
A Distributed Architecture for Executing Complex
Tasks with Multiple Robots

Topi Mäenpää, Antti Tikanmäki, Jukka Riekki, and Juha Röning
Intelligent Systems Group and Infotech Oulu

Department of Electrical and Information Engineering
University of Oulu, Finland

Email: {topiolli, sunday, jpr, jjr}@ee.oulu.fi

Abstract— This paper presents a software architecture for the
network-transparent control of distributed robotic systems. The
system consists of two main components: a generic and easily
extensible CORBA-based interface to distributed services, and
a high-level XML-based description language for specifying the
behavior of the robots. The architecture makes it possible to
create dynamically modifiable, extensible control software with
ease. It is successfully utilized in implementing a coffee serving
system in which the co-operation of two very different robots
and two other distributed services are needed.

I. INTRODUCTION

At the moment we are witnessing the break-through of
robots helping people in various tasks. A number of ser-
vice robots have been recently introduced, including an au-
tonomous vacuum cleaner and a servant robot [1]. The mission
of these robots is to serve people in their everyday lives and
hence increase people’s quality of life. In addition, a number
of robots have been build for pure entertainment. However,
to be really attractive the robots should provide much more
functionality. They could perform a wider variety of tasks
and more complex tasks as well. This can be achieved by
increasing the number of robots. Through co-operation, the
robots can perform tasks together, each specializing in its own
expertise area. The individual robots can be relatively simple
and the resulting robotic system is more robust and cheaper
than one robot providing the same functionality.

The diversity of different types of robots makes it very
important to design interfaces that are easily extensible and
straightforwardly implementable. An abstraction of behaviors
is important to allow the use of a control software with
different robots without a need to rewrite code for each. The
same also applies to other distributed services like cameras
and other sensing instruments. With a universal interface and
high-level action abstraction, it is possible to use one software
to control a wide variety of different services.

Designing the behavior of a complex distributed system
with many service robots is a non-trivial task. To facilitate the
analysis of a control software, well-defined design principles
are needed. For this purpose, finite state machines (FSM) are
a good choice [2]. With FSMs, the control software can be
designed on a high level, even with graphical user interface
tools. Unlike pure visual languages (see e.g. [3]), FSMs are
well suited for defining also low-level behavior. They allow

painless modularization of the control software, and make it
relatively easy to test just parts of the whole system. Finally,
due to their general nature, FSMs can be used to implement
many different kinds of control architectures. For example, the
subsumption architecture of Brooks [4] can be implemeted
with hierarchical FSMs. The FSM approach also has some
shortcomings, some of which can be eliminated with the
proposed approach.

In this paper, a dynamically modifiable FSM-based control
architecture, logical sensors [5], and logical actuators [6] are
put together. We present a universal interface to distributed
services and a high-level language for describing the behavior
of the co-operating robots. The interface, called Property
Service, is based on CORBA, and the language on FSMs.
Although there are quite a few software design tools capable
of building executable code out of FSMs, we have chosen a
different approach that allows the control software to evolve
during execution. The behavior of a robot can be designed
completely independent of the actual control software, which
needs no recompilation or even restart. This way, the control
software can be kept small, static, and simple.

In the proposed Stemach architecture, an XML/RDF de-
scription is all that is needed to build and execute an FSM.
No compiled code is needed, and the state machines can
be dynamically modified. Compared to other approaches, the
architecture presented in this paper is simpler, yet having
more expressive power. Due to the standardized description
language and interfaces, and a modularization mechanism, the
architecture is also very easily extensible.

II. INTERFACE TO DISTRIBUTED SERVICES

A major problem in controlling sofware-driven distributed
services is in designing and maintaining interfaces. If a soft-
ware needs to be capable of accessing, say, two different
robots, a vision system, and a distributed message service, it
may need to handle four very different interfaces. Whenever
new features are added to the services, the interfaces need
typically to be changed accordingly. If the same services need
to be accessed with different programming languages, the
interface must be changed for each. As a solution to these
problems, a generic, simple and extensible interface called
Property Service is proposed.

