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Abstract. While wireless sensor networks offer new capabilities, there are a 
number of issues that hinder their deployment in practice. We argue that 
robotics can solve or greatly reduce the impact of many of these issues. Our 
hypothesis has been tested in the context of an autonomous system to care for 
houseplants that we have deployed in our office environment. This paper 
describes what we believe is needed to make sensor networks practical, the role 
robots can play in accomplishing this, and the results we have obtained in 
developing our application. 

1 Introduction 

Wireless sensor networks offer new ways to monitor our environment and do so 
continuously and invisibly. These networks have wide applicability including 
medical, industrial, scientific, military, and consumer applications. Estrin et al. have 
described applications to automotive telematics, precision agriculture, and defense 
systems [9].  Rabaey et al. have considered management of environmental control 
systems in large office buildings [28].  Schwiebert et al. have been working to 
develop wireless biomedical sensors [31].  Byers and Nasser suggest using wireless 
sensor networks to monitor toxicity levels in hazardous areas [7]. Krishnamurthy and 
Conner have used sensor networks to implement basic office information services 
such as monitoring the use of highly-coveted conference rooms [8].  From this list, it 
is clear that wireless sensor networks can provide important data and context 
information for a very wide range of ubiquitous computing applications. 

While their potential benefits are clear, a number of open problems must be solved 
in order for wireless sensor networks to become viable in practice. These problems 
include issues related to deployment, security, calibration, failure detection and power 
management. In the last decade, significant advances have been made in the field of 
service robotics [11], and robots have become increasingly more feasible in practical 
system design. Therefore, we suggest that a number of the problems with wireless 
sensor networks can be solved or diminished by including a mobile robot as an 
integral part of the system. Specifically, the robot can be used to deploy and calibrate 
sensors, detect and react to sensor failure, deliver power to sensors, and otherwise 
maintain the overall health of the wireless sensor network.  The ideal is for the robot 
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to do all this while only engaging the user as a last resort (e.g. when new sensors are 
needed to replace non-functioning ones). 

While this application may be new, robots have been performing these types of 
services for some time. Service robots are the class of mobile, autonomous robots that 
operate in human environments to assist and serve. The applications that employ these 
service robots vary greatly with respect to the level of human interaction. The scale 
ranges from robots that perform their tasks independently, such as janitorial robots 
[10] through hospital aides [21], to robots whose chief function is to interact with 
people, such as entertainment robots [32], museum tour guides [6, 34, 25], and robots 
that aid the blind [22] and the elderly [29]. Recently Howard et al. used sensors 
placed in the environment to help mobile robots build navigation maps [18]. 
However, robots have not been applied to the problem of maintaining a distributed, 
ubiquitous computing system, such as a sensor network, and keeping such a system 
running and well-calibrated over an extended period of time.   

We have tested our hypothesis in the context of the PlantCare project at the Intel 
Research laboratory in Seattle. PlantCare is part of an experimental proactive 
computing platform that serves as an autonomous system to care for houseplants.  
While caring for houseplants may not be the most promising use of wireless sensor 
networks, it is a well-defined, practical problem that both encompasses many of the 
open problems associated with wireless sensor networks and is at the same time 
conducive to the use of mobile robots.  

The PlantCare system consists of a wireless sensor network to measure and report 
environmental conditions impacting the plants, application logic to monitor these 
conditions and determine appropriate responsive behavior, and a mobile robot to 
provide system actuation. Initial results from our system suggest that this combination 
of robots and wireless sensors has the potential to achieve unprecedented levels of 
system independence, including the ability to (1) sustain the energy resources of both 
the robot and the sensor network indefinitely, (2) automate sensor calibration, 
including both configuration and dynamic response to changing hardware behavior 
and/or environmental conditions, and (3) detect sensor failure and inappropriate 
deployment.  

The organization of this paper is as follows: In Section 2, we discuss what we 
believe are three major issues hindering the adoption of wireless sensor networks in 
practice. We describe the problems, as well as how robots can be used to address 
them. In Section 3, we discuss the PlantCare system including the sensors, robotics 
and overall system architecture. In Section 4, we describe our results from a simple 
experiment with robotic sensor calibration. Finally in Section 5, we discuss future 
work and conclude. 

