Player 2.0: Toward a Practical Robot Programming Framework

Toby H. J. Collett and Bruce A. MacDonald

Electrical and Computer Engineering
The University of Auckland
New Zealand

{t.collett,b.macdonald} _at_ auckland.ac.nz

Abstract

Player/Stage has become a de facto standard
in the open source robotics community. We de-
scribe recent work on restructuring the Player
robot device server into a system that more
closely aligns with the idea of a robot frame-
work. The general requirements for a robot
framework are also discussed.

Player 2.0 is a major improvement in two ba-
sic areas, simplicity and flexibility. The driver
API has been vastly simplified with many more
parts of the communication being hidden from
the user. The flexibility of the new system is re-
alised in the library division that allows for dif-
ferent transport layers (or no transport at all),
and in the new device address structure that
allows for inter-server device subscriptions.

1 Introduction

All work, including robotics research, is impacted by the
tools that are used. Good tools simplify common tasks,
while bad tools complicate them. The assumptions that
are built into a set of tools bias the researcher who uses
them toward particular kinds of solutions. The avail-
ability of flexible, reliable, and reusable tools for robot
programming is crucial to the research community. We
call this set of tools a “robot programming framework,”
or simply, “robot framework.” In this paper we present a
set of design goals that an ideal robot framework should
achieve.

We also describe an implemented system that satisfies
many of these goals. In support of our own research, we
have developed a set of Open Source tools, distributed
by the multi-institution Player/Stage/Gazebo (P/S/G)
Project, that a significant portion of the community has
found useful and to which many have contributed. The
P/S/G tools have become a de facto standard in the
Open Source robotics community [Vaughan et al., 2003].
There is a large community built around these tools (over

Brian Gerkey
Artificial Intelligence Center
SRI, International
Menlo Park, California, USA

gerkey _at_ ai.sri.com

200 members on the users’ mailing list), offering support
and improving the code. We have recently completed
the overhaul of Player, which is the central tool of the
P/S/G system. This restructuring was guided by our
experience with the shortcomings of earlier versions and
driven by our goal of developing a robot framework. We
describe the result of this effort, which is Player 2.0.

2 Related work

IPC (Inter Process Communication) along with TDL
(Task Description Language) are two software packages
developed at CMU [Simmons and Apfelbaum, 2004].
TDL extends the standard C++ syntax to provide se-
mantics for task management and it uses IPC for send-
ing messages between servers and clients. CARMEN
[Montemerlo et al., 2003, also based on IPC, provides a
navigation toolkit for robotics. SIMOO-RT [Becker and
Pereira, 2002] is an integrated development environment
for real-time systems consisting of a software develop-
ment framework and model editing tools. CLARAty
is an architecture designed for robot automation sys-
tems from the Jet Propulsion Laboratory [Nesnas et
al., 2003]. It uses a two-tiered design to separate func-
tional and decision layers of a robot application. Coolbot
[Dominguez-Brito et al., 2004] is a component oriented
framework using a port automata model for components.
ROCI [Chaimowicz et al., 2003] uses an integrated cir-
cuit pin analogy for connecting components, and focuses
on programming robot teams.

The research projects above create custom middleware
systems for interaction between distributed components.
Other projects base their work on existing high-level
middleware such as CORBA. MIRO [Utz et al., 2002]
is a distributed object-oriented framework for mobile
robot application developments. It is based on CORBA
and therefore it is also a multi-platform and program-
ming language independent development system. Woo
proposed a three-tier software infrastructure [Woo et
al., 2003] based on CORBA. It is designed around the
CORBA Trader Service and relies on CORBA to provide



the underlying development environment. Kuo proposed
a real time software framework for distributed robotics
applications, based on real time CORBA [Kuo and Mac-
Donald, 2005]. OROCOS [2005] is a software frame-
work for robotic control software. It aims to integrate
low-level real-time services provided by operating sys-
tems (OSs) and provides a high-level software framework
for robotic control software development. Smartsoft
[Schlegel, 2003] provides component communication pat-
terns and dynamic wiring on top of OROCOS. The Orca
project [Brooks et al., 2005] is a multi-transport com-
ponent system recently evolved from OROCOS. Marie
[Coté et al., 2004] aims to integrate APIs and middle-
ware for robotics. Web protocols may be used to expose
robot services [Jang et al., 2005]. RT-Middleware [Ando
et al., 2005] is designed to provide standard interfaces
and allow modular software components for robotic sys-
tems. It is based on CORBA, with a standardised ob-
ject model based on ports for input and output, and
a standardised overall behaviour described by a general
purpose statechart.