TABLE I
THE STANDARD SET OF READ-ONLY PROPERTIES EVERY PROPERTY

SERVICE SHOULD IMPLEMENT

Property Description
type The type of the server. This may be any user-

defined string. Possibilities range from ”robot” to
”thermostat”.

name The name of the server. Helps client in distinguishing
between multiple servers of the same type.

version The version of the server software, e.g. ”1.0”.
properties An XML-encoded list of known properties. This list

should contain all standard properties and any other
properties known to the server.

In a sense, the Property Service builds on top of the idea of
logical sensors [5], [7]. Our approach does however consider
not only sensors but also other distributed services, which may
be considered logical actuators [6]. By logical actuators we
mean devices that provide some functionality. Just like with
logical sensors, it is irrelevant to the controlling application
how this functionality is physically performed. For example,
a mobile robot may be capable of moving an object from
one place to another, but the same functionality may also be
provided by a stationary manipulator. If an application needs
to have the object moved, it may not care how the movement
is actually performed.

Recently, Wang et al. presented a COM-based architecture
for the fusion of logical sensors [8]. The approach does
hovewer have some drawbacks, including platform depen-
dency and the lack of network transparency. We are trying
to overcome these by using CORBA as the component model.

Property Service is a general representation of a network-
transparent server that is controlled using property name-
value pairs. The server is accessed via CORBA calls, and
the interface consists of just two methods: one for setting the
value of a property and another for retrieving it. The interface
was designed to be as simple as possible to facilitate easy
exploitation. Thus, the approach is quite different from that
chosen for example for the MobilityTM software [9] or the
CORBA notification service [10].

Property names are presented as human-readable strings,
and used to refer to the logical functions of a distributed
service. Property values in turn can contain any application-
specific data, ranging from simple sensor measurements to
video frames. The system also makes it possible to register
listeners to specific properties. The listeners are notified each
time the value of a property changes. The IDL (Interface
Definition Language) definitions for the Property Service and
the listener are as follows:

module propertyservice {
module corba {

exception PropertyException {
string message;

};
typedef sequence<octet> OctetSeq;
interface PropertyService {
void setProperty(in string propertyName,

in OctetSeq propertyValue)
raises (PropertyException);

OctetSeq getProperty(in string propertyName)

raises (PropertyException);
};
interface PropertyServiceListener {

void propertyChanged(in string propertyName,
in OctetSeq propertyValue);

};
};

};

The functions of the methods can be broadly summa-
rized as follows. The setProperty method is used in
configuring sensors and actuators, and in setting goals to
actuators. The getProperty method in turn is used in
obtaining sensor measurements and state information. The
propertyChanged method is used in informing registered
listener of changed property values.

Property names are organized in a hierachical structure in
which components are separated with dots, just like with
domain names. For example, position.relative and
position.absolute are used to get or set the relative
and absolute positions of a mobile robot.

In designing distributed services, performance issues must
be considered. Therefore, it is better to deliver refined infor-
mation rather than raw data. For example, instead of delivering
captured image data as a property value, the images are
processed locally and only measurement results are delivered.
This decreases the required amount of data dramatically and
increases the performance. The obvious drawback is that more
computation hardware is needed in the distributed devices.

As a portable way of encoding complex property values,
XML-based descriptions are used. While this choice imposes
some overhead on the system, it also makes it very flexible.
Different types of properties may be added at will, and there is
never a need to redesign the interface. The XML descriptions
can be converted to data structures in many different ways,
depending on the programming language used. With C++,
templates are used, and the conversion is fully transparent to
the application programmer.

A “standard” set of read-only properties, shown in Table I,
is defined to allow applications to make sure how to deal with
a service, and to work with different versions of a service.
Each specialization of the basic Property Service adds to these
standard properties. In the following, an application fetches
an XML-encoded list of all properties known to a Property
Service:
props = getProperty("properties");

In this and all subsequent examples, object references
are omitted for brevity, and because the calling syntax
is dependent on programming language. In C++, for ex-
ample, the statement above would most likely be some-
thing like service.getProperty("properties"), in
which service is an instance of an CORBA remote object
stub.

