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Abstract— Mobile Actuator and Sensor Network (MAS-net)
is a project that adds node mobility and close-loop control
concept into the field of Wireless Sensor Network. An experiment
platform is built for the MAS-net project. In the experiment
platform, cheap, small, and energy-efficient Mica2 motes have
been used as both wireless sensors and real-time embedded
mobile robot controllers. These mote-based robots are called
MAS-motes. An integrated system has been developed to locate
MAS-motes by an overhead camera, collect MAS-motes’ sensor
reading and assign destinations to MAS-motes. This system can
communicate with robots via Mica2 motes’ built-in radio chips.
Pattern formation can bring great benefit to mobile wireless
sensor network in sensing range, fault tolerance and sensor-
actuator cooperation. This paper tries to use cheap, energy-
efficient and mote-based MAS-motes to achieve formation in any
given pattern.
Key Words: Sensor networks, robotics, pattern formation.

I. I NTRODUCTION

With the growth of internet applications and the advance of
mobile computing, wireless networking becomes a very im-
portant technology. One special branch in wireless networking
research is wireless sensor networks, in which a bandwidth as
high as multi-mega bits per second is not required. A node in
wireless sensor network usually requires some sort of sensing
to the environment and coordinating with each other. A very
thorough overview of the wireless sensor networks can be
found in [1]. The Mobile Actuator-Sensor Network (MAS-
net) project combines mobile robotics with the wireless sensor
networks. The objective is to develop systems that can collect
information and respond to the spatially distributed diffusion
processes. An extended application of this project can be in
homeland security, where chemical, biological, radiological
or nuclear (CBRN) terrorism can cause devastating damages.
It is thus important to have a system that can respond and
control the diffusion process of the harmful materials. Some
research challenges and opportunities are presented in [2]. A
preliminary result of a diffusion-based path planning is given
in [3].

Introductions for the test bed and robots of the MAS-net
project are included in this section. The rest of this paper is
organized as follows. Section II describes the two communi-
cation modules used in the system. Section III describes the
function of the image processing module that identifies each
robot and gives the robot’s position and orientation. Section IV

describes the implementation of pattern formation from the
underlying movement control. Some experiment results are
given in Section V. Finally, section VI concludes the paper.

A. MAS-net test bed

A test bed has been built to observe the 2-D diffusion
process. The platform is a92.7 × 141.25 square inches
container, covered with transparent acrylic boards. Ten small
Mica2-based robots, as shown in fig. 1, are built to move
on the platform [4],[5]. These robots are called MAS-motes.
The application scenario is to observe, detect and control
the diffusion boundary when a 2-D diffusion process, such
as fog, is released into the platform. An overhead camera is
hung about 72 inches above the platform. The function of the
camera is to identify each MAS-mote and to give the position
and orientation of the MAS-mote. The image processing
is performed in a central computer by a subsystem named
“pseudo-GPS”. The pseudo-GPS, message transmission and
reception, data collection, decision making, and graphic user
interface are all integrated into one program call “Integrated
Control System(ICS)”. The platform is illustrated in fig. 2.
The ICS is running in the PC host.

 

Fig. 1. Ten Mica2-based robots for the MAS-net project.

B. MAS-motes

The MAS-motes are based on Mica2 motes developed
by CrossBow[5]. It has an ATmega 128L as its central
processor. A low power FSK (Frequency Shift Keying) RF
transceiver chip, CC1000, is also integrated in the Mica2
board[6]. An embedded operation system, TinyOS, developed
by UC Berkely is specially designed for Mica2 motes and
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Fig. 2. Illustration of the test bed for the MAS-net project.

their family[7]. TinyOS is an event-driven operating sys-
tem developed in nesC, a C-based programming language[8]
[9]. TinyOS only supports non-preemptive multi-tasking. It
sacrifices complex preemptive scheduling and inter-process
communication for simplicity and tiny code size. However,
non-preemptive scheduling hinders TinyOS from hard real-
time applications.

MAS-motes are two-wheel differentially steered robots.
With the dimension only 9.5 cm× 9.5 cm× 6.5 cm, they
have plenty of space to move around on our platform. The
robots are all equipped with a photo resistor facing down to
detect the density of fog where the robot stands. MAS-motes
are driven by two servomotors. Each servomotor has a built-
in servo controller. The wheels attached to them are 6.6 cm
in diameter. To reduce the cost of encoders, we have made
our own encoders to support the odometer of MAS-motes.
The encoder patterns are drawn by Matlab and then printed
on normal papers. They are then glued onto the inner side of
wheels. The encoder pattern only has 32 segments, which gives
MAS-motes a resolution about 11 degrees per strip and about
0.6 cm in length. Two photo-reflexive sensors are mounted
on the MAS-mote’s body to detect the white and black band
on the encoder pattern. The two photo-reflexive sensors are
connected to ADC channels of ATmega 128L.