2.1 Design goals

A key requirement in promoting software reuse in robotic
systems is to loosen the coupling between software mod-
ules. Therefore, an ideal framework is designed to sup-
port distributed software development, which automati-
cally makes components more loosely coupled [Szyperski
et al., 2002]. A framework will contain distributed soft-
ware components that are designed specifically for sup-
porting robotic application developments such as device
drivers, development tools, algorithms, control systems
and the human-robot interaction component.

The main purpose of a robot framework is to reduce
the time and complexity of the development task. How-
ever, there are many other goals for such a framework,
including (see also [Kuo and MacDonald, 2005]):

Platform independence. Users should be able to
freely choose an appropriate platform for running the
applications.

Enhanced Scalability. Support constructs should
enhance the scalability of software solutions. The
framework should be flexible and extensible.

Development Process Simplification. High-level
concepts, useful facilities, and simplified programming
interfaces should support robot program developers.
Key parts of this involve abstract programming inter-
faces; the framework should define key object types and
the syntax and semantics of interface-specific messages
that can pass between them. For example player defines:

e the notion of a “driver” as a module that can pro-
duce and consume messages

e the notion of a “device,” which is a “driver” bound
to an “interface”

Real-time Performance. The framework should
be useful for robotic applications with soft or hard
real-time requirements.

Integration with Existing Infrastructure. Appli-
cations should be able to integrate existing functionality
provided by underlying distributed middleware.

Promotion of Software Reuse. The framework
should support object-oriented concepts and provide
predefined object interfaces so that modules built on top
of the framework have a common ground for interaction.
In particular the framework should provide an API
for the development of drivers, which are meant to be
reusable and composable.

Programming Language Independence. Applica-
tion developers should be able to choose an appropriate
programming language.

Transport Independence. Developers should be free
to choose an appropriate transport layer for the applica-
tion and implementation environment.

As a step toward the goal of building a useful robot
framework, we have developed Player version 2.0. Our
overall focus is to restructure Player to meet the goals
of a robot framework — with the exception of hard real-
time performance — while providing compatibility with
the Player 1.x code base developed by the existing com-
munity of Player users.

Given the rapid pace of development and change in the
robotics community any system that is to remain rele-
vant for a significant period must be flexible. Given the
rapid change of the pool of researchers, existing work
must also be easy to maintain. So from a community
oriented viewpoint the two key features we need to aim
for are flexibility and ease of maintenance, the latter
through simplicity and transparency of the developer
APIs.

Player 2.0 represents a significant rework of the inter-
nal structure of Player. These changes work towards the
principles of the distributed robot framework described
above, with a focus on the development community’s
needs. In particular, the changes have focused on al-
lowing more flexible usage than the simple client-server
model of the original Player, and a rework of the in-
ternal structure of Player to provide a simpler message
processing system.

We now give an overview of the original Player ar-
chitecture, and then present the motivations behind the
changes in Player 2.0. The new features and APIs that
are now available are then described. Finally a case
study of developing a plug-in driver is presented.



3 Original Player Architecture

Prior to 2.0, Player was a network oriented device
server [Gerkey et al., 2001]. The Player server is a dis-
tributed device repository server that provides clients
with network-oriented programming interfaces to access
actuators and sensors of a robot. It includes a collec-
tion of device drivers for many popular robot hardware
devices. Client programs use proxy objects defined in a
Player client library to write and read data to and from
the desired device. Player 1.x employs a one-to-many
client/server style architecture where one server serves
all clients of a robot’s devices. Accompanying Player are
the robot simulators Stage and Gazebo, each of which
allows programmers to control virtual robots navigating
inside a virtual environment [Gerkey et al., 2003].