2 Practical Issues in Wireless Sensor Networks 

In the context of the PlantCare project, we have had to deal with a number of practical 
issues relating to our wireless sensor network: How should new sensors be deployed? 
How do we know that we are not placing a sensor in an anomalous location that will 
return unrepresentative readings? How should sensors be calibrated? Should they be 



calibrated in a controlled environment and then deployed, running the risk of 
inaccuracy? Or instead, should sensors be calibrated in their deployed location, which 
would be more accurate but also more difficult? Since we decided to deploy sensors 
without a constant supply of power, how will we keep the sensors running 
indefinitely? How will we know when a sensor has failed? While any one of these 
problems can potentially be ignored or circumvented, collectively they represent an 
important set of issues that affect the accuracy and robustness of our overall system. 
We have condensed these issues into three areas: context-aware deployment, 
continuous calibration, and power delivery. 

2.1 Context Aware Deployment of Sensors 

Before a sensor can provide useful data to the system it must be deployed in a 
location that is contextually appropriate. While the physical placement of a sensor is 
often challenging, as in the case of a reactor or a water main, the issue of proper 
choice of location based on the application requirements is also difficult and time 
consuming. For example, consider the placement of a thermostat in a home. Since in 
most cases only one thermostat is installed, this single sensor will be used to guide all 
heating and cooling decisions. Thus the sensor should be placed where its readings 
closely correlate with the temperature of the home in general. Consequently, the 
placement of the sensor under a cooling vent, or on a section of wall that gets intense 
sunlight in the morning, will generate contextually inappropriate readings. Even if the 
sensor is properly calibrated, it will return data that is misleading to the system, and 
the residents of the home will be uncomfortable. In this example, perfect placement 
requires an isotherm map of the space that shows the temperature variation by 
location as well as time. Since this is rarely available, most sensor placement is done 
using simple heuristics. In the case of home thermostats, for example, the rule of 
thumb is to place it near the center of the house in a hallway. While this example is 
fairly simple, and an isotherm map is unlikely to be worth the effort, it illustrates the 
tradeoffs: The accuracy and relevance of the data collected are proportional to the 
level of understanding of the environment. Unfortunately, considerable human time is 
usually required to obtain this understanding. 

In many cases, this problem can be solved using robots, as has already been 
demonstrated in the limited context of active vision [23]. Placing an accurately 
calibrated sensor on the robot turns it into a mobile wireless sensor. This “robo-
sensor” can then move through the environment to take measurements. If an accurate 
map of the environment is available to the robot for navigation, then environment 
maps such as the temperature isotherm map mentioned above are straightforward to 
build. The robot simply needs to visit a series of locations determined by the required 
measurement density, taking a reading at each after waiting long enough for the 
sensor to acclimate. In many systems this is a natural extension of mapping tasks 
already performed by robots. For example, in PlantCare our physical environment is 
mapped using probabilistic techniques [12] in order to guide robotic navigation (see 
Figure 1). Taking readings multiple times at varying times of day will create the type 
of map that can strongly suggest good sensor placement to an application 
administrator. If robotic placement of the sensor were desired, this same data could 



guide an algorithm that captures the traditional heuristic wisdom. This is an example 
of how a robot can be used to accomplish a time-consuming, repetitive task that is 
likely to be unappealing to humans. 

2.2 Continuous Calibration of Sensors 

Calibration is the process of deriving the function that translates the raw readings 
provided by the sensor into data in the correct units, while taking into account the 
characteristics of the particular sensor and the environment in which it has been 
placed. Calibration of sensors is critical to obtaining accurate measurements. Without 
calibration, readings produced by a sensor could range anywhere from having subtle 
inaccuracies to being completely meaningless. Our temperature sensors, for example, 
produce a voltage varying from 0 to 3 volts. The only way to know that a reading of 
1.5v corresponds to 32 degrees Celsius is to obtain a number of readings from the 
sensor when the true temperature is known and use these calibration points to 
translate the voltage readings to the Celsius scale. Unfortunately, this mapping varies 
from sensor to sensor (especially as manufacturers endeavor to make sensors as low-
cost as possible) and may even change over the lifetime of a deployed sensor (due to 
changes in environmental conditions or wear on the sensor). The result is that for 
most applications, sensors require both initial calibration and periodic recalibration to 
ensure accurate readings. 

