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Abstract ⎯ A network robot system integrated with various 
types of robots via ubiquitous networks is a new concept which 
introduces an interactive robot living together with people. In 
this paper, we present a tangible network robot system 
composed of a mobile robot and vision sensors embedded in an 
environment, and show human behavior recognition methods 
necessary for providing diverse services desired by the people 
in good time. Typical human behaviors are described with 
logical sensors which are defined through data fusion processes 
spatially and temporally with the physical sensors of the mobile 
robot and those in the environment. Our system can be utilized 
to make human-robot communication and interaction friendlier 
and smarter. 
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1. Introduction 
 
Building a ubiquitous network infrastructure for our 

society by utilizing the latest information technologies (IT) is 
a key issue in realizing an invigorated, safe, secure, exciting, 
and convenient society in the 21st century.  

On the other hand, interactive robots living together with 
people in non-industrial application areas have appeared 
recently. Their market size is expected to dramatically 
increase in ten years despite the fact that a conventional 
industrial robot market size has not grown in the past ten 
years [1]. Such new robot applications include various 
services and solution businesses, such as home use, health 
care, transportation, education, and so on.  

Convergence of ubiquitous network technology and robot 
technology, both of which are the flagship technologies of 
Japan, would realize an innovative system, “network robots” 
[2]. The basic concept of the network robots is that various 
types of robots, which are called “visible robot”, 
“unconscious robot”, and “virtual robot”, are embedded in the 
ubiquitous network, and that diverse services would be 
realized through collaborations and interactions among those 
robots. The network robots would contribute to: 
・ creation of new life styles (wide spread and sophisticated 

services in life) 
・ solutions to address social problems, such as the aging of 

population and nursing care 

・ construction of a new IT society in the 21st century as a 
Japan-originated concept. 

The network robots need to recognize the behaviors of 
persons whenever providing any service desired by the 
persons in good time. In this paper, we present a tangible 
network robot system composed of a visible robot (a mobile 
robot) and unconscious robots (environmentally embedded 
vision sensors) connected to each other via a network. The 
behaviors of a person are described through data fusion 
processes spatially and temporally with the vision sensors of 
the mobile robot and those of the environment. Recognized 
behaviors would break the ice in communication between the 
system and the person, and would help the system to decide 
what service the person would want. 

The advantage of our system is that it is applicable in 
complex scenes where human behaviors could not be 
recognized by each individual sensor. Our intent is to apply 
the system to provide diverse services in a public space, such 
as a guide service, an information service, and a person 
search service in a shopping mall.  

2. Typical Human Behaviors in a Public Space 
 
In this section, we describe the typical behaviors of a 

person to be recognized when our system provides guide 
services in a public space as shown in Figure 1. We assume 
six key situations, and define human behaviors that the person 
would do under each situation as shown in Table 1. Our 
system should recognize those human behaviors and do some 
actions as shown in the rightmost column of Table 1. For 
example, the system recognizes a human behavior such as 
“waving one’s hand over the head toward a robot”, and then 
start a desired service. 

Motion recognition methods have been developed for 
recognizing human gestures which are relatively short-term 
motions in previous researches [3], [8]. The methods often 
adopt a probabilistic state machine, such as hidden Markov 
models (HMMs), and they work well because the time-series 
patterns of those human gestures are moderately fixed. 

On the other hand, our target behaviors in Table 1 include 
longer-term motions as well as short-term fixed motions, and 
thus the previous techniques are not sufficient for achieving 
our goal. The sequence and the frequency of short-term 
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motions should be observed and analyzed in order to 
recognize the longer-term motions. Our recognition method 
will be described in detail in Section 4. 

 

Unconscious robot
(sensor)

Virtual robot
(PDA, attached sensors)

Visible robot

 

Figure 1. Guide service with a network robot system. 

 

Table 1. A Person’s Situations, Human Behaviors, and Robot Actions 
A person’s 
situations The person’s behaviors Robot actions 

Asking 
assistance 

• Waving one’s hand over the 
head toward a robot  

• Beckoning a  robot 
• Talking to a robot 

Being in 
difficulty 

• Looking around restlessly 
(Losing one’s way) 

• Wandering (Looking for a 
person) 

• Having problems in using a 
machine 

Desiring 
information 

• Looking at an exhibition or 
an advertising display  

Starting a 
desired service 
for the person 

Being busy • Walking very fast 
• Passing through a crowd 

No service 

Expressing a 
will (Yes/No) 

• Nodding one’s head 
• Shaking one’s head/hand 

Continuing or 
stopping the 
service 

Being in 
emergency 

• Falling down in one’s road 
• Lying on a road 

Calling 
emergency 

 
3. Configuration of Our Network Robot System 
 
We propose a hierarchical structure for a network robot 

system consisting of three layers, that is, a physical sensor 
layer, a logical sensor layer and a human behavior recognition 
layer as shown in Figure 2. In the physical sensor layer, we 
use several sensors as shown in Table 2. The sensors are built 
in a visible robot, embedded in an environment, and attached 
to a human. 