Player relies on a TCP-based protocol to handle com-
munication between client and server. The Player pro-
tocol is an open, documented standard so clients can be
implemented in any language with a TCP/IP library.
Indeed, client-side libraries exist in C, C++, Tecl, Java
and Python, among other languages. Unlike many pro-
prietary software development kits shipped with robots,
Player does not bind to a particular robot system. It
has a modular design; programmers can add support for
new hardware devices. Player is developed primarily un-
der Linux; however, it also runs on other UNIX variants
such as Solaris and FreeBSD that support TCP socket
mechanisms and under Windows with Cygwin.

In order to provide a uniform abstraction for a variety
of devices, we chose to follow the UNIX model of treating
devices as files. Thus the familiar file semantics hold for
Player devices. For example, to begin receiving sensor
readings, the client opens the appropriate device with
read access; likewise, before controlling an actuator, the
client must open the appropriate device with write ac-
cess. Each device has a single outgoing data buffer and a
single incoming command buffer. Both buffers are over-
written by newer values. In addition to the asynchronous
data and command streams, there is a request/reply
mechanism, akin to ioctl (), that clients can use to get
and set configuration information for Player devices.

4 Motivation for Changes

The functions that Player must fulfill for the robot com-
munity have grown since its conception, as has the range
of hardware that is supported. In particular there are
now many ‘virtual’ drivers available for Player, such as
navigation algorithms, that were not the core purpose of
the original Player architecture.

In general the motivation for the changes in Player 2.0
stems from the needs of a diverse and changing developer
community: flexibility of the system and simplicity and
transparency of the APIs. Flexibility can be enhanced

by moving toward a more general robot framework as
described in 2.1, and significant reworking of the driver
APIs and internal structure of Player will enhance the
simplicity of the development process.

Specifically there are a number of issues that the devel-
opment community have found with the existing system.
Some of these have been temporarily solved with work
arounds built into Player 1.x, while several other issues
that remain unsolved. The following list contains spe-
cific key issues that have motivated the design of Player
2.0:

Client-Server model too restrictive: With the grow-
ing number of virtual drivers, and with a move to-
ward large distributed systems of robots and sen-
sors, there is a need for more general arrangements
of devices on the network.

Wire data transformations not robust or flexible: In
Player 1.x, the driver writer had to deal directly
with network layer data marshaling issues, which
led to code that is difficult to debug and maintain.
In addition to this the restriction to integer formats
in the Player wire structures also necessitated the
use of inconvenient units.

Complicated driver API: The original API, while it al-
lows for flexible lightweight drivers to be written,
was difficult for people new to Player to understand
and was another source of bugs. The new driver
API provides a minimal set of methods that a driver
needs to implement in order to process Player mes-
sages.

Single data and command types: A single data and
command structure for each interface was found to
be too restrictive, and many interfaces soon exhib-
ited workarounds, such as including all possible data
(even when some was not needed), or using a dis-
criminated union with a byte describing which data
type was actually being transmitted. The new mes-
sage namespace allows for interfaces to support mul-
tiple data types, with the subtype being specified in
the Player message header.

Desire for alternative transport protocols: While
TCP/IP is suitable for a large number of applica-
tions it is not ideal in every case. Other transport
layers, such as JINI and CORBA, have been dis-
cussed for some time and the new Player structure
allows for this to be used in place of TCP. Addition-
ally a monolithic Player is now possible using only
internal message passing (no network layer).

5 Player 2.0 library division

Player is now divided into two halves, the core and the
transport layer. The Player core is divided into the



core library, libplayercore, and the built-in driver li-
brary, libplayerdrivers. Currently a TCP/IP trans-
port layer has been implemented, and this is provided
by the combination of two more libraries: libplayertcp
and libplayerxdr. These libraries will be discussed in
more detail below.

The separation of the Player core from the transport
layer is one of the key changes in Player 2.0, as it allows
for more flexible use of the Player system. For exam-
ple, Player can now be tightly integrated with a JINT or
CORBA transport layer, or alternatively can be run as
a standalone monolithic system.

In terms of the driver API the split of the transport
layer also offers an enhancement as data marshaling is
now the responsibility of the transport layer, not the
individual drivers. Data marshaling was consistently a
source of bugs in Player 1.x and particularly was a bar-
rier for developers unfamiliar with Player.

