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Summary. A number of researchers are investigating the use of embedded sensor
networks to facilitate mobile robot activities. Previous studies focus individual tasks
(e.g. navigation to a goal) using networks of several to tens of expensive (≈ $100)
nodes placed by the robots themselves or in predetermined geometric grids. In this
work we explore the use of tens up to hundreds of simple and cheap (≈ $10) sensor-
less nodes placed arbitrarily to support a complex multi-robot foraging task. Ex-
periments were conducted in a multi-robot simulation system. Quantitative results
illustrate the sensitivity of the approach to different network sizes, environmental
complexities, and deployment configurations. In particular, we investigate how per-
formance is impacted by the density and precision of network node placement.

1.1 Introduction and Related Work

We are interested in the application of low-cost, pervasively distributed net-
work nodes to support cooperative multi-robot tasks. In this work we consider
a heterogeneous system composed of small, embedded, immobile sensor-less
communication nodes and larger mobile robots equipped with sensors and
manipulators. The embedded network serves as a pervasive communication
and computation fabric, while the mobile robots provide sensing and actu-
ation. We refer to the embedded nodes as forming a sensor-less network to
distinguish the approach from those where the network nodes also have sen-
sors. In our work the embedded nodes provide only modest computation and
communication for the team.

As noted above, we depart from the usual approach where the embedded
nodes are equipped with sensors. There are a number of arguments in favor
of sensor-less embedded networks. First, the cost and power requirements for
simpler embedded nodes is lower, thus enabling us to distribute more of them.
Second, it is likely that even for a network with sensor nodes, certain activ-
ities for which the nodes do not have sensors will need to be conducted. For
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instance, we may want to utilize a network that has already been deployed
(e.g. wildfire monitoring), to support a new application (e.g. search and res-
cue). Unanticipated applications can be addressed on deployed networks by
equipping the mobile robots with appropriate sensors. In this way application-
specific hardware is concentrated on the smallest portion of the team – the
mobile platforms.

The algorithm for guiding the mobile robots essentially works as a dis-
tributed variant of the popular wave-front path planning algorithm, or a
breadth-first search from the goal, propagating paths from the goal location.
The embedded nodes make up the vertices of the path planning graph, and
the network connections between them are the edges of the graph. Mobile
robots can then use reactive navigation to traverse the graph by visiting the
vertices (i.e. the embedded nodes) to the goal. The sensor-less network cre-
ates navigation networks for supporting mobile robots in various tasks such as
coverage, recruitment, and path planning. We demonstrate all three of these
distributed skills in a multi-robot foraging task. We show that a pervasive
network of embedded sensor-less nodes can enable a team of mobile robots
to accomplish complex tasks effectively. We analyze the sensitivity of the ap-
proach to different team sizes, environmental complexities, and deployment
configurations.

Parunak et al developed a technique for coordinating multiple unmanned
air vehicles (UAVs) using synthetic pheromones. [1, 2] Inspired by pheromone
communication in insects, they create potential fields for guiding the UAVs
around threats to goal locations in a distributed manner. We do not assume
the embedded nodes are arranged uniformly in any structure. We also rely on
a distributed dynamic programming solution to the path planning problem,
rather than an approach based on the dynamics of insect pheromones.

Like Parunak, Payton et al present an approach for large scale multi-robot
control referred to as “Pheromone Robotics” inspired by biology. [3] They use
a system based on virtual pheromones, by which a team of mobile robots use
short-range communication to accomplish cooperative sensing and navigation.
In Payton’s work “virtual pheromones” are communicated over an ad hoc
network to neighboring robots. In contrast, in our approach information is not
distributed by the mobile robots, but rather by the relatively static, embedded
nodes scattered throughout the environment.

Both Batalin et al [4, 5] and Li et al [6] have developed similar approaches
using heterogeneous teams composed of mobile nodes and an embedded net-
work. The network of embedded nodes, creates a “Navigation field” [4], which
mobile nodes can use to find the their way around. They differ in how they
compute this navigation field. Batalin et al use Distributed Value Iteration [4].
In their approach, the embedded nodes use estimated transition probabilities
between nodes to compute the best direction to suggest to a mobile robot
for moving between a start and goal node. These transition probabilities are
established during deployment and both the robots and sensor nodes have
synchronized direction sensors (e.g. digital compass). Our approach does not
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require the nodes to store transition probabilities, instead we rely on the com-
munication network to establish the navigation paths. Also, in our approach
the mobile robots only need a local sense of direction in order to move toward
the correct embedded node. Neither the robots or the embedded nodes need
any shared sense of direction.

