three of them were flown simultaneousli? the form of apdf P(x) over the statec. The Informed
during a three year flight program with up to six fusionterface is used to serve information to information con-
nodes operating simultaneously and in real time. The prgdmers. It allows Sinks to specify quality of service (QoS)
gram also dealt with such issues as track initialization afi@duirements which Nodes attempt to satisfy. Its multi-
deletion, delayed and asequent data [14], timing, etc. DRicCity is one-to-many and the main information flow is in
centralized control (DC) was added to DDF in [15]. Thi¢he form of track estimateB(x). The Localized interface
work extends the DDF and DC, which are limited to Gaug¥lays an important role of providing global localization to
sian uncertainties, to the generai Bayesian case. Information Sources. The localization method is chosen by
In military systems, Cooperative Engagement Capabi[lleldual Frames. The next two sections describe the in-
ity (CEC) is an operational US Navy multi-sensor trackinfrnal structure of Sensor and Node components.
system [16]. It uses a fully connected architecture which
limits its scalability. Tactical Component Network (TCN)3.2 Sensor Realization

[17] advocates in-network processing similar to DDF bye sensor component plays the role of an information
algorithmic details are not available. source. First, the Sensor reads a raw measuremfzom
. . . the sensing hardware and converts it into the global co-
3 Bayesian Deqentrahzed Data Fusion ordinate frame. To perform the transformation, the Sen-
(BDDF) Algorithm sor needs to know its current global pose. It is calculated
This section describes the algorithm underlying the data fobased on the current Frame pose (Localized interface) and
sion layer of the ASN architecture. It fulfills the function othe known offset of the physical sensor. The next step is
sensing, fusion, and dissemination of information. to calculate an observation likelihodd, (= | x) based on

Fig. 1. Structural diagram of the data fusion layer.
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Fig. 2 shows the internal structure and the interdependen-
cies between the subsystems of the Node component. The
three main internal parts are the local filter, several channel Fig- 2: Internal structure of the Node component.
filters, and the topology manager. The role of the local fil- o o
ter is to maintain the estimate of the state of the world. §ft€r communication link is re-opened. Transmitting only
realizes two interfaces: Fusing and Informed, used by IK1€ néw information may save bandwidth for certain repre-
formation Sources and Sinks respectively. Each Node Rghtations. A mixed policy is also possible. In the following
one local filter. The channel filter is used to manage Corql_scu_ssmn only the case of transmitting the full estimate is
munication between Nodes. It serves two main functiorgonsidered. _
to keep track of information previously communicated be- YWhen an internal event triggers a state update of Infor-
tween the nodes (“through the channel’), and to synchration Slnks through the Informed .|nterface, the current
nize incoming and outgoing information with the local fillocal estimateP; (z) is passed to the Sink. The same choice
ter. The topology manager is responsible for reconfigurﬁetv‘{ee” sending the estimate or only the new information
tion of the network topology. The three subsystems wiiPPlies here as well. -
be described in more detail below but first, the information The scalability of this approach stems from the fact that
flow between the local and channel filters is described. ©ach node performs fusion. Incoming data from remote
Fig. 3(a) shows four triggers for activity on NodeThe nodes is a§5|mllated by the local filteeforebeing passed
four activities occur asynchronously — the fact illustrate@ 0 the linked nodes. Therefore, no matter the number
in the Figure by separate “swim lanes”. The first two af@f incoming messages, there is only a single outgoing mes-
triggered by events external to the Node (arrival of obset2g€ to each node. Consequently, as the sensor network
vation and channel update messages), while the last tJ@Ws in size, the amount of information sent down any
are triggered internally. Local updates are executed wh@R€ channel remains constant and the system as a whole
local observations arrive. Channel filter updates are dof@? Scale indefinitely. Each node stores a local copy of all
using time horizon. Node-to-Node synchronization is trif€ature estimates. Thus, if the operation of the channel is
gered primarily by availability of information. Node-to-SUSP_ended' t_he filter simply accumul_ates information in an
Sink connections are updated based on the requestedditive fashion. When the channel is re-opened, the total
curacy (QoS). The algorithmic steps taken inside the |0(%¢cumulated mformatlon_ln the channelis commumcatgd in
and channel filters for each of the events will be describ@§€ Single message. This feature allows burst transmission
in the sections below. of data to reduce communication bandwidth requirements.
When an observatiofi, (= | x) arrives from one of the The op_erati_on of que’s subsystems_ is de_scri_bed next.
local Sensors through the Fusing interface, it is passed 3¢ @lgorithmic steps in processing of incoming informa-
the local filter where it is fused with the local estimatdion is described in terms of basic operations: associate,
When a channel update message arrives from one of pedict, §ubtract, fuse. These will be Qef|ned for an arbi-
connected Nodes through the Linkable interface it is fird@"y Pdf in Sec. 3.4 and then more precisely for sevprl
processed internally in the channel filter. Then the curref@Presentations in Sec. 3.5.
remote estimat®; (x | Z7) and the estimate of common in- )
formation between the local and remote Nodesx) are 3.3.1 LocalFilter
passed to the local filter. The local filter generates state estimates on the basis of ob-
When an internal event triggers synchronization betweeerved, predicted and communicated information. Other
the local filter and one of the channel filters, the curremfrastructure such as channel filters and the topology man-
local estimateP;(x) is passed to the channel filter. Theager exist only to support the proper functioning of the local
channel filters are periodically synchronized with the corréifter. The local filter contains an array of Bayesian filters
sponding remote channel filters on the linked Nodes. Twepresenting individual features of the environment. Differ-
possibilities exist for the form of the exchanged informaent feature types may be stored side by side and the filters
tion: the current estimate®;(x) and P;(z) or the new may use differenpdf representations.
information accumulated since the last updafg (x) and The local filter receives observations from one or more
M, (x). Transmitting the current state and not just the nelocal sensors as shown in the top row of Fig. 3(a). A se-
information offers a certain degree of robustness to packptence diagram in Fig. 3(b) shows the steps inside the local
loss in the channel. All information contained in the lodilter. Observations arriving asynchronously are stored in a
messages is implicitly present in future messages receimdfer and the local filter is notified. Inside the local filter,
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Fig. 3: External and internal information flow in the Node component: (a) four activity triggers and the information flow
they cause; (b) detailed sequence diagram for the local filter with a sensor observation; (c) and (d) abbreviated information
flow diagrams for local observation and channel update.