5.1 Player core

The Player core library provides the core API and func-
tionality for the Player system. This includes the device
and driver classes, the dynamic library loading code, con-
figuration file parsing and the driver registry. In Player
2.0 the core system is a queue-based message passing sys-
tem. Each driver has a single incoming message queue
and can publish messages to the incoming queue of other
drivers, and to specific clients in response to requests. A
driver can also broadcast data to all subscribed client
queues. The core library is responsible for coordinat-
ing the passing of these messages and defining message
syntax. The Player interface specification defines the
message semantics.

The change to a queue-based message passing model
also vastly simplifies the driver API. There is now a sin-
gle method a driver must implement in order to commu-
nicate with the server. This is much simpler than the
multiple heterogeneous queues in Player 1.x.

The Player message structure has also been altered
slightly. The addressing system has been expanded to
allow for inter-server subscriptions and now consists of
four values: host, robot, interface, index. This 4-part
address is intended to be useful in a variety of differ-
ent transports. The message namespace has been been
expanded to two layers, with a type and subtype, which
formalises a common workaround in Player 1.x of adding
a subtype field to the message body. Given the 2-layer
message namespace, a device can consume multiple types
of commands and can produce multiple types of data.
For example, configuration changes, such as a change in
sensor pose relative to the robot can be pushed out by
the device for consumption by any interested parties.

The built-in Player drivers have been separated into
libplayerdrivers. The separation of this library is

largely from the point of view of sanity, but it also means
that if you only wish to use external plug-in drivers you
do not need the size overhead of the built-in drivers. Ad-
ditionally from a distribution point of view updates to
the drivers can be distributed separately from the Player
core.

Both libplayercore and libplayerdrivers can be
called from Java via automatically generated bindings,
which will assist developers wishing to access Player
driver code via Java technologies such as JINI or RMI.

5.2 Transport layer

Currently a TCP transport layer is provided, in the
form of two libraries: 1ibplayertcp and libplayerxdr.
However alternatives can easily be provided such as
CORBA or JINI transports. This section will describe
the functionality of the TCP transport layer.

libplayertcp itself is relatively simple; it establishes
a TCP socket and then handles the transmission of mes-
sages. The key responsibility of libplayertcp is to
move messages between TCP sockets and Player device
queues. Incoming messages on sockets are routed to the
appropriate queues, while outgoing messages are popped
off queues and sent along on the appropriate sockets.

Whereas earlier versions of Player used a custom en-
coding of messages as packed C structs that contained
integers in network byte-order, Player 2.0 uses an open
standard called eXternal Data Representation, or XDR
[Network Working Group, 1987]. The XDR specifies an
efficient, platform-independent encoding for commonly-
used data types, including integers and floating point
values. As data marshaling is now the responsibility
of the transport layer, we have developed a C library,
libplayerxdr, which performs the XDR data marshal-
ing. libplayerxdr provides a single function for each
Player message type that packs and unpacks message
payloads, converting between native and XDR formats.
The functions in libplayerxdr are automatically gen-
erated from the player.h header file, which defines the
message structures (similar functions can be automati-
cally generated for new interfaces by writing and pro-
cessing another header file). As a result, we expect sig-
nificantly fewer bugs from data marshaling.

The Player XDR library is an implementation of one
possible data marshaling library. In particular Player
XDR is targeted at marshaling data for the TCP/IP
transport layer provided by libplayertcp. It is impor-
tant to note that such marshaling support is not always
necessary. For example, when using JINI as a transport,
Java’s built-in object serialization support can be used
to send messages, removing the need for a user-level data
marshaling system.



Player Client

Y L

Player Server Player Server
Running Image Processing Running SLAM Processing

Player Server
Robot Hardware Interface

f 3

Figure 1: Example of potential Player 2.0 server connec-
tions

5.3 New usage paradigms

As a result of its new library structure, Player 2.0 can be
used in many different ways. Whereas originally Player
was, at its core, a TCP-based device server, this usage
is now just one of the options open to developers. Other
configurations are possible, for example a monolithic ap-
plication that interacts with the devices directly through
their message queues, without any network layer. This
application might even be written in a language other
than C++, such as Python or Java; bindings in these lan-
guages for libplayercore and libplayerdrivers are
currently under development. More complex configura-
tions are also possible, and will become more common
as new transport layers are developed.