 A single physical sensor cannot cover an entire space 
where the network robot system provides services for persons 
and also its accuracy and reliability vary with environmental 

conditions.  For example, in the case of human detection and 
tracking with a single camera, we often encounter occlusion 
problems in image processing and fail to human detection and 
tracking. In the case of human detection with a radio 
frequency identification (RFID) tag, the detection range is 
limited within its transmitting range (typically several meters).  

Logical sensors in the logical sensor layer denote virtual 
sensing devices that retrieve particular meaningful 
information from physical sensor data obtained via a network 
through data fusion processes spatially and temporally. 

The human behavior recognition layer provides human 
behavior information necessary for controlling a robot action, 
for example, triggering a service, through fusion processes 
spatially, temporally and also semantically from logical 
sensor data. Because the logical sensors provide reliable and 
consolidated information with an adequate sensor placement, 
the human behavior recognition layer function can cover the 
entire service space. 

 

 

Figure 2. Three-layered structure of our network robot system. 

Table 2. Examples of Physical Sensors 

Type Sensors 

Built in a visible robot Cameras, range sensors, touch 
sensors 

Embedded in an environment Ceiling cameras, floor sensors 

Attached to a human (wearable 
sensors) RFID tags, acceleration sensors 

 

4. Examples of Logical Sensors 
 
This section describes some examples of logical sensors: 

self-localization, human identification, human localization 
and human motion recognition. These logical sensors have 
been configured with cameras that are implemented on a 
visible robot and ceiling cameras. Figure 3 shows the 
overview of the visible robot, “wakamaru”, developed by 
Mitsubishi Heavy Industries, Ltd., and its physical sensors. 
We use an omni-directional camera, a front camera, and 
odometry for self-localization, human identification, and 
human motion recognition. Odometry is the calculation of 

Visible robots

Physical 
sensor layer

Logical 
sensor layer

Network

Human behavior recognition 

Cameras em-
bedded in an 
environment

Human 
localization Human motion 

Human 
identification

RFID tags,  
motion sensors 

Self-
localization 
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robot position by the measurement of wheel rotation. Human 
localization is implemented with the ceiling cameras. 

 

 

Figure 3. Sensors in a visible robot “wakamaru”. 

A. Self-localization 
 Self-localization is achieved by combining odometry with 
image measurement. An image including some landmarks 
attached on environments, for example, on the wall in a room 
is taken from an omni-directional camera as shown in Figure 
4. The 3D positions of the landmarks are given beforehand. 
Then, the 2D positions of the landmarks in the image are 
extracted. Finally, the position and orientation of the robot are 
calculated by a probabilistic processing method [4], [5]. The 
result of self-localization shows that the position error is 
within 100 mm in 8 m by 4 m area as shown in Figure 5. The 
accuracy is drastically improved by combining odometry with 
the image measurement. 
 
 

 
 

   
 

 

B. Human Identification 
Our human identification process has three steps as shown 

in Figure 6. Firstly, a moving target (person) is detected from 

the image of an omni-directional camera. Then, the front 
camera is trained on the moving target and a face is detected 
from the image of the front camera with a face detection 
technique using shape and skin color information. Finally, a 
face recognition technique is used to identify the person. 

 

 
Figure 6. Face detection and recognition. 

C. Human Localization 
We use multi-viewpoint images captured by ceiling 

cameras to overcome a shadowing problem and an occlusion 
problem. A major advantage of adopting cameras for human 
localization is that they can track humans over a large area 
continuously. 

In previous research [9], the N-ocular stereo image 
processing with multiple omni-directional cameras is used to 
detect the 2D positions of humans on a floor. In our system, 
the 3D position and the direction of humans are 
simultaneously estimated by a probabilistic modeling 
technique with a particle filter [4], [5]. This approach is not 
necessary to solve a stereo correspondence problem and it is 
easy to add more cameras to cover a larger area. Furthermore, 
our system estimates not only a human position but also basic 
human behaviors (walking, standing and sitting).  