A connection to a Property Service can be established in
two alternative ways. The object request broker (ORB) assigns
a unique inter-operable object reference (IOR) string to each
remote object. This can be passed to clients by any means, for
example through a file in a shared file system. Another, more

convenient way is to use the CORBA naming service. Each
server registers itself to the naming service, which passes their
object references to clients.

Since the Property Service interface is based on CORBA,
it is quite straightforwardly implementable in many program-
ming languages. Currently, there are implementations for C,
C++, Java, and PHP.

In Sections II-A–II-D, four different specializations of the
Property Service interface are briefly described. All these were
used together in the experiment presented in Section IV-C.

A. Mobile Robot Service

The mobile robot service provides a set of properties for
controlling the movement and sensors of a robot. The top-level
interface contains properties that are common to every mobile
robot: movement (translation, rotation, and speed) and sensors
measuring the internal state of a robot and various external
features like distances to obstacles. Each specialization of the
mobile robot service implements at least these functionalities.
The services may also provide additional functionality specific
to a certain robot only. Through the Property Service interface,
different sets of properties can be easily provided, while the
basic set is always available.

Mobile robot servers may also provide properties for time
critical calculations and common mobile robot algorithms like
collision avoidance using free space measurements in the local
environment. Furthermore, some robots provide alternative
ways for the execution of the basic commands. For example,
the method of movement may be not only direct drive
(the default) but also virtual force field (VFF) or
neural net. Collision-free path planning using a virtual
force field was used in the practical example discussed in
Section IV. Currently, we have implementations of the mobile
robot service for Pioneer 2, Super Scout 2, Nomadic XR4000,
and Qutie. Qutie is a friendly-looking robot built on top of a
Super Scout 2. It includes a 2-DOF head and a belly display
for showing emotions. The services for Pioneer 2 and Super
Scout 2 (or Qutie) can also be used as front-ends to simulators.

In the example below, two uses of the setProperty
method are demonstrated. First, an actuator is configured by
setting its method of movement to VFF. Then, a goal is set
that makes the robot to try moving two meters forward and
to the left. During the movement, the state of the robot or
its sensors can be inspected as shown by the last row. The
getProperty call returns the measurements of eight sonars.
On a higher abstraction level, an application could as well
request the distance to an obstacle at a certain direction. The
three dimensional vector in the example represents the x and
y coordinates of the robot, and the rotation angle with respect
to the current position.

setProperty("moving_method","VFF");
setProperty("position.relative",

"<vector size=’3’>2 2 0</vector>");
sonars = getProperty("sonar.[0-7].measurement");

B. Message Service

As a convenient way of passing messages between different
service controllers, a simple message-passing service was built
on top of the Property Service. Although there are a number
of different message passing services available, we selected
to implement our own. The reason for this is two-fold. First,
many of the alternatives, like the CORBA notification service
[10], are very complex. In the application presented in this
paper, only simple messaging is however needed. Second, we
wanted to bring the message-passing system into the Property
Service framework to make all services accessible through the
same interface.

A client requests message delivery by setting the
register property on the message service. As a parameter,
it sends the server its unique ID (selected manually) that
other clients use in indentifying the receiver of their mes-
sages. A message is sent to a registered client by setting the
message.ID property where ID is the ID of the receiver.
The message itself may contain any application-specific data.
A typical sequence of operations in passing messages between
two clients (A and B) is the following:

A: setProperty("register","A_ID");
B: setProperty("message.A_ID", "message");
A: msg = getProperty("message.A_ID");

In this particular case, A gets the message by calling the
message service. Another, more convenient way is to register
a property listener for incoming messages. This way, the
message is passed to the client immediately after it has been
received by the message service.

In principle, a single control software (FSM) could be used
in controlling all the services in an application. The message
service would be unnecessary because messages could be sent
internally in memory. In practice it is however unlikely that
everything is controlled by one application, and a way of
passing messages between controllers is needed.