all features of the matching type are first predicted forwatinate P;(z;) is placed into the outgoing buffer and sent at
to the observation time. Data association is performed by appropriate time. The common estimate is updated ac-
matching the observation with the local estimate. The reerdingly. When a channel update message is received from
sults of data association performed by the Sensor may atsmlej, all estimates of common information are predicted
be used. If there is no match to an existing feature, a néwthe next time horizon, and data association is performed.
one is created. Multiply associated observations are ifithere is no match to an existing feature, a new one is ini-
nored. With correct association, the local filter fuses the otialized. Multiply associated observations are ignored. If
servation and the prediction assuming conditional indepempositive match is found, the remote estimate is predicted
dence. The updated feature is marked as modified. Patwetime horizon and placed into the local filter’'s incoming
(c) shows the same procedure in less detail. buffer.

Processing of a channel update is shown in panel (d). The
fusion procedure depends on whether the common inforn&a3.3 Topology Manager

tion contained in the two estimates is known. If it is, then . L .
long-lived distributed system must be able to reconfigure

optimal fusion is possible. The common information is firﬁf g its life i C f i i
subtracted from the remote estimate and, if the informatighf''"d 'S llf€ iMe. “~.ommon reasons for reconniguration
e addition, exit and especially failure of components; mo-

gain is positive, the new information is fused with the late& . .
fion of platforms and features, etc. A strictly reactive topol-

local estimate which has been predicted to the time ho trol policy i v imol ted: ting t
zon. If common information is not known, then the w9y contro go ICY 1S g‘ﬂ"e” y implemented. cc&r;]nec |r;gﬂo
estimates are fused conservatively. services and responding to service outages. Channel filters
require an acyclic network to function properly. Addition of
3.3.2 Channel Filter fusion NOQes does not p_rgsent a problem but e_xit or failure
] o ) ) .. .of Nodes in non-leaf positions may lead to cyclic networks
The channel filter maintains the information which is iRossinly causing overconfidence in feature estimates. A de-
common between two directly linked nodes. The informasniralized algorithm for rebuilding a tree network after a
tion flow inside the channel filter is illustrated at the bottorg o e failure is described in [18]. Proactive algorithms for

of Fig. 3. The common estimafe; (- | -) is updated in two neork topology control is a subject of future research.
cases: when nodeupdates its local estimate through local

observatlons or mformatlon fr_om nodes otherthe(n) and 3.4 Data Eusion Primitives
when node receives information from nodg(d).