II. COMMUNICATION

All MAS-motes communicate via wireless communication.
A mote mounted on programming board works as a gateway
between wireless communication and serial port communica-
tion to PC. Its only purpose is to forward all messages between
the serial port and the RF port.

Communicating with the gateway mote is an integrated
function of the ICS. The protocol for serial communication
is compliant with the original design of TinyOS. The protocol
supports framed packets, flow control, and CRC check. In ICS,
a transceiver thread is dedicated for enforcing the protocol and
communicating with the gateway mote. The transceiver thread
is designed so that no polling or busy waiting is needed in the
system and the system is signaled immediately when an event
occurs.

Controlling MAS-motes may need very frequent messages
from the pseudo-GPS with very little latency tolerance. On

the other hand, control commands need more reliable con-
nection but can tolerant some degree of latency. Currently,
S-MAC is used to replace the Berkeley MAC layer in
TinyOS[10]. When unicasting, the S-MAC can support more
reliable communication by performing RTS-CTS and ACK-
retransmission[11][12]. While the reliability is improved, the
control overhead can be very high. Therefore, commands,
which needs more reliable connection, are unicasted to desired
MAS-motes. Pseudo-GPS messages, which includes position
information of MAS-motes and have less tolerance to latency,
are broadcasted to all MAS-motes.

III. PSEUDO-GPS

The function of the pseudo-GPS module is to provide
position, orientation, and ID of MAS-motes based on the
markers on top of MAS-motes. The procedure of the pseudo-
GPS includes color segmentation, marker identification and
coordinate transformation. The color segmentation is based
on HSB color model so it is less affected by illumination.
ARToolKit is modified and adopted into our system for marker
identification[?]. A method from [14] is used to transform
the positions of MAS-motes from image coordinates to world
coordinates. The pseudo-GPS can give positions and orien-
tations with an acceptable precision. The maximum error is
less than 3mm in position and 3 degrees in orientation. The
pseudo-GPS can operate as fast as 6 frames per second in
our workstation, which has two Intel Xeon HT processors
and 1GB RAM. Considering the network traffic, currently the
pseudo-GPS messages are broadcasted every 500ms. Up to
four pseudo-GPS messages can be packed together into one
packet. The network traffic can be greatly reduced by this.

IV. PATTERN FORMATION

The pattern formation is implemented by the leader-follower
behavior. The followers periodically update the leader’s po-
sition and calculate their own desired position according to
pseudo-GPS messages. To show how our pattern formation is
implemented, it is necessary to first describe how the MAS-
motes move to their destinations.

A. Odometer

As described in Section I-B, the encoders on MAS-motes
are made by ourselves. The two photo-reflexive sensors for
detecting the white and black band on encoder pattern are
connected to ADC channels of the ATmega 128L micro-
controller. In ATmega 128L, the multiple ADC channels
can only work in serial sequence, which means only one
ADC channel is working at a time. Another ADC channel
is triggered after the data conversion of the previous ADC
channel has finished. In TinyOS, ADC channels are working in
asynchronous fashion. After a task triggers the ADC channel,
it will have to move on to other work. When the data is ready,
TinyOS will launch another task to handle it. We can only
process the photo sensor and trigger the next ADC channel
in the handling task. Since TinyOS is non-preemptive, when
the handling task can actually be active is unpredictable.



Therefore, it is possible to skip some strips. More importantly,
it is difficult to obtain accurate linear and angular velocity of
MAS-motes. Currently, the odometer of MAS-motes can only
provide position feedback. The kinematics of our MAS-motes
is:

x(k + 1) = x(k) + Crl+Crr

2 cos(θ(k))
y(k + 1) = y(k) + Crl+Crr

2 sin(θ(k))
θ(k + 1) = θ(k) + Crr−Crl

d

, (1)

whererl andrr are the passed strips the sensors has detected
andC is a constant to convert number of strips to the distance
that wheel has moved. Since the two wheels have identical
dimensions and encoder patterns, they should have the same
conversion constant. Equation(1) will have larger error if the
interval of the calculation is not short enough. Errors can come
from inaccurateC, rl, and rr and errors will accumulate so
the position information from pseudo-GPS is very important.

B. Control Stages

As a summary of how MAS-motes are controlled, a flow
chart of the control program is shown in fig. 3. Every des-
tination command received by a MAS-mote will be put into
a task queue. The MAS-mote gets new destination from the
task queue if it has no destination now or it has reached the
current destination. If there is no task in the task queue, the
current destination will remain unchanged. Some emergency
commands are also implemented. An ACSTOP command
stops a MAS-mote and clear the MAS-mote’s task queue and
current destination. The ACPAUSE just stops the MAS-mote
until an AC RESUME is received. In fig. 3, theea is the
angle error between a MAS-mote’s orientation and the desired
orientation;ep is the position error, i.e. the distance from the
MAS-mote to its destination. There are three stages in a MAS-
mote’s movement to accomplish a task. They are listed below
sequentially.