Sensors can be calibrated either before or after deployment. Pre-deployment 
calibration is performed in a controlled space in which the environmental factor 
measured by the sensor can be carefully regulated. The factor is then cycled through a 
set of values intended to represent the range the sensor will encounter in practice, and 

Figure 1: This map of our office was generated by the robot’s mapping system 



readings are taken from the sensor during this process. These actual vs. sensed values 
form the set of calibration data that can be used to derive a function that maps one to 
the other. For example, linear regression is a simple yet accurate technique for 
performing this mapping.  In the event that the sensor data cannot be mapped into 
linear space, more complex algorithms can be employed. The big advantage of pre-
deployment calibration is that it can be inexpensive, as a large number of sensors can 
often be calibrated at the same time. The disadvantage is that sensors are often 
sensitive to environmental conditions (e.g., temperature) and the act of deployment 
can change their characteristics. The alternative is to calibrate the sensor in-place, 
after it has been installed. This is more time consuming and inconvenient. It also 
suffers from the problem that the environmental factors may change slowly and it 
may be difficult to collect sufficiently varied calibration data to get accurate 
measurements. 

A robot equipped with an accurate, calibrated sensor offers a novel solution: 
adaptive in-place calibration. Given robotic support, a sensor can be deployed 
uncalibrated and a robot can be used to visit the sensor periodically to take calibration 
readings. As long as sensor readings remain in the range of these initial calibration 
readings, no additional visits are required. However, if environmental factors deviate 
outside the calibrated range, the robot can be dispatched to collect additional readings. 
For example, consider a wireless temperature sensor in an unheated warehouse. The 
sensor is deployed uncalibrated during the summer. Over a period of five days, the 
robot collects a set of calibration readings. These readings combined with simple 
regression provide sufficient accuracy for the next three months. When fall sets in, the 
temperature drops, and the system determines that the summer calibration data is not 
sufficient to predict the characteristics of the sensor. The robot is then re-deployed to 
collect new calibration samples to extend the range of the regression model. Again we 
see the robot filling a role that a human could but would never want to: namely, as an 
agent on call ready to visit any sensor whenever needed. 

Recalibration is another area in which a robotic solution offers advantages over the 
standard technique. Currently, the most common method used to ensure sensors are 
operating correctly is periodic manual calibration [17]. This approach has a number of 
drawbacks.  For instance, manual labor is expensive, so sensor recalibration is 
performed infrequently resulting in overall inaccuracy. Complementing our robotic 
solution, we assign a limited lifetime to calibration data as it is collected. Rather than 
a task performed once or twice a year, recalibration becomes an ever-present 
background task of the system.  Once the lifetime of a piece of calibration data has 
expired, it is considered inaccurate and is replaced by fresh data. The result is an 
adaptive mechanism in which the tradeoff of sensor accuracy vs. robotic work can be 
adjusted at will.  

The issue of failure detection is tied closely to calibration. Detecting a failed sensor 
is the pathological case of calibration when it is decided that the sensor readings no 
longer correlate with the environmental factor in question. This detection is fairly 
straightforward in the case of a gross fault, in which a sensor begins reporting 
drastically different conditions.  Regular periodic calibration by our robotic solution 
also removes the traditional need to detect drift errors, in which a sensor’s accuracy 
slowly decays over time [37].  Without sophisticated models, however, it is very 
difficult to detect when a faulty sensor returns plausible, possibly varying, yet 



uncorrelated data. Because sensors are only checked periodically, faulty sensors can 
remain in service for periods up to the calibration frequency. Depending on the 
scenario in which the sensors are used, this could pose severe consequences. To 
mitigate this, the calibration cycle can be made more frequent by using a smaller 
calibration data lifetime. 

  Inferential sensing is an emerging technique that continuously verifies sensor 
accuracy via on-line, real-time modeling [17].  This technique uses historical data 
rather than sensor redundancy [19] to construct predictive models of sensor behavior 
and can significantly enhance system fault detection and handling. Whenever a sensor 
provides a reading, the data is compared to estimated values produced by the model, 
generating differences known as residuals.  A decision logic module then statistically 
evaluates each residual to generate a health metric assigned to the corresponding 
sensor.  Instead of performing periodic recalibration, a human operator monitors these 
health metrics in order to schedule maintenance proactively or provide it when 
necessary. Unlike simpler methods, this approach can detect sensors that fail in non-
trivial ways. In addition, these predictive models can be used to generate estimated 
sensor readings while a sensor is offline or awaiting recalibration or replacement. 
These predictive modeling techniques complement our robotic calibration approach. 
In the case of sensor failure, the predictive model can serve as warning system and the 
robot can verify the failure. When the predictive model suspects a sensor of drifting, it 
can prematurely age the sensor’s calibration data, forcing a more timely robotic 
recalibration. 