In the latter case, when nodédas information unknown A closer examination of the data flow diagrams in Fig. 3
to nodej, a channel message is sent. The current local esveals that, regardless of the implementation of the proba-



bilistic filter, the BDDF algorithm can be expressed in termShannel filters are introduced specifically to maintain the
of five basic operations: information common to two Nodes. If for some reason the
channel filter cannot be trusted, then it is necessary to per-

1. Data association form a conservative fusion of the two distributions. One

2. Prediction (motion update) way to do this is to simply keep the more informative one

3. Scan-to-track fusion (fusing an estimate and an indef the two and discard the other one. Entropy can be a
pendent observation) measure of informativeness in this case. It is possible to

4. Track-to-track fusion (fusing two estimates wittsalvage more information under some circumstances (see
known common information) Sec. 3.5.1))

5. Conservative track-to-track fusion (fusing two esti- Thedata associatiorstep is required if filtering uses ob-
mates with unknown common information) servations of uncertain origin. It is often the most challeng-

ing part of the problem. Distance measures can be used for

These basic operations will be referred to as DDF primgreneral distributions [19] but this remains a research topic.
tives. In the remainder of this section we will define these

primitives for a generapdf. The next section will special- 3.5 Specialized Representations

ize them to specifipdf representations, including Gaussiamrhe BDDF algorithm is defined for an arbitragogf but im-

point features. plementation details differ depending on {hef represen-
We consider an environment feature described by a stgd@ion. This section discusses specialization of DDF prim-

vectorx, = x(t). The state is unknown and has to be estitives to Gaussian point features, discrete general distribu-

mated, it assumed to be Markovian. The feature is modellggns, Certainty Grids, and mixed representations.

with a probabilistic state transition functid?(xy, | xx—1).

Letz, = z(t) be an observation of the feature with stat@.5.1 Gaussian Point Features

x;. The sensor likelihood function i5(z;, | x;;) and is as- Point features with Gaussian position uncertainty are most

sumed to depend only on the state of the feature at the tio@mmonly used in the context of DDF due to the algorith-

of the observation. The general Bayesian filtering problemic efficiency which they allow. Consider a discrete system

is to find the posterior probability’(x;, | Z*,x,) at time described in standard linear form

ti based on the initial prior and the history of observations.

The solution uses the recursive form of Bayes’ theorem: % ~ Fixi + Gowis - 2 = Hixi +vi, - (6)

where x;, is the state vector at time,, F, is the state

P(zy, | xx)P(xy | Z°71,x0) ) transition matrix from timek — 1 to k, G the influence

P(zy | ZF71) matrix for process noise, and, is the associated pro-

) ] ] _cess noise modelled as an uncorrelated white sequence with

It is convenient to separate Eq. 1 into two parts: the mothp[wwr] = 6;;Q;. A vector of observations,, is ob-
. . . Wy 7 7"

update whictpredictsthe state from one time step to th&ajned at time;, according to the linear observation model
next (the initial prior is omitted) H,, with the associated observation noisg modelled as
P Zh-1) _ an uncorrelated white sequence withv;v] = 6;;R..

(x| X1, )= By direct substitution of the Gaussiadf into the log-

/P(xk | xp_1)P(xp_1 | Z"V)dx;,_, (2) likelihood form of Bayes theorem, the information form of

the Kalman filter (KF) can be derived [18]. This algorithm,

and the information update whiclusesthe information called thelnformfemon F'It?r(”:)’ 'S ngmencally equwalent
to the Kalman filter but is more suitable for decentraliza-

from the predicted estimate and an independent observat{%?] In the IE. the standard stateand covariance matriR

P(xy, | ZF %) =

1 are replaced by the information matf®k = P~! and the
P(xy, | Z¥) = 5L(Zk | x)P(xk | x1-1,Z"7")  (3)  information vectoly = Yx.