The most common use of Player 2.0 will likely re-
main a TCP-based client/server system, which is why
we have enhanced functionality along these lines. Player
now acts as a distributed framework with servers being
able to subscribe to each other to meet the requirements
of individual interfaces. There are still some restrictions
as there cannot be circular dependencies between Player
servers; all dependencies must be able to be resolved on
server initialisation. Figure 1 shows an example Player
server network, with the arrows indicating device sub-
scriptions.

6 Example plug-in driver for the new
API

This section describes the process of writing a Player 2.0
plug-in driver. The URG laser scanner from Hokuyo is
used as a case study. Figure 2 shows the laser mounted
on a Pioneer 3 robot.

The urg_laser driver is a simple threaded driver that

(c) Laser scan output in Augmented Reality

Figure 2: Hokuyo URG laser scanner



communicates with the laser scanner through a standard
USB ACM device (very similar to a standard UART se-
rial port). The main thread of the driver sits in a loop
which processes any waiting messages then performs a
blocking read on the device to get a laser scan update.

Figure 3 shows the class declaration for the driver.
The important features are:

e The driver must inherit from the player Driver class.

e The Constructor takes a ConfigFile parameter and
an integer section parameter.

e The driver must implement the abstract Setup and
Shutdown methods

e The driver re-implements the ProcessMessage
method to provide support for handling requests
and commands

e The driver re-implements Main, which will be called
when the driver thread is started.

Figure 4 shows the code needed for urg_laser to func-
tion as a plug-in driver. URGLaserDriver_Init is a fac-
tory method that the server calls to create a driver in-
stance and player_driver_init is called when the mod-
ule is loaded to register the driver with the player server
core.

Figure 5 shows the implementation of the urg laser
methods. Particularly note:

e The method of reading config file parameters in the
constructor (this has not changed from Player 1.x).

e The calls to StartThread and StopThread in Setup
and Shutdown.

e The ProcessMessage method which is now the sin-
gle interface point for all driver communications.
MatchMessage is used to compare a message defi-
nition (type, subtype and address), and Publish is
used to post responses.

e The main loop, which processes any pending mes-
sages (non blocking), then updates the device data
(blocking in this case) and then uses Publish to pass
the data onto subscribed devices and clients.

7 Summary

Every research program requires the right tools. In this
paper we presented our perspective on the idea of “robot
frameworks,” which are flexible, reliable, and reusable
tools to support robotics research. We presented a set
of design characteristics that the ideal robot framework
would exhibit.

We also described our recent work on restructuring
the Player robot device server into a system that more
closely aligns with the idea of a robot framework. Player
2.0 is a major improvement in two basic areas, simplicity

#include <libplayercore/playercore.h>

class URGLaserDriver
public:

public Driver {

// Constructor;

URGLaserDriver (ConfigFilex cf, int section);
// Destructor

“URGLaserDriver () ;

// Implementations of virtual functions
int Setup();
int Shutdown () ;

// This method will be invoked on each incoming
message
virtual int ProcessMessage (MessageQueue* resp_queue ,
player_msghdr * hdr,
void * data);

private:
// Main function for dewvice thread.
virtual void Main() ;

urg-laser_readings_-t * Readings;
urg-laser Laser;

player_laser_data-t Data;
player_laser_-geom_-t Geom;
player_laser_config_t Conf;

Figure 3: Header file for urg laser driver

// Factory creation function.

// This function 4is given as an argument when

// the driver is added to the driver table

Driver* URGLaserDriver_Init(ConfigFilex cf, int section

)
// Create and return a new tinstance of this driver

return ((Driver ) (new URGLaserDriver(cf, section)));

// Init method called by the module loader
// meed the exztern to avoid C++ name—mangling
extern 7C”

int player_driver_init(DriverTable xdt)

table —>AddDriver (” urg_-laser”, URGLaserDriver_Init);
return O0;

Figure 4: Additional code for plug-in module



URGLaserDriver :: URGLaserDriver (ConfigFilex cf, int s)
: Driver(cf, s, false, PLAYERMSGQUEUEDEFAULT MAXLEN, PLAYER_LASER_CODE)

{
nitialise lata an rocess confi optinos
I ! d d p i g P

memset(&Data, 0, sizeof(Data));

//

// read options from config file

Geom . pose .px = (cf—>ReadTupleFloat(s,” pose” ,0,0));