C. Vision Service

In all our mobile robots, vision is an important source of
information. The vision services are implemented on top of the
Video4Linux and Video4Linux 2 interfaces, which cover most
of the frame grabbers currently available. Raw image data is
obtained through the low-level interface, and the vision service
extracts the needed features. The extracted features range from
color and texture descriptors to detected lines and circles. In
the application described in Section IV, a very specialized
vision service was used in detecting a vacuum jug and coffee
mugs. For example, an application can get the 2-D coordinates
of the tip and lid of the vacuum jug in the manipulator’s
coordinate system with:

jug = getProperty("jug.manipulator");

A vision service should also be capable of sending raw
image data for example for remote control purposes. The
services may also provide the ability to control the orientation
of the camera, a zoom lens, the aperture, etc.

D. Manipulator Service

A specialization of the Property Service interface has also
been created for controlling a six-axis robotic manipulator.
The manipulator service provides properties for getting and
setting the position of the tip of the manipulator in world and
joint coordinates. It also allows one to inspect the state of the
manipulator, and to open and close a gripper operated with
pressured air. The software controls the manipulator via an
RS-232 interface.

The position of the manipulator is presented as a six-
dimensional vector. In world coordinates, the elements of the
vector contain the x, y, and z coordinates and three rotation
angles. In “joint” coordinates, the elements denote the angles
of each joint. In the example below, the position of the
manipulator is obtained and set using the “position” property.
It is also shown how the gripper is operated:

position = getProperty("position.world");
setProperty("position.world",position);
setProperty("gripper","close");

III. SPECIFYING ROBOT BEHAVIOR

Finite state machines are a convenient way of designing
the behaviour of a robotic system. State machines make it
relatively easy to design complex behavior including nested
actions and parallelism. The approach does however have
some shortcomings, the most obvious of which is the finiteness
of the number of states. Not all types of software can be
described with a finite number of distinct, well defined states.
Some researchers have presented hybrid models in which state
machines are used on a low level whereas high-level tasks are
defined in a different way. An example of such a system is the
task description language of Košecká et al. [11]. We wanted
to keep the design of our system consistent so that the same
type of description can be used on each abstraction level. This
approach does however limit the implementation techniques.
Even when a control algorithm cannot be implemented with
FSMs, it can still be initiated from an FSM.

The problem with most current state machine design tools
is that they are not able to dynamically evaluate or modify
the state machines. Instead, state machine descriptions are
converted into some programming language, compiled and
executed as static code (see e.g. [12]). From the computational
performance point of view, this is not a bad solution, but it
fixes the structure and parameters of a state machine at design
time.

Well-defined ways of constructing hierarchical state ma-
chines already exist. Perhaps the most commonly accepted
description is embedded in UML [13]. It provides a way of
describing hierarchical states and their actions on a rather
abstract level. The description syntax also supports parallelism
in the form of “orthogonal regions” inside states. The concept
of a state machine in UML is tightly bound into class descrip-
tions, which is a logical consequence of the fact that UML is
an object-oriented design language.

idle

active

STOP

ACTIVATE DEACTIVATE

main

Fig. 1. A simple hierarchical state machine

A. Dynamical State Machines with Stemach

The Stemach state machine architecture we are proposing
offers an alternative to the compiled code approach. Stemach
uses a language based on XML/RDF to represent state ma-
chines that are dynamically evaluated at run-time. There is
neither a need to convert the description to a programming
language, nor does the description require compilation. We
call the description syntax SMML (State Machine Markup
Language). As a globally accepted standard, XML is very
well suited for describing distributed systems, the design of
which must be accomplished with many collaborating parties.
Recently, Kim et al. proposed this kind of co-operation model
for the development of interactive robots [14]. XML has been
used in defining the behavior of mobile robots by Blank et al.
[15]. Their approach, termed XRCL, is however strongly based
on C++ and compiled code. No state machines are involved.
Instead, the design of behaviors is based on fuzzy logic.