For data associationa simple innovation-based gating
The fusion of estimates (tracks) held by two Nodes renechanism can be set up which dismisses new observations

quires identification of new information contained in ong considered unlikely. Theprediction stage of the IF is
distribution relative to the other. The new information ignore complicated compared to the KF form

easy to calculate if the common information between the

— -1T
two distributionsP (x, | Z%. ) is known: Yig—1 = ?M - Mka21 S’]k szf
Vir—1 = [1-MpGpX7 "G |F, " ¥i_1
P(x;, | Zk,) = 1 PG| Z5) 4) +Y5 k-1 Brug, 7
AV k :
T O PG | Ziny) with 3, = GTM,Gy. + Q;* andM, = F; 7Y F; L.

The combined estimate based on the observations of bgtlﬁt theupdatestage is remarkably simple

Nodes can then be found: Vik = YVer_1+ Zi’f

P(xi | ZE;) = P(xi | ZF)P(xx | 2. (5) Yir = Yiro1+ > I ®)

iUj ,



wherei, = H{kalzk andI, = H{R;lHk. Track- environment. Any information entered into the map is not
to-track fusionwith valid channel filter information is also permanent and has to be verified periodically. This feature,

straightforward: combined with the ability of mobile platforms to seek out
Ui i new information, provides a limited ability of dealing with
1 ;i ; 7 . R
Y.l = Y, +Y Yl non-static environments.
y;ulg = Vin+tVix— 5’;215_1 9 Scan-to-track fusiofuses local observations with the lo-

cal predicted estimate

with Y"7 andy‘"/ maintained by the channel filter. If the _ _

channel filter is invalid then aonservative track-to-track Vik =Yir-1t Zik +C, (11)

fusionmethod must be used. The Covariance Intersect (Cl)

algorithm allows to combine two Gaussian random varwhereC is a normalization constantrack-to-track fusion

ables when the correlation between them is unknown [20kith known common information is a matter of simple ad-
dition and subtraction

YJZcUk? = WY, +0- W)Yi,k
o ) ) AiUj  ag ~j ~ 3N
Vil = w¥in+ 1w, (10) ik =Vik1 TVipo1 ~ Vet (12)

wherew is selected based on a heuristic. The most coreonservative track-to-track fusianust be employed if the
monly used heuristic is to select which minimizes the observation history is not known. No special algorithms are
determinant of the resulting covariance matrix. available.

3.5.2 General Discrete Distributions 3.5.4 Mixed Representations

Despite their computational advantages, parameterized ) ) )
probability distributions are often inadequate, e.g. in nofYNeN choosing the righadf representation for a feature,

linear filtering [4] and discrete identification [21]. It is't IS Often possible to break up the state vector into inde-
quite easy in principle to decentralize the maintenance [§fndent subsets and represent each subset with the most

a general distribution but the computational and commuriPPropriate representation. One use for a hybrid state is in

cation burden required in practice presents a problem. TiQint target tracking and classification algorithms [24]. In

most common method of representing general distributiolfs’]: the identity of the target is represented by a a particle
fifer and its position by a Gaussian. In another applica-

in centralized data fusion is the spatial grid. In this case th > ” X

DDF primitives are the same as in Sec. 3.4 with the integrrécfn' ‘?ata e}ssomatmn and probabﬂn_yl OT track eX|sten(?e are

in Eq. 2 replaced by a discrete sum. combined in the Integrated Probabilistic Data Association
(IPDA) algorithm [26]. These hybrid states and others can

3.5.3 Certainty Grids be decentralized provided that required algorithms exist for
the representations chosen for each state subset.

The Certainty Grid (CG) [22] allows a simple and intuitive

representation of distributed spatial information such as o¢-

cupancy for indoor spaces or traversability for the outdoofs.

Formally, the certainty grid is a discrete-state binary ran-

dom field. Each element encodes the probability of the cc};_be data fusion layer of the ASN leads to a synchronized

responding grid celC; being in a particular state, e.g. ocV/€W of the state of the environment. Based on this belief,
cupiedy = log P(s(C;) = occ), shown in Iog-IikéIihood s_ensing platforms equipped with actuators can make indi-

form. The representation can be extended (similar to [2 ual control d_ecisions to maximize the team qtility func-

to include more than two states. The decentralized CG may Two algorlthms have been exam_lned within the ASN

be viewed as a decentralized identification problem [2 fpmework: coordinated and cooperative control.