Geom . pose.py = (cf—>ReadTupleFloat(s,” pose” ,1,0));

Geom . pose.pa = (cf—>ReadTupleFloat(s,” pose” ,2,0));
}

URGLaserDriver:: ~ URGLaserDriver ()
{ // clean up any resources }

// Set up the device. Return 0 if things go well, and —1 otherwise.
int URGLaserDriver:: Setup () {
// Start the device thread; spawns a new thread and ezecutes Main
StartThread () ;

}

// Shutdown the device

int URGLaserDriver :: Shutdown () {
// Stop and join the driver thread
StopThread () ;

// Process an incoming Message
int URGLaserDriver :: ProcessMessage (MessageQueuex resp-queue , player_msghdr x hdr, void x data)

if (Message :: MatchMessage (hdr, PLAYER-MSGTYPE_REQ, PLAYER LASER REQ-GET_-GEOM, this—>device_addr))
{

assert (hdr—>size == sizeof(player_laser_config_t));
Publish (device_addr , resp_queue , PLAYER MSGTYPERESP ACK, PLAYER_LASER REQ GET_GEOM, &Geom, sizeof(Geom))
return 0;

}

return —1;

// Main function for device thread
void URGLaserDriver :: Main ()

// The main loop; interact with the device here
for (;;)
// test if we are supposed to cancel
pthread_testcancel ();

// Process any pending messages
ProcessMessages () ;

// update device data
Laser. GetReadings (Readings) ;
// fill in the data structure
Data.min_angle = Conf.min_angle;
Data.max_angle = Conf.max_angle;
Data.resolution = DTOR(2.0%270.0/768.0) ;
Data.ranges_count = (768/2);
for (int i = 0; i < 768/2; ++i)
{
Data.ranges [i] = Readings—>Readings[i*2] < 20 ? (4095) : (Readings—>Readings[i*2]);
Data.ranges [i]/=1000;

}
Publish (device_addr , NULL, PLAYERMSGTYPEDATA, PLAYER.LASER DATA_SCAN, &Data, sizeof(Data));

// you may need to sleep here if this loop consumes
oo muc rocessor time
t h p ti

Figure 5: Source of urg laser driver



and flexibility. The driver API has been vastly simpli-
fied with many more parts of the communications being
hidden from the user. This will lead to smaller code
that is easier to maintain, and of course fewer bugs. The
flexibility of the new system can be seen in the library
division that allows for different transport layers (or no
transport at all), and in the new device address structure
that allows for drivers to maintain subscriptions across
the network.

As a demonstration of the simplicity of the new driver
API, we have also included an example Player 2.0 driver.
We hope to motivate the reader to try the new sys-
tem and to develop and contribute new drivers for reuse
in the community. Player can be downloaded from
playerstage.sourceforge.net.

Acknowledgment

Toby Collett is funded by a top achiever doctoral schol-
arship from the New Zealand Tertiary Education Com-
mission.

References

[Ando et al., 2005) Noriaki Ando, Takashi Suehiro, Kosei
Kitagaki, Tetsuo Kotoku, and Woo-Keun Yoon. RT-
Middleware: distributed component middleware for rt
(robot technology). In IEEE/RSJ International conference
on robots and intelligent systems, pages 3555-60, Edmon-
ton, August 2005.

[Becker and Pereira, 2002] L. B. Becker and C .E Pereira.
SIMOO-RT - An Object-oriented Framework for the De-
velopment of Real-time Industrial Automation Systems.
IEEE Trans. on Rob. and Auto, 18(4):421-30, Aug 2002.

[Brooks et al., 2005] Alex Brooks, Tobias Kaupp, Alexei
Makarenko, Stefan Williams, and Anders Orebéack. To-
wards component-based robotics. In IEFE/RSJ Interna-
tional conference on robots and intelligent systems, pages
3567-72, Edmonton, August 2005.

[Chaimowicz et al., 2003] L. Chaimowicz, A. Cowley,
V. Sabella, and C.J. Taylor. Roci: a distributed frame-
work for multi-robot perception and control. In Proc.
IEEE/RSJ International Conference on Intelligent Robots
and Systems, volume 1, pages 266-271, 2003.