While robotic calibration solves many problems, it has a set of issues and 
considerations of its own. For accurate calibration data to be collected by the robot, 
the system must know precisely where the sensors are located. In the case of statically 
positioned sensors, this requires that a detailed sensor map be provided to the system. 
In the case of mobile sensors, a sophisticated localization system is required. Current 
localization systems use ultrasound [36], RF signal strength [2], radio time-of-flight 
[15], or some combination of technologies to pinpoint the physical location of objects 
in space. Second, the sensor needs to be accessible to the robot, and not all 
deployment environments allow this. In some situations the robot cannot reach the 
sensor (e.g. a sensor on the ceiling of a room), while other environments are 
physically hostile to robots. Finally, some sensors require physical integration with 
the environment in order to obtain accurate measurement, and as a result, 
corroboration cannot be achieved by placing a similar sensor nearby. For example, a 
stress sensor installed within a concrete wall cannot be verified by a mobile sensor no 
matter how close it gets. 

2.3 Renewable Energy Provided by Mobile Service Robots  

An obvious limitation of wireless sensor networks is the lack of a continuous energy 
supply.  To make matters worse, the additional freedom of wireless networks allows 
one to envision deployment environments lacking any nearby infrastructure for 
supplying power.  Given these constraints, it is generally accepted that the majority of 
wireless sensor networks will face a world of severe energy restrictions [27]. We 



review current approaches to dealing with the power problem and describe how 
robots both complement and extend these techniques. 

The most popular approach assumes a sensor network is deployed with batteries 
that will not be recharged or replaced. In this scenario, power conservation is 
paramount and the network is considered disposable with the rate of energy 
consumption determining its operational lifetime.  Many alternatives for conserving 
power have been considered [3, 7].  For example, Heidemann et al. have proposed 
application-specific network topologies in order to reduce costly communications in 
ad-hoc wireless sensor networks. [14]. Bhadwaj et al. have even built an abstract 
model of such wireless sensor networks in order to derive an upper bound on their 
lifetimes. [4] 

For some applications, however, this model of wireless sensor networks is not 
appropriate: The sensor network cannot be treated as disposable and it is possible to 
sustain the sensors by recharging or replacing batteries when needed. For example, 
Schwiebert et al. are considering biomedical monitoring via wireless sensors 
implanted in the body.  Because sensors are intended for long-term use, they have 
proposed using radio frequencies (RF) or infrared (IR) signals to inductively charge 
the implanted sensors from an external power source [31]. While recharging is well-
suited to this application because the patient can wear a compact, portable power 
supply, not all applications can depend on this level of user interaction. 

Some have taken this a step further to propose extracting energy directly from the 
deployment environment. These "scavenging" techniques propose powering sensors 
via solar power [35, 20], kinetic energy [26], floor vibration, and acoustic noise [28]. 
However, scavenging techniques are only now becoming capable of generating the 
level of power required to sustain current wireless sensor applications, and not all 
deployment environments are conducive to such techniques. 

An alternative approach is to use passive sensors. Unlike the active sensors 
considered thus far, passive sensors require no local power source. For example, a 
surface-acoustic-wave (SAW) passive sensor is powered entirely by the RF field used 
to read it.  A broad range of SAW sensors are available for measuring temperature, 
pressure, magnetic field strength, torque, etc. [13, 30]. In general, passive sensors 
offer the advantage of lower cost and higher robustness than active sensors but tend to 
require more expensive infrastructure. Also, because passive sensors depend on 
external power, they measure their environment only when polled; an event-driven 
application would be required to perform such polling regularly and generate 
appropriate events on behalf of the sensors.  

As an alternative to these approaches, we propose using mobile service robots to 
sustain a deployed, active sensor network.  Because we require our PlantCare system 
to run unassisted for long periods of time, we can neither treat the sensor network as 
disposable nor have it depend on an administrator who can perform recharging or 
battery replacement.  Further, passive sensors do not yet exist to measure all of the 
environmental conditions pertinent to plant care, such as soil moisture content.  On 
the other hand, Michaud et al. have already demonstrated that mobile service robots 
are capable of recharging themselves [24], thus it appears an appropriate task to have 
a robot of this kind deliver power to deployed active sensors as the need arises.  