and a special case of the discrete distributions discussed

above. The identification is performed between occupiedl Coordinated Control

and empty states of each cell. Information accumulated by

the decentralized network is the certainty of occupancy ®he coordinated control algorithm [15] predicts and max-

each individual cell. imizes the expected information gain from local sensors
Data associatioris not required because the “featuresivithout any knowledge of the choices made by other de-

(the CG cells) are referred to by their location. The loca&ision makers. The ASN propagates observed information

tions of the cells in the OG map are assumed to be constarituencing the locally optimized sensing plans. Conse-

and known, so therediction step typical of target track- quently, by simply activating the data fusion layer of ASN

ing applications is not necessary. It is possible, howevand keeping the control policies independent at each plat-

to introduce a certain amount of information “forgettingform, a coordinated control solution is obtained. Zero-look-

or blurring [22]. The time scale associated with informaahead solution, or “information surfing”, is of special inter-

tion loss may reflect the expected dynamic aspect of thet because of the low computational effort required.

Decentralized Control
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Fig. 4: The experiments: the “motion” map (a) and point feature tracking (b). Blue lines stand for DDF links.

4.2 Cooperative Control through Negotiation is a mix of two Pioneer robots, a stationary sensor module

. . . . . all equipped with laser range finders), and two operators.
An interesting extension of BDDF is a decentralized cooén quipp g ) P

. . ._FIg. 4(b) shows the overall view of the system which in-
erative control scheme [27] which engages each deuskg ved 13 components on 5 hosts: 3 nodes (blue circles)
maker in anonymous negotiation based on propagation

tecbb tion inf tion th h ot execute the IF algorithm (Sec. 3.5.1); 3 Sensors convert
expectedbservation information through Specregolia- 1,56 scans to Gaussian point observations; 2 Controllers
tion channels These channels are identical to the regul

) lement the coordinated information surfing algorithm
BDDF channels in all respects except that they excharlfgeP g &g

; . o ec. 4.1). Features 0 and 1 in Fig. 5(a) were acquired by
expected information gains instead of the actual ones. C fa robotic Sensors, feature 2 is outside of the platforms’

troller c_ompone_nts act as both sources aqd sinks of nsor range and was entered by the operator. The mobile
pected information. Nodes fuse and disseminate global Iﬁ
fé

. S - atforms respond to the new information by driving to the
t|mate_s. The same BDDF primitives and specialized rep ature and observing it as shown in Fig. 5(b).
sentations apply.

Team decisions are reached as follows. Each decision
maker updates its sensing plan using a better-response o- Conclusions
cedure and communicates the change in expected observa-
tion information. Plans are withdrawn by submitting negarhe BDDF algorithm presented in this paper extends decen-
tive information gains. The negotiation cycle is repeated tralized data fusion techniques to general probability distri-
determine the sensing actions that optimize the team utilibution. BDDF is a direct extension of DDF in that it uses
Experimental validation of this algorithm remains a subjedte idea of channel filters but without the limiting Gaussian

of future work. assumption. Similarly, the earlier work on decentralized
information-theoretic control is reformulated for the case
5 Experiments of arbitrary probability distributions.

. . e , Future work in the area of data fusion involves special-
Two sets of indoor experiments differ in environment reRs;, BDDF to non-parametric representations of arbitrary
resentation, team makeup, and deployment pattemns. BQilyihtion. The general Bayesian formulation opens the
use a version of the BDDF algorithm and are implementefl,; tor 4 generic Node implementation with a provision

using the ASN application framework. for various representation plug-ins. On the control side, ex-

The task in the first set of experiments is to build a dy5emental validation of the cooperative control algorithm
namic map of motion in the office space stored in the CeL aeded.

tainty Grid format (Sec. 3.5.3). The task is performed by

a team of stationary lasers and video cameras. Fig. 4(a)

shows the resulting “motion” map built by a system wittAcknowledgment

up to 39 components on 11 hosts. The dark (red) cells mark

the locations where motion has been detected. The offiClis work is partly supported by the ARC Centre of Ex-

layout is superimposed by hand for clarity. cellence programme, funded by the Australian Research
The task in the second set of experiments is to estim&@euncil (ARC) and the New South Wales State Govern-

locations of stationary point targets [28]. This time the teament, and by AFOSR/AOARD under contract 03-13.
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