Li et al are able to generate an artificial potential field for navigation
based on the obstacles and goals sensed by the network. [6] This potential
field is guaranteed to deliver the mobile node to the goal location via an
danger-free (obstacle-free) path. The field is created by the embedded nodes
propagating goal-ness or danger to neighboring nodes. In our approach the
embedded nodes do not have sensors, this capability is provided by the mobile
nodes, and thus can not sense obstacles directly. We assume the obstacles are
sensed indirectly by the resulting communication topology. The later three of
these approaches, as well as ours, use distributed dynamic programming [7]
to create the navigation field.

Koenig [8] and Wagner [9, 10] also devise some related methods for doing
parallel coverage using simple ant robots that communicate indirectly by leav-
ing indicators in the environment. Batalin et al [5] also use communication
nodes as “markers” in aiding mobile robots in the exploration problem. The
embedded nodes offer a suggested un-explored direction for the mobile robots
to follow. Unlike our approach, their embedded nodes do not communicate
with each other, but only to mobile robots.

1.2 Problem Statement and Assumptions

Our system is composed of mobile robots with sensors and actuators supported
by an embedded immobile network of nodes without environmental sensors.
We assume the embedded network nodes have the following capabilities:

• Limited computation and memory, on the order of a PIC micropro-
cessor with 2K ROM and 256 bytes of RAM operating at 4 MHz.

• Short range communication with adjacent nodes up to 4 meters dis-
tant.

• Communication is blocked by navigation obstacles.

We assume the robots and embedded nodes communicate using a short-
range medium that is occluded by the same objects that occlude navigation
(e.g. walls). Line of sight between nodes implies open space for navigation.We
have implemented a hardware platform to these specifications, the GNAT (see
Fig. 1(a)). The GNAT is a low-power, omni-directional, infrared device costing
about 30 dollars to build. The mobile robots in our system are somewhat more
capable. We assume they support:

• Communication with embedded nodes;
• Relative bearing estimation to nearby embedded nodes;
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(a) The GNAT (b) Navigation Network

Fig. 1.1. (a) The GNAT is a low-power, omni-directional, infrared device. (b) An
illustration of a navigation network.

• Local attractor and obstacle sensing; (e.g. food objects);
• Attractor object grasping.

These robot capabilities are sufficient for cooperative foraging in the pres-
ence of an embedded network.

Significantly, there are a few assumptions we do not make. In particular,
we do not assume localization or mapping capabilities on the part
of the robots or the embedded nodes. No mobile robots or embedded nodes
are expected to perform localization or mapping. Furthermore we do not
assume the environment is static. Obstacles to navigation can appear
and disappear. We expect the network to automatically adapt to dynamic
conditions.

In this work do not address the deployment of the embedded nodes. We
assume they have already been placed in the environment, but their posi-
tions are unknown and the uniformity of their placement can vary. In fact,
one objective of this work is to assess the impact on performance with re-
spect to different network sizes, environment complexities, and deployment
configurations.

Given the system of robots and network nodes described above, we would
like to solve a multi-robot foraging problem. Foraging is a well-studied, canon-
ical multi-robot task [11, 12]. In this task a robot team is initialized at a
“homebase” location, from which they should begin to explore the environ-
ment in search of attractor (food) objects. Once a cache of attractor objects is
discovered, this information should be disseminated to the other robots, along
with a means for them to navigate to the cache. Finally, all of the attractor
objects should be collected by the robots and delivered to homebase. We have
decomposed the overall problem into the following sub-problems:
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• Cooperative coverage: enable a team of mobile robots to completely ex-
plore the area covered by embedded nodes. For efficiency, robots should
avoid traveling through areas already explored by other robots.

• Recruitment: alert the team to new, critical information. In the context of
a foraging task, the discovery of a food cache is an example recruitment
situation.

• Path planning: Without requiring localization capabilities, provide an effi-
cient route for each robot, located anywhere in the environment, to a goal
location.

1.3 Approach

The sensor-less network creates navigation networks for supporting mobile
robots in various tasks such as coverage, recruitment, and path planning. We
use navigation networks to accomplish three different steps in the task: 1)
directing the robots to visit uncovered areas, 2) directing the robots to a
discovered attractor cache, and 3) directing them home. Navigation networks
for each of these tasks are present in the sensor-less network simultaneously.
A mobile robot can then follow whichever navigation network corresponding
to it’s current sub-task goal. A navigation network is illustrated in Fig. 1(b).
We are able to use navigation networks to complete the multi-robot foraging
task in complex environments without mapping or localization.