Figure 7 shows the sequence of human localization. 
Moving object regions are extracted from each image by a 
background subtraction method [10]. We use pixel color 
information to overcome illumination change. A background 
image is defined by a probability density function in a color 
space. An input image is converted into a probability image 
whose pixel intensity is a deviation from the estimated 
background image. Figure 8 shows the example of a 
calculated probability image. Brighter regions represent 
object regions which are moving with higher probability. 
Therefore, we track the brighter regions as humans using 
mean shift in an image sequence of each camera [11], [12].  

Then, the human positions and their basic behaviors are 
estimated by integrating the tracked regions from the multiple 
camera images with a particle filter. Let xt denote the state of 

Front camera image 

Omni-directional  
camera image 

Skin color detection 

Shape detection  

Motion detection 

Face detection 
and recognition  

The front camera is 
trained on the 
moving target. 

Omni-directional  
camera 

Directional 
microphone 

Front camera 

Speaker Ultrasonic  
sensors 

Infrared  
distance  
sensors Touch sensor 

LED  
indicator 

<Robot Specs>

Height: 1000 mm 

Width: 450 mm 

Weight: 30 kg 

Velocity: 1 km/h 

Drive: DC-Motor

Controller: Linux 

Power: Battery 

Figure 4.  Omni-directional 
camera image (top) and detected 
landmarks (bottom). 
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Figure 5. Self-localization result. 
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a human position and a basic behavior (walking, standing, or 
sitting) at time t. Let zt denote the moving object region 
observation from camera images. Zt is a history of zt, that is, 
Zt = {z1, z2, …, zt}. The goal of the particle filter is to estimate 
the posterior probability p(xt|Zt) over the state variable x at 
time t. 

 

 

Figure 7. Human localization. 

 
Figure 8. Moving object detection: an input image (top left), a 
probability  image (top right), and  extracted moving regions (bottom). 

 

 
Figure 9. Tracking a human with one fisheye camera. A person is 
walking (top left and top right) and then sitting (bottom left and bottom 
right). 

 
Figure 10. Experimental results (horizontal view). 

Table 3. Basic Behavior Estimation Results 
Estimation results Basic 

behaviors Walking Standing Sitting 
Walking 75.5% 17.3% 7.2%
Standing 27.6% 70.0% 2.4%
Sitting 7.3% 4.1% 88.6%

 
In experiments, we took many scenes with four fisheye 

cameras. Figure 9 shows an example of tracking a person 
walking around. The accuracy of human localization is as 
shown in Figure 10. Multiple viewpoint image tracking is 
very stable compared with tracking with one camera. The 
basic behavior estimation success rate is more than 70% as 
shown in Table 3.  There are very slow walking and 
swinging motions in the scenes and those cases sometimes 
result in wrong estimations. 

D. Human Motion Recognition 
Previous researches [3], [8] cover short-term gesture 

recognition, such as “lifting one’s right arm up”, “nodding 
one’s head”, and “waving one’s hand”. However, human 
behaviors we focus on include longer-term series, such as 
“eating”, “drinking”, “reading”, and “writing”. These motions 
last for at least several ten seconds, and often last for several 
minutes. Furthermore, any underlying short-term motion, 
such as “moving one’s right hand from around a table to 
one’s mouse”, is not a distinctive feature for recognition 
because such a short-term motion appears not only in “eating” 
but also in “drinking”. 

Our idea is that we hierarchize a human motion into two 
motion classes according to the duration of the motion. One is 
a short term motion class and the other is a long term motion 
class. The short-term motion is defined as a motion that lasts 
for only several seconds, which has a moderately fixed time-
series pattern.  The long-term motion is defined as a motion 
that lasts for more than several ten seconds, which are 
composed of many short-term motions.  

Detecting moving 
objects 

Four fisheye cameras 

Extracted region 

Estimating human 
positions with 
a particle filter 
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Figure 11.  A sample scene where a person is drinking. 

A human motion in a scene as shown in Figure 11 is 
tracked.  Feature detectors (a face detector, a skin color 
detector and a blob tracker) detect the candidates of human 
body parts (the head, the right hand and the left hand) from 
an input image. The candidates of each body part are 
combined each other in a human model as shown in Figure 
12. The human model is designed to represent a likelihood of 
“humanness” for each combination of the body part 
candidates. The combination given the highest likelihood is 
chosen as an estimated human body part position.  