An XML document is all that is needed to construct and
run a Stemach state machine. An executing state machine can
be dynamically modified or replaced with another. Stemach
also provides a true state hierarchy on execution level. All
nested states are executed in a virtually parallel fashion. The
UML concept of orthogonal regions is dismissed, and states
are allowed to be active without restrictions.

Modularity is a key issue in specifying complex actions.
The Stemach architecture allows one to design separate actions
completely independent of each other. Through the hierarchi-
cal execution mechanism, it is easy to import complex actions
that appear as single states on a high-level state machine. The
components of a state machine can be stored in separate files,
accessible in the local file system, via HTTP, or via FTP.
Therefore, it is even possible to dynamically generate state
machines on a web server. This allows robots to dynamically
change parts of their behavior without the need to hard-code
a gigantic control software that takes everything into account.

B. An Example

Figure 1 shows a very simple state machine consisting of
a compound state called main. This is a convention when
creating state machine descriptions. The main state works as
a starting point other state machines can use when referring to
external SMML descriptions. The main state in this particular
machine contains two states in addition to the start and end
states. Since there is no action associated with the transition
from the start state to idle, idle can be directly defined as
a start state. The functionality of the active state is actually

defined in another SMML document called external.xml,
and this state machine treats it as a single state. An Uniform
Resource Identifier (URI) is used to refer to the external
state machine, in this case external.xml#main. Events
coming from an external source drive the state transitions in
the machine. The SMML description of this state machine is
as follows:
<?xml version="1.0"?>

<!DOCTYPE smml [
<!ENTITY isgns
"http://www.ee.oulu.fi/isg/stemach/1/schema#">

]>

<rdf:RDF xmlns:rdf=
"http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:isg="&isgns;"
xmlns="&isgns;">

<state rdf:ID="main">
<substates>

<rdf:Seq>
<rdf:li rdf:resource="#idle"/>
<rdf:li rdf:resource="#active"/>
<rdf:li rdf:resource="#end"/>

</rdf:Seq>
</substates>

</state>

<state rdf:ID="idle">
<type>start</type>
<transitions>

<rdf:Seq>
<rdf:li><transition isg:event="ACTIVATE"

isg:target="#active"/>
</rdf:li>
<rdf:li><transition isg:event="STOP"

isg:target="#end"/>
</rdf:li>

</rdf:Seq>
</transitions>

</state>

<state rdf:ID="active">
<extend rdf:resource="external.xml#main"/>
<transition isg:target="#idle"/>

</state>
<include isg:uri="external.xml"/>

<state rdf:ID="end" isg:type="end"/>
</rdf:RDF>

The ACTIVATE and STOP events may come from virtually
any source. For example, a concurrently running state machine
could fire these events based on messages received from a
message service. They may also be signals from the operating
system, or from a user interface.

As such, the state machine of Figure 1 performs no useful
job as neither state activities nor any actions are specified. It
just changes state according to the two events. In a realistic
setting, the actions are used to perform calculations and to
invoke remote procedure calls to distributed services.

C. Implementation

The SMML specification itself does not place any limits
on the implementation technique of the software executing
the state machines. State activities and actions associated with
state transitions can be written in any programming language.
The implementation we have been using is written with the
PHP scripting language, although any other language could do
as well. The only requirement is that the actions and activities

in a state machine must be evaluated at run-time. Our PHP
implementation has an external execution mode in which all
actions and activities are passed to an external software. This
allows one to use many different programming languages in
defining the actions and activities of a state machine.

In the terms of XML/RDF, each entity (state or transition) in
the state machine description is called a resource, each identi-
fied by a unique URI. Upon parsing the description, the soft-
ware forms a set or statements about the resources. Each state-
ment is a tuple of the form < predicate, subject, object >,
in which predicate can be treated as the name of a property,
subject as a reference to a resource, and object as the value
of the property. An example of such a statement could be
< action,#transition1, exit >, i.e. “The action associated
with the transition identified by #transition1 is “exit”. By
altering the set of statements, it is possible to change the
behavior of a state machine even during its execution. For
example, to change the state transition action in the previous
example, one would need to change just the object of a single
statement. It is also possible to add, delete and modify states
and transtions.