• INIT TURN: This is the initial spin-in-place before mov-
ing toward the destination. At this stage,ea is the angle
error between a MAS-mote’s orientation and the direction
toward the MAS-mote’s destination. The purpose of this
stage is to minimizeea before the MAS-mote moves
toward the destination.

• RUNNING: This is the point-to-point control, during
which MAS-motes are moving toward their destinations.
A PI controller is used for this stage.

• END TURN: This is the spin-in-place when a MAS-
motes is at the destination. At this stage,ea is the
angle error between a MAS-mote’s orientation and the
desired orientation assigned to this MAS-mote by the
ICS’s destination command. If there is no task in the task
queue and the last task has assigned a desired orientation
for the MAS-mote, the MAS-mote needs to turn to the
assigned orientation at this stage.

The control loop is triggered every 15ms. Every time the
control loop starts, the MAS-mote updates its odometer and
recalculatesea andep. Then, the MAS-mote decides whether
it is necessary to transit stage. The transition of stages depends
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Fig. 3. Flow chart of MAS-mote control.

on ea and ep as shown in fig. 3. Normally, a MAS-mote
goes through the three stages from INITTURN, RUNNING,
and finally to ENDTURN to accomplish a task. However,
there are some special cases. Whenea is too large at the
RUNNING stage, the MAS-mote stops and transits back to the
INIT TURN stage. Therefore, the MAS-mote will perform a
spin-in-place to correct its orientation if its the orientation has
deviated too large. This behavior can reduce the settle time of
a MAS-mote. At the ENDTURN stage,ep is always checked
to ensure that the MAS-mote is at the correct position in case
the position is changed by the spin-in-place behavior.

C. Iterative Control

A MAS-mote may stop at incorrect position because the
inaccurate odometer indicates that the MAS-mote has reach
the destination. When a MAS-mote is moving, the pseudo-
GPS information can have larger error because of the system
latency. Our system amends this error by the feature of
iterative control. As described in Section IV-B, the current
destination of a MAS-mote does not change unless there is an
unexecuted task in the task queue or an ACSTOP is received
to reset the destination. Furthermore, the control loop always
checksea and ep and adjust the MAS-mote’s position and
orientation when necessary. Therefore, a pseudo-GPS message
may trigger the received MAS-mote to adjust its position and
orientation even after the odometer of the MAS-mote indicates
that the destination has been reached. Since the pseudo-GPS
messages are sent periodically, MAS-motes will have the effect
of iterative control. The observation of the pseudo-GPS is more
accurate then that of the built-in odometer. Besides, when
a MAS-mote is stopped, its position and orientation in the
pseudo-GPS message is even more accurate. Therefore, the
iterative control triggered by pseudo-GPS can drive a MAS-
mote very close to its destination. The feature of iterative
control is also helpful when a MAS-mote is moved by an
undesired outside force, such as collision by another MAS-
mote. The MAS-mote can automatically go back to its desired
position and orientation.



D. Point-to-Point Control

Based on the position feedback, a PI controller is used
for the MAS-mote’s point-to-point control in the RUNNING
stage. The strategy is to maintain the MAS-mote’s heading
toward its destination and let the MAS-mote moves forward
until the MAS-mote reaches the destination. Whenea is zero,
the PWM signals for the two motors are both 50 percent duty
cycle. By convention, the angle increases in counter clockwise.
Whenea is positive, the left motor is assigned a higher duty
cycle while the right motor is assigned a lower duty cycle.
The MAS-mote will deviate to the right. Similarly, whenea

is negative, the duty cycle is assigned so that the MAS-mote
deviates to left. Whenea is too big, the controller output may
saturate the motors and cause windup phenomenon, which
causes a large overshoot and slow setting time. Our control
algorithm is designed with an anti-windup approach from [15].
The control simulation model is shown in 4. The control
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Fig. 4. PI controller for point-to-point control.

parameters KP and KI are designed via simulation and then
fine tuned by experiments. However, optimal KP and KI are
different for each MAS-mote. They are also subject to voltage
change of the batteries. When the motors are working, the
inherent friction is also changing. Therefore, it is very difficult
to find a set of good KP and KI for each MAS-mote. This
problem and the inaccurate encoder make our MAS-motes
usually unable to go a ideally straight line. Therefore, the help
from pseudo-GPS information is very important.