We follow Payton’s virtual pheromone technique [3] and assume the com-
munication paths are similar to the navigation paths, and use this to propagate
navigation information. By using a short-range communication medium that
is occluded by obstacles to navigation, the communication paths carve out
free-space. As also pointed out by Payton [3] and Li [6], this results in a kind
of distributed physical path-planning. To create a navigation network for a
particular goal we use a distributed dynamic programming approach; specif-
ically, we apply the distributed Bellman-Ford algorithm. The Bellman-Ford
equation [13] for finding the shortest path from i to j is:

D(i, j) = min
k∈neighbors

d(i, k) + D(k, j)

Where D(i, j) is the path cost from i to j, and d(i, k) is the distance
between i and k. It can be used to find the shortest path to a destination from
all nodes. The distributed version of Bellman-Ford was created for network
routing protocols [14]. In the distributed network routing version, neighbors
share their path costs and the distance between nodes is usually measured in
hops. We use distributed Bellman-Ford to effectively create a tree of shortest
paths from every node to the goal – this tree is the navigation network. The
embedded network can be thought of as “routing” the mobile robots to their
destination. However, note that the embedded nodes do not know the global,
or local, position of their neighbors, so they are not directing the robot in any
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direction. Instead, the mobile robot greedily approaches the lowest-valued
node currently in its communication range. As it closes in on the node it will
come within communication range of that node’s parent. The robot continues
this until it comes within sensing distance of the goal.

As the mobile robots discover attractors, they broadcast this information
to neighboring embedded nodes and navigation trees are created with roots
near the attractor. As the information is propagated throughout the network
by the embedded nodes, the hop-count, or path-cost, increases. Any mobile
robot can then approach the network, access the relevant navigation network,
and descend to the root of the tree, eventually reaching the original goal.

Using a static sensor-less network provides several advantages over fully
mobile networks and static sensor networks. The first benefit is cost. By having
the bulk of our system be composed of cheap communication and computa-
tion nodes, we lower the cost and power requirements of the entire team. In
addition, the embedded network can be used generally, for instance, when the
desired sensor for the application is not known beforehand. Another related
advantage is that the bulk of the application-specific hardware is concentrated
in the smallest portion of our team – the mobile platforms – allowing the net-
work to be used in a general manner. Another advantage is that the majority
of the system is relatively static and connected. We say relatively because the
topology can indeed change, but we assume for the most part, the network
will be fully connected and fairly static. When using all mobile nodes, as done
by Payton [3], we must assure the network stays connected. Because the prop-
agation algorithms use a distributed dynamic programming solution, they can
fail when the network becomes disconnected for long periods of time.

The attractor navigation network allows a robot from anywhere in the
environment to find a path to an attractor that was sensed by another mobile
robot. An illustration of the navigation network for a discovered food-source is
shown in Fig. 2(b). It is obvious that if we filled the space with embedded nodes
arranged in a grid, and gave the nodes range sensors, we would see a picture
very similar to many grid-based planning approaches. The path planning space
is approximated by the communication network. But how many nodes are
required for this approximation to hold, and how uniformly do they have to
be arranged? We address these questions in the experiments below.

The home navigation network is an instance of an attractor navigation
network, with the homebase being the attractor. This creates a tree rooted at
the homebase, assuring the robots can return home. An illustration is shown
in Fig. 2(c).

Next, we consider a mechanism for building a coverage navigation network.
It is a straightforward extension of the attractor navigation network, where
each unvisited node is an attractor. The mobile nodes are then offered paths
to reach the closest unvisited nodes. This approach assures all nodes will be
visited. If a node has been visited, it uses the default scheme of propagat-
ing one of its neighbor’s values. This results in the visited embedded nodes
directing the mobile robots into unexplored areas.
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(b) Attractor Naviga-
tion Network

(c) Home Navigation
Network

(d) Coverage Naviga-
tion Network

Fig. 1.2. The components of the foraging task. The illustrations depict the embed-
ded nodes as squares, labeled with their value, the mobile robot as the green circle,
and the attractor cache as the red star. The solid lines connecting the nodes make up
the navigation network, the dotted lines are connections that aren’t included in the
navigation network. For the screenshots of the TeamBots simulation environment,
the blue circles in the center represent the food source, the blue circle in the bot-
tom left corner is the robots’ starting position, and the gray lines are walls. (a) An
example navigation network for the attractor cache. (b) The homebase navigation
network. (c) The coverage navigation network.