IV. SERVING COFFEE WITH ROBOTS

As a working example of a complex distributed system, a
coffee-serving robot was implemented. The system consists of
a “waitress”, which can be any mobile robot, a manipulator
that delivers coffee from a vacuum jug, a vision service for
detecting the vacuum jug and coffee mugs, and a message
service for passing messages between the state machines
controlling the mobile robot and the manipulator. The overall
architecture of the system is illustrated in Figure 2 (a). It is
irrelevant to the control software where in the network the
services are actually located. In our case, the Stemach control
programs, the image analysis service, and the message service
were all run in a single computer. The services controlling
the mobile robot and the manipulator were dedicated one
computer each. The network connection to the mobile robot
was arranged through a wireless LAN.

A. Coffee Machine

Our high-tech coffee machine (Coffee-O-Bot) consists of a
GMFanuc S-10 six-axis industrial manipulator, and a vacuum
jug. The manipulator is controlled by a FSM that receives
messages from a message service and controls the manipulator
through another specialization of the Property Service. A
camera is placed above the working area of the manipulator.
An image analysis service extracts the positions of the vacuum
jug and the coffee mugs from captured video frames. For
this task, textbook computer vision methods including circular
Hough transform and binary morphology are used. Since the
movements of the manipulator do not need to be extremely
accurate, the coordinate systems of the image plane and the
manipulator are aligned with a simple affine transformation.

The coffee machine is started by sending it a message
through the message service. The manipulator then grabs a
mug the waitress robot has on its top, places it below the tip

Mobile robot
control service

Stemach control
software

Message
service

Stemach control
software

Video image
analysis service

Manipulator
control service

User

(a) (b)
Fig. 2. Software architecture of the coffee serving system (a), and the system at work (b).

of the vacuum jug, pumps the button of the jug, and puts the
mug back on the waitress. Finally, a message is sent that tells
the waitress to leave. If the coffee machine cannot accomplish
its task for some reason, an error message is sent.

The top-level state machine of the coffee machine is just like
that of the simple example shown in Figure 1. A message from
a message service fires an activation event, which drives the
FSM to an “active” state. This state in turn is a more complex
state machine that controls the movements of the manipulator.
Once the coffee has been served, the automatic transition from
“active” to “idle” is taken.

B. The Waitress

Due to the abstraction of behaviors, the waitress robot can
be any mobile robot controllable through the Property Service
interface. In the experiment reported in Section IV-C, the
Super Scout 2 was used. To start the waitress, a message needs
to be sent to it through the message service. The message can
be formed in a number of ways, for example by pressing a
button in a graphical user interface, with voice recognition, or
with an e-mail message. The first two of these have already
been implemented. Once the message is received, the waitress
records its current position, drives to the working area of the
manipulator, and sends a message to the coffee machine. It
then waits for a confirmation and drives back to its starting
position. The control software is a simple one-level FSM.

C. Experiment

To demonstrate the functioning of the architecture, a coffee-
serving experiment was arranged. The action was initiated by
sending a message to the Stemach software controlling the
waitress by pressing a button in a user interface. With the
aid of a virtual force field based path planner, the waitress
successfully drove into the reach of the manipulator. Since
the working area of the waitress was rather limited, the
localization of the robot was simply measured with odometers.
With a larger working area, other localization methods should
be considered. Once the waitress arrived at its target position, it
sent a message to the Stemach software controlling the coffee
machine, which then successfully pumped coffee in the mug

and returned it (Figure 2 (b)). Finally, the coffee machine sent
a message to the waitress, which returned to its initial position.

V. DISCUSSION AND CONCLUSIONS

In this paper we presented a novel way of controlling
complex distributed systems with a universal, easily extensible
interface and a dynamically configurable state machine archi-
tecture. The architecture makes it possible to design compli-
cated tasks on a high level without being concerned about the
actual equipment that completes the required tasks. Due to the
abstraction of tasks, programmers can use the same commands
with all mobile robots, for example. Furthermore, the behavior
of a system can be designed with a convenient graphical
tool and altered while it is active. No deep knowledge on
kinematics, networking technologies or robot programming is
needed. Due to the lack of hard-coded control structures, the
actual compiled controlling software be small and static, which
allows it to be used in a wide variety of different applications.
As a case study, the functioning of the system was successfully
demonstrated in a coffee-serving application.