[Coté et al., 2004] C. Coté, D. Létourneau, F. Michaud, J.-
M. Valin, Y. Brosseau, C. Railevsky, M. Lemay, and
V. Tran. Code reusability tools for programming mobile
robots. In Proc IEEFE Intl. Conf. on Intelligent Robots and
Systems, volume 2, pages 1820-5, Sendai, Japan, Oct 2004.

[Dominguez-Brito et al., 2004] A.C. Dominguez-Brito,
D. Hernandez-Sosa, J. Isern-Gonzalez, and J. Cabrera-
Gamez. Integrating robotics software. In IEEE Interna-
tional Conference on Robotics and Automation, volume 4,
pages 3423-8, April 26 — May 1 2004.

[Gerkey et al., 2001] Brian P. Gerkey, Richard T. Vaughan,
Kasper Stgy, Andrew Howard, Gaurav S Sukhtame, and
Maja J Matarié¢. Most Valuable Player: A Robot Device
Server for Distributed Control. In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS),
pages 12261231, Wailea, Hawaii, October 2001.

[Gerkey et al., 2003] Brian P. Gerkey, Richard T. Vaughan,
and Andrew Howard. The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems. In Proc. of
the Intl. Conf. on Advanced Robotics (ICAR), pages 317—
323, Coimbra, Portugal, July 2003.

[Jang et al., 2005] Minsu Jang, Jachong Kim, Meeckyoung
Lee, and Joo-Chan Sohn. Ubiquitous robot simulation
framework and its applications. In IEEE/RSJ Interna-
tional conference on robots and intelligent systems, pages
3213-8, Edmonton, August 2005.

[Kuo and MacDonald, 2005] Yuan-hsin (Oscar) Kuo and
Bruce MacDonald. A distributed real-time software frame-
work for robotic applications. In Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA’05), pages 197681,
Barcelona, 18-22 April 2005.

[Montemerlo et al., 2003] Michael Montemerlo, Nicholas
Roy, and Sebastian Thrun. Perspectives on standard-
ization in mobile robot programming: The Carnegie
Mellon Navigation (CARMEN) toolkit. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), volume 3, pages 2436-2441, Las Vegas, NV,
October 2003.

[Nesnas et al., 2003] A. Nesnas, I.A.and Wright, M. Ba-
jracharya, R. Simmons, and T. Estlin. CLARAty and
Challenges of Developing Interoperable Robotic Software.
In Proc. IEEE International Conference on Intelligent
Robots and Systems, volume 3, pages 2428-35, Nevada,
Oct 2003.

[Network Working Group, 1987] Inc. Network Work-
ing Group, Sun Microsystems. RFC 1014 — XDR:
External data representation standard, June 1987.

[OROCOS, 2005] OROCOS. Open Robot Control Software
Open Robot Control Services. http://www.orocos.org,
2005.

[Schlegel, 2003] C. Schlegel. A component approach for
robotics software: Communication patterns in the oro-
cos context. In 18. Fachtagung Autonome Mobile Systeme
(AMS), Informatik aktuell, pages 253-63, Karlsruhe, De-
cember 2003. Springer.

[Simmons and Apfelbaum, 2004] R. Simmons and D. Apfel-
baum. TDL: Task Decription Language. http://www-2.
cs.cmu.edu/"tdl/, 2004.

[Szyperski et al., 2002] C. Szyperski, D. Gruntz, and
S. Murer. Component Software. Addison Wesley, 2nd edi-
tion, November 2002.

[Utz et al., 2002] H. Utz, S. Sablatnég, S. Enderle, and
G. Kraetzschmar. Miro - middleware for mobile robot ap-
plications. IEEE Transactions on Robotics and Automa-
tion, 18(4):493-7, August 2002.

[Vaughan et al., 2003] R. T. Vaughan, B. P. Gerkey, and
A. Howard. On device abstractions for portable, reusable
robot code. In Proc. IEEE International Conference on
Intelligent Robots and Systems, volume 3, pages 2421-7,
October 2003.

[Woo et al., 2003] Evan Woo, Bruce A. MacDonald, and
Félix Trépanier. Distributed mobile robot application in-
frastructure. In Proc. International Conference on Intelli-
gent Robots and Systems, pages 1475-80, Las Vegas, Oc-
tober 2003.