The power could be delivered in a variety of forms. A sufficiently agile robot could 
replace weak batteries in a sensor with fresh ones. An easier approach is to outfit the 



robot with equipment to recharge sensors using inductance or direct electrical 
connection. While this idea is simple to understand and straightforward to engineer, it 
has the potential to greatly increase the flexibility of wireless sensor networks. With a 
robot integrated in the system, wireless sensor nodes can be placed in locations in 
which no power is available at all. Infrequent visits by the robot enable the wireless 
node to perpetually participate in the application without any human intervention. 

In addition to delivering power to active sensors, robots can potentially improve 
the efficacy of passive sensor networks as well. A mobile service robot equipped to 
perform inductive charging via RF could read a SAW sensor using the same 
equipment. This makes it easier to support a mixed environment of both active and 
passive sensors as well as reducing the infrastructure required to read a physically 
disparate collection of passive sensors. 

3 PlantCare 

We have been exploring the relationship between wireless sensor networks and robots 
in the context of the PlantCare project. The goal of the project is to understand and 
develop solutions to the challenges facing proactive computing. Proactive computing 
differs from pervasive computing in the sense that proactive applications have a 
component that anticipates needs and provides for dealing with them without the 
user’s attention being called to the problem unless absolutely necessary, and then only 
at an appropriate level of abstraction. In general, the goal of proactive computing is to 
develop solutions to real problems that may involve hundred or thousands of devices, 
but present little distraction or cognitive load on their users. Specifically, PlantCare is 
trying to build a zero-configuration and distraction-free system for the automatic care 
of houseplants. Our plan was to instrument each plant with a wireless sensor placed in 
its pot and employ a robot to deliver water to the plants. Soon after conceptualizing 
the project we realized that due to power constraints, the sensor network and robot 
needed as much care as the plants themselves. This realization led to the idea of 
robots as a worthy caretaker for wireless sensor networks, in general. In order to 
provide background for the work in this paper, we present a brief description of the 
sensors, robots, and software employed by the PlantCare project. 

3.1 The Sensors 

In the PlantCare system, wireless sensor nodes (see Figure 2) are placed both on the 
robot and in the plants being cared for. The sensors in the plants provide a continuous 
stream of data reflecting their state while the sensor node on the robot is used to 
calibrate the sensors. While the sensors in the plants and on the robot vary slightly, 
the wireless nodes are identical. PlantCare’s sensors are built using the UC Berkeley 
“mote” sensor platform running TinyOS [16].  Motes operate at 3V and are assembled 
from off-the-shelf components that include an 8-bit microcontroller, a two-way 
916MHz radio for communication, and an expansion connector that facilitates 
connection of environmental sensors.  TinyOS is a small, real-time, modular 
operating system that supports ad-hoc networking to allow motes to communicate 



both with each other and with a base station. Our environmental sensing hardware 
consists of a photo-resistor for measuring light levels, a thermistor for measuring 
temperature, an irrometer for measuring soil moisture content, and a sensor that 
monitors the current charge of the power source. In addition, the sensor nodes in our 
plants have been augmented with a custom power system in which capacitors replace 
traditional batteries and can be recharged using an inductive coil to support power 
delivery.  

Our wireless network contains a single base station mote, which by virtue of being 
attached to the serial port of an Internet-connected PC serves as the physical link 
between the wireless sensor network and the PlantCare services. The base station 
listens to the sensor network for messages containing sensor readings and forwards 
these messages to the serial port. Additional software infrastructure described in 
Section 3.3 handles the processing of these messages on the PC. 

3.2 The Robot 

The robot hardware platform (see Figure 3) consists of a Pioneer 2-DX mobile robot 
[1] augmented with custom hardware for watering plants, recharging the robot, 
recharging remote sensors, and sensing environmental conditions for calibration 
purposes.  To deliver water to the plants, the robot has been fitted with a small water 
tank, dispensing spout, and pump. To deliver power to wireless sensors an inductive 
charging coil has been positioned near the watering spout. Similarly, another paddle-
shaped inductive charge coil has been added to the robot to allow it to recharge itself 
at its “maintenance bay”. In order to support calibration, the robot includes a sensor 
node that was human-calibrated. Finally, a small microcontroller board allows 
software on the robot to both control and read the state of this collection of custom 
hardware. Both this microcontroller and the laser scanner the robot uses for 
navigation are connected to a laptop that runs the robot’s control and navigation 
algorithms and is in turn connected to the network via an IEEE 802.11b wireless  
card. 