Currently, our implementation of the Stemach architecture is
capable of executing very complex nested state machines. The
PHP implementation does however have some shortcomings.
Due to the nature of the PHP scripting language, it is not
possible to run parallel actions on separate operating system
threads. Instead, we use a scheduler that works on statement
level rather than on processor instruction level. The advantage
of this approach is that it makes it easy to design mutual
exclusion mechanisms. The disadvantage is that fine-grained
parallelism is not possible, and the capabilities of a CPU
cannot be fully utilized. The external execution mode enables
more sophisticated scheduling schemes, but none have been
implemented yet.

The Property Service interface proved to be a very flexible
way of controlling distributed services. As a next step, we are
adding meta-data to the services that allows applications to
automatically determine the types and functions of different
properties. A simple self-configuring user interface for any
distributed service has already been implemented.

The approach presented in this paper is directly applicable to
many application areas. Context-aware systems are an example

of just the same kind of asynchronous, event-driven systems
as the robotic system presented in this paper. One topic in
our future research agenda will be applying this approach in
developing intelligent, context-aware systems that contain a
wide variety of distributed devices and software components
communicating with each other.

ACKNOWLEDGEMENTS

The financial support provided by Academy of Finland is
gratefully acknowledged.

REFERENCES

[1] E. Prassler, A. Ritter, C. Schaeffer, and P. Fiorini, “A short history of
cleaning robots,” Autonomous Robots, vol. 9, pp. 211–226, 2000.

[2] F. Hennie, Finite-state models for logical machines. New York: John
Wiley & Sons, 1968.

[3] J. Pfeiffer, Jr., “Altaira: a rule-based visual language for small mobile
robots,” Journal of Visual Languages and Computing, vol. 9, pp. 127–
150, 1998.

[4] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[5] T. Henderson and E. Shilcrat, “Logical sensor systems,” Journal of
Robotic Systems, vol. 1, no. 2, pp. 169–193, 1984.

[6] J. Budenske and M. Gini, “Sensor explication: knowledge-based robotic
plan execution through logical objects,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 27, no. 4, pp. 611–625, 1997.

[7] T. Henderson, C. Hansen, and B. Bhanu, “The specification of distributed
sensing and control,” Journal of Robotic Systems, vol. 2, no. 4, pp. 387–
396, 1985.

[8] J. Wang, J. Su, and Y. Xi, “COM-based software architecture for
multisensor fusion system,” Information Fusion, vol. 2, no. 4, pp. 261–
270, 2001.

[9] iRobot Corporation, “MobilityTM software,”
http://www.irobot.com/rwi/p10.asp.

[10] OMG, Notification Service Specification. Object Management Group,
2002.

[11] J. Košecká, H. Christensen, and R. Bajcsy, “Experiments in behavior
composition,” Robotics and Autonomous Systems, vol. 19, pp. 287–298,
1997.

[12] Nohau Ltd., “Rhapsody UML design software,”
http://www.nohau.se/index e.htm.

[13] P.-A. Muller, Instant UML. Wrox Press Ltd., 1997.
[14] K. Kim, Y. Matsusaka, and T. Kobayashi, “Inter-module cooperation

architecture for interactive robot,” in Proc. Intl. Conf. on Intelligent
Robots and Systems, Lausanne, Switzerland, October 2002, pp. 2286–
2291.

[15] D. Blank, J. Hudson, B. Mashburn, and E. Roberts, “The XRCL project:
the university of Arkansas’ entry into the AAAI 1999 mobile robot
competition,” University of Arkansas, Tech. Rep. Technical Report
CSCE-1999-01, 1999.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 3449
	02: 3450
	03: 3451
	04: 3452
	05: 3453
	06: 3454
	07: 3455