Although the coverage solution generated is not optimal in the sense of
shortest circuit to visit all the nodes (i.e. the traveling salesman problem) it
does assure all nodes are visited. Depending on the configuration of the em-
bedded nodes, this can assure systematic coverage of the terrain, even though
neither the robots or the embedded nodes have any localization capabilities
or a map. In addition, both algorithms can be used in dynamic coverage sce-
narios by changing their state to unvisited after a certain amount of time has
passed. The algorithm works well for both single and multi-robot exploration.
An illustration of the coverage algorithm is given in Fig. 2(d).
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1.4 Experiments

We combined the three navigation networks (attractor, homebase and cover-
age) to complete a multi-robot foraging task. We implemented this system in
the TeamBots multi-robot simulation environment. The control systems were
encoded using the Clay behavioral architecture [15]. In all the experiments
we used 8 mobile robots with grippers, and 16 attractors in a group to rep-
resent the attractor cache to be exploited. All the robots had limited sensing
and communication ranges of 4 meters that were occluded by obstacles. We
tested the technique in three different 36x36m2 environments of increasing
complexity. The three environments are shown in Figs. 3(a), 3(b), and 3(c).

Two key factors impacting how the system performs are the number of
embedded nodes and how they are placed. As mentioned previously, when we
have a large number of embedded nodes deployed uniformly we effectively have
a real grid-world and the navigation networks are accomplishing distributed
path-planning. Much work has dealt with trying to optimally deploy a sensor
network for these tasks. In this research, however, we assume that the network
is approximately uniformly distributed, but with random placement error.
Placement error in a real system could be due to error in deployment or
changes over time. Since our approach does not depend on the embedded
nodes being localized, it is robust to changes in placement.

We ran experiments with 81, 121, 169, 225, 289, and 361 embedded nodes.
Additionally, we varied the error in placement using the following technique.
First, we placed the nodes uniformly across the space, then added error to
each node’s position by some random amount, the average distance from orig-
inal position was varied: from 0, .5, and 2, to 10 meters. In the case of 10m
average error, placement is essentially uniform random. Each experimental
configuration was run 10 times. The graphs show mean performance, with
errorbars denoting standard deviations.

We present the results of the complete foraging task. Space limitations
preclude presenting the individual analyses of the coverage and delivery sub-
tasks. The results show the average time, in timesteps, to deliver each of the 16
attractors. A delivery time of 7200 timesteps (simulation timeout) were used
for undelivered attractors. The results of the first obstacle free environment
are shown in Fig. 4(a). The results of the second and third more complex
environments are shown in Figs. 4(b) and 4(c). We see that as we increase
the error in placement and the complexity of the environment, more nodes
are needed to maintain the same level of performance. This is due to the fact
that with a small number of nodes and large amount of error, the navigation
network is disconnected and isn’t able to guide the robots in the foraging task.
Instead, they must rely on a random walk to cover the space and purely local
reactive navigation.

We presented a technique for using a pervasive network of embedded
sensor-less nodes to support multi-robot exploration and navigation. We
showed that with enough embedded nodes, the distributed physical path plan-
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(a) Map 0 (b) Map 1 (c) Map 2

Fig. 1.3. The simulation environments. (a) Map 0 is the first obstacle-free en-
vironment. A sample configuration is shown with 81 embedded nodes distributed
uniformly throughout the environment without any error in placement. (b) Map 1
is a more complicated environment with a box canyon. A sample configuration is
shown with 225 embedded nodes distributed uniformly with .5 m of error in place-
ment. (c) Map 2 the most complicated environment with two box canyons. A sample
configuration is shown with 289 embedded nodes distributed uniformly with 10m of
error in placement.

(a) Map 0 (b) Map 1 (c) Map 2

Fig. 1.4. The average time to deliver each attractor as a function of the number of
embedded nodes, the error in their placement, and the environment.

ning works even with very random, non-uniform, deployment of the embedded
nodes in complex environments. In contrast, without enough nodes to form
a connected network, the approach does not work since the network can not
guide the robots. This approach also fails when the communication paths and
navigation paths differ. One possible solution would be to use real navigation
experiences to reinforce the paths in navigation networks. We are currently
evaluating the technique on real robots.
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