Lastly, the robot has a maintenance bay it uses to automatically charge its own 
batteries and refill its water reservoir. The bay has a water supply with a spout for 
dispensing water to the robot, and a charging system matched to the robot’s induction 
coil. We envision that the bay would take the form of a kitchen cabinet in a more 
consumer-realistic deployment.  

 

 

     Figure 3: The robot hardware platform 

 

       Figure 2: A deployed plant sensor 



We chose inductive charging for both the sensors and the robot in order to reduce 
the danger to people and equipment due to splashing water. The measured efficiency 
of inductively charging the sensors is around 70% of the baseline efficiency achieved 
with a shielded cable. This inefficiency reduces the amount of time the robot can 
function without recharging, thereby resulting in more frequent visits to the 
maintenance bay. This was deemed acceptable given the potential risk of the 
accidental meeting of water and electricity.  

The main components of the robot navigation system consist of a reactive collision 
avoidance module, a module for map building and path planning, and a localization 
module. All components use probabilistic methods to deal with uncertain sensor 
information. The reliability of this approach has been demonstrated during the 
deployment of the robots Rhino and Minerva as autonomous museum tour guide 
robots [6, 34]. The high-level task ordering and dispatching software was custom-
built for the PlantCare project. 

3.3 The Software 

As part of the PlantCare project we have also developed a software infrastructure 
called Rain to support proactive applications.  The objective of Rain is to provide a 
framework in which to experiment with how to structure applications as a collection 
of cooperating services that communicate via asynchronous events.  In the Rain 
environment, services register with a central discovery service and use this service to 
find other services they wish to interact with. This structure gives the application the 
opportunity to transparently support the highly dynamic environments envisioned for 
proactive systems. The asynchronous communication model allows applications to be 
highly responsive even in the face of widely distributed services running on hardware 
platforms with widely varying performance. Finally, to support heterogeneous 
computing environments, Rain messages are encoded in XML. Services in Rain are 
very similar to SOAP services that communicate by passing XML documents 
asynchronously [5]; The main difference between Rain and SOAP is that SOAP is as 
almost exclusively used as a synchronous RPC system and Rain is geared towards 
support of asynchronous event-based software architectures. 

Our PlantCare application is composed of fifteen services that collectively provide 
both the high-level application logic as well as the low-level driver-like code that 
communicates with hardware and external software. Specific to our sensor network, 
there are services that independently receive data from the sensor base stations, 
unpack the data from its proprietary form, calibrate the data reading based on 
previously collected calibration data, and store the readings for future use by 
applications. The services pertaining to the robot consist of a low-level service that 
knows how to activate the robot’s sensors and actuators, and a high-level service that 
encapsulates the understanding of our application-specific robotic tasks such as 
watering plants and delivering power to the motes.  



4 A Simple Experiment 

To demonstrate the use of a service robot for the calibration of a wireless sensor 
network we performed a simple experiment. The experiment emulated the lifetime of 
a plant sensor from initial deployment through continuous, adaptive calibration with 
the help of the robot, and was controlled to eliminate the effects of power constraints 
and navigation errors.  

An uncalibrated sensor was deployed and calibrated in-place. After a period of 
operation we changed the environmental characteristics the sensor was measuring. 
The subsequently reported readings then no longer fell within the range of the 
previously collected calibration data, which forced the system to gather additional 
calibration data. This mimics the previously mentioned example of a temperature 
sensor that is calibrated during summertime conditions but needs further calibration at 
the onset of winter. Finally, we simulated a gross change in sensor behavior by 
physically obscuring the sensor. Once the resulting measurement error was detected 
by the system during a simulated maintenance check performed by the robot, the old 
calibration data was discarded and new calibration data was collected. 

4.1 Experiment Setup 

The experiment setup consists of a darkroom with a single constant intensity light 
source, and a single wireless sensor node equipped with a light sensor. The light 
source is passed through two polarizing filters, one of which is rotated at set intervals 
to make the intensity of the emitted light approximate a sine wave. For the first half of 
the experiment the rotation of the filter is limited between 0 and 45 degrees. This 
creates a wave that is cut off at half the possible amplitude. After two periods of this 
smaller wave the rotation of the filter is extended to the full range of 0 to 90 degrees 
to create a change in environmental conditions. This full range of light is projected 
onto the sensor for two full periods. The sensor is then covered by a semi-transparent 
filter to emulate degradation of the sensor. Finally, the full range of light is again 
projected onto the partially obscured sensor for two periods. 