Short-term motions are recognized with the stochastic 
analysis of human body part motions using hidden Markov 
models (HMMs) as shown in Figure 13. The HMMs for 
several short-term motions are defined and trained. Short-
term motions in an input image sequence are extracted with 
the trained HMMs. A long-term motion is recognized with a 
histogram analysis for a series of observed short-term 
motions as shown in Figure 14. The histogram of the short-
term motions is compared with all the long-term motion 
histograms in a database, and the nearest one is chosen. 
Recognition results for some image sequences including four 
human behaviors are shown in Table 4.  The recognition 
success rate is more than 80 %.  

 
Figure 12. Estimating the positions of body parts. 

Figure 13. Recognizing a short-term motion. 

 
 

Figure 14. Recognizing a long-term motion. 

 
Table 4. Human Behavior Recognition Results 

Recognition results Input 
motion Eating Drinking Reading Writing 
Eating 100.0% 0.0% 0.0 % 0.0 %

Drinking 0.0% 100.0 % 0.0 % 0.0 %
Reading 2.1 % 6.3 % 91.7 % 0.0 %
Writing 0.0 % 2.1 % 14.6 % 83.3 %

 

5. Summary 
  
The basic concept of network robots is that various types of 
robots are embedded in a ubiquitous network, and that smart 
services would be realized through collaborations and 
interactions among those robots. In this paper, we have 
presented a tangible network robot system composed of a 
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mobile robot and environmentally embedded vision sensors 
connected to each other via a network. And also, we have 
described how to recognize human behaviors with the 
network robot system. We have developed the following 
logical sensors: 
・ localizing a mobile robot 
・ identifying a human 
・ estimating human positions with multiple images 
・ recognizing human motions and behaviors. 

We are now developing an advanced recognition system to 
classify 50 kinds of human behaviors with 90% accuracy at 
the Network Robot Project of Ministry of Internal Affairs and 
Communications in four years. We will use RFID tags and 
acceleration sensors in addition to the multiple fisheye 
cameras to recognize human behaviors in more complex 
scenes. The appearances of them are captured with the multi 
viewpoint images, and the positions and motions of the 
humans are acquired with RFID tags and acceleration sensors. 
These data are combined with a human model representing a 
human structure to identify the human behaviors. The system 
will be evaluated intensively for providing major robot 
services, for example, a guide service, an information service, 
and a person search service in a public space. 

 

ACKNOWLEDGMENT 
This research was supported in part by Ministry of Internal 

Affairs and Communications. 
 

REFERENCES 
[1] Japan Robot Assciation, Summary Report on Technology Strategy for 

Creating Robot Society in the 21st Century, 2001. 
[2] Ministry of Internal Affairs and Communications, Final Report on 

Network Robot Technology, 2003 (in Japanese). 
[3] T. Mori et al. “Human-like action recognition system using features 

extracted by human,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots 
and Systems, pp. 1214–1220, 2002. 

[4] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo 
localization for mobile robots,” Proc. IEEE Int. Conf. on Robotics and 
Automation, 1999. 

[5] J. E. Handschin, “Monte Carlo techniques for prediction and filtering 
of non-linear stochastic processes,” Automatica, vol. 6, pp. 555–563, 
1970. 

[6] M. A. Abidi and R. C. Gonzalez, Eds., Data Fusion in Robotics and 
Machine Intelligence, Academic Press, San Diego, 1992. 

[7] M. Kam, X, Zhu, and P. Kalata, “Sensor fusion for mobile robot 
navigation,” Proc. IEEE, Vol. 85, No. 1, pp.108–119, 1997. 

[8] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-
sequential images using Hidden Markov Model,” Proc. IEEE Int. Conf. 
on Computer Vision and Pattern Recognition, 1992. 

[9] T. Sogo, H. Ishiguro, and M. Trivedi, “Real-time target localization 
and tracking by N-ocular stereo,” Proc. IEEE Workshop on Omni-
directional Vision, pp.153–160, 2000. 

[10] A. Elgammal, R. Duraiswami, D. Harwood and L. S. Davis, 
“Background and foreground modeling using nonparametric kernel 
density estimation for visual surveillance,” Proc. IEEE, Vol. 90, No. 7, 
pp.1151–1163,  2002 

[11] D. Comaniciu, V. Ramesh, and P. Meer ,“Real-time tracking of non-
rigid objects using mean shift,” Proc. IEEE Int. Conf. on Computer 
Vision and Pattern Recognition, 2000 

[12]  R. Collins, “Mean-shift blob tracking through scale space, ” Proc. 
IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2003 