During the entire experiment, the wireless node is reporting its light readings to a 
base station via its radio. This data is stored in a database and post-processed using 
linear regression to convert these raw sensor readings into luminance values. When 
the algorithm needed a new calibration point, the raw sensor voltages were paired 
with the actual light intensity. This simulates a robot with a perfect sensor. While 
sensors are never perfect, in general we expect that the sensors on the robot will be 
significantly more accurate than those in an inexpensive wireless sensor node. 

4.2 Experiment Results 

Figure 4 presents three time-series graphs representing different aspects of the data 
collected during the experiment. In all of these graphs the vertical axis shows either 
volts or luminance, while the horizontal axis always shows time.  In the first graph, 
the solid line shows the voltage values measured by the sensor during the experiment, 
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Figure 4: The top graph shows raw voltage vs. luminance over six periods of sinusoidal variation. The 
second graph compares the calibrated readings vs. the actual luminance for the same time span. The 
marks on the graph represent times at which calibration data was collected. The third graph shows the 
error in the calibrated readings 

compared with the broken line showing the actual luminance of the light source. Note 
that until the sensor is obscured, the voltage readings reach higher on the graph than 
the luminance values. Once the sensor is obscured, the voltages measured are lower 
though the luminance has not changed. It is clear that without recalibration, the sensor 
readings cannot be translated accurately across the entire time line. 

The second graph in this series compares the calibrated sensor readings to the 
actual luminance. The markers on the broken line represent times at which the system 
collected calibration samples. Moving from left to right, we see that the system 
initially collected eight calibration points. Once the measured luminance starts to fall, 
no additional calibration points are collected, as the system is comfortable with the 
range of data it had already collected. Note also that the measured line accurately 



tracks the actual luminance except in the peaks and troughs of the graphs. We 
attribute these inaccuracies to limitations of our low-cost photo-resistor, pointing out 
one of the realities of using inexpensive sensors. 

Midway through the third period, two things happen. The difference between the 
calibrated readings and the actual luminance increases. This is because the regression 
algorithm was being forced to make predictions outside its range of collected data. 
When the system realized this, it collected an additional four calibration points after a 
delay approximating the navigation latency of the robot. After incorporating the 
additional points, the measured values again track the actual luminance well.  

Two thirds of the way through the experiment the sensor was covered with a filter 
to change its characteristics. Since the system was unaware of this, the converted 
measurements are in fact quite inaccurate. This could not be detected by the system 
and would have continued until a routine robotic check of the sensor revealed the 
inaccuracy. The delay of a few readings approximates the wait until the next check of 
the sensor. At this point, the system realized a significant change in the sensor had 
occurred, discarded all of its calibration data, and began collecting new data. After the 
recalibration period, the readings again track the actual luminance well.  

Lastly, the third graph in this series shows the error between the calibrated sensor 
readings and the actual luminance. During the initial calibration period there is higher 
than average error. Another period of increased error occurs when the environmental 
conditions change and only settles down once additional calibration data is gathered. 
At the end of the measurement there is a very large spike of error while the system 
continues to use calibration data that has become inaccurate. Once the error is 
detected and new calibration data is gathered, the error again decreases. It is 
interesting to note that even after recalibration the error does not diminish to the 
extent it did following initial calibration. This is due to the fact that obscuring the 
sensor rendered it less sensitive to light. While our goal was to change the scale of the 
voltages returned, we also inadvertently compromised its accuracy. 

5 Conclusions and Future Work 

In this paper, we have introduced the idea that robots have the potential to greatly 
increase the feasibility of practical wireless sensor networks. While sensor networks 
and robotics are both quickly evolving fields, the union of the two fields seems 
inherently symbiotic. Sensor networks have data but lack actuation, while robots have 
actuation but limited sensing. We have explored this concept in the context of the 
PlantCare system, an autonomous system for managing the health of houseplants. We 
have presented data from a simple initial experiment showing how robots can be used 
to continuously calibrate deployed sensors. In the future, we intend to more deeply 
explore the relationship between robots and sensor networks. We plan to leverage 
techniques developed in the robotics community to build spatial models from noisy 
sensor information and to keep track of complex dynamic systems [33]. We also plan 
to explore the idea of treating localization data as just another aspect of the sensed 
environment, enabling localization to benefit from all of the advantages of continuous 
calibration. 
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