E. Spin in Place

At the stages of INITTURN and ENDTURN, spin-in-
place behavior turns a MAS-mote to the desired orientation.
The spin-in-place is implemented by setting a constant duty
cycle to the two motors but with different directions according
to the sign of ea. As shown in fig. 3, spin-in-place only
relies on the MAS-mote’s built-in odometer for feedback.
The MAS-motes turns until the odometer shows that it has
achieved the desired orientation. During this period, pseudo-
GPS messages are ignored. This is because the spin-in-place
behavior starts and finishes in a very short period. The position
and orientation observed by the pseudo-GPS have delay error
and therefore is not necessary more accurate than the odometer
in the short period. In our experiments for spin-in-place
behavior, significant overshoot are observed if the MAS-motes

are accepting pseudo-GPS information. The INITTURN stage
does not require a good precision because its purpose is only
to reduceea before moving. The PI controller in point-to-
point control will try to compensate that error. But a good
precision is more desirable for the ENDTURN stage since
the orientation is commanded by the ICS. When a spin-in-
place is finished, the MAS-mote resumes accepting pseudo-
GPS messages. The iterative control effect of our design will
become active. The MAS-mote will correct the orientation
when it receives the next pseudo-GPS message.

F. Leader-Follower Behavior

Our approach for formation control exploits the periodically
broadcasted pseudo-GPS messages. The formation control is
actually a leader-follower behavior. The Integrated Control
System(ICS) can assign any MAS-mote(s) to follow any other
specified MAS-mote. Followers can have any relative position
to their leader. The parameters for followers are(rf , θf ),
whererf is the distance to the leader andθf is the angle from
the leader’s heading. Followers get the(rf , θf ) from the follow
command issued by the Integrated Control System. Currently,
the desired orientations of followers are the orientation of their
leader. The followers get the leader’s position and orientation
from broadcasted pseudo-GPS messages. To maintain the
formation, followers calculate their own desired state(x, y, θ)
from the leader’s pseudo-GPS messages by equation (2).




x
y
θ


 =




rf cos(θf + θl)
rf sin(θf + θl)

0


 +




xl

yl

θl


 , (2)

where(xl, yl, θl) are the state of the leader. The equation (2)
is performed every time the follower receives the pseudo-GPS
message of the leader. The desired positions for followers
can change dramatically, especially when the leader is per-
forming spin-in-place behavior. The pseudo-GPS messages are
broadcasted, which is more likely to be lost because broad-
casting does not practice RTS-CTS and ACK-retransmission
mechanism of the S-MAC. Even if they are received by the
followers successfully, the delivery time is not guaranteed. All
of the these reasons make the followers usually behind the
movement of their leaders. Currently, when the followers are
too far away (15 cm) from their desired position, followers will
send a WAIT4 ME message to their leaders. The message has
the same effect to the leader as ACPAUSE. The leader will
stop moving. When followers reach the desired position, they
send WAIT4 ME message again with a cancel flag set to
cancel its wait request. The leader keeps a counter for how
many followers it should wait. When the counter is zero, it
will resume its movement. In the leader-follower mode, the
iterative control is still active. Followers always check and
adjust their position and/or orientation when necessary.

V. EXPERIMENTS

An experiment result is shown in fig. 5. In this experiment,
a MAS-mote is commanded to go from point A to point B.
Fig. 5(a) is the trace of the MAS-mote’s movement. Obviously,



this MAS-mote can not go a straight line. However, with the
help from the pseudo-GPS and iterative control, the MAS-
mote can still reach the destination. Fig. 5(b) records the
change of the MAS-mote’sep with time. The error threshold
for ep is set at 6 cm, which means whenep is less than 6 cm,
the MAS-mote is considered at the destination. Only the last
20cm toward destination is shown in fig. 5(b) so the behavior
at the end is more clear. Some long delays are observed
around the 6 th, the 9 th, and the 11 th second in fig. 5(b).
They are evidences of pseudo-GPS triggered correction. If the
corrections are triggered by the MAS-mote’s built-in odometer,
there should be no long delay. Another experiment for on-site
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turn is shown in fig. 6. A MAS-mote is commanded to stay
at its original position but turn its orientation from about -178
degree to 0 degree. Fig. 6 shows the MAS-mote has 20 degree
of overshoot after its first turn, during which the MAS-mote
is ignoring pseudo-GPS. There are three obvious steps after
the first turn. These three steps mean some amount of delay
before correction so they represent three iterations triggered
by pseudo-GPS messages. The iterative control is effective in
this experiment, too. An experiment for pattern formation is

30 35 40 45 50 55 60
−180

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50

Time (second)

M
A

S
−

m
ot

e 
O

rie
nt

at
io

n 
(d

eg
re

e)

Error Threshold 

Desired Orientation 

Fig. 6. On-site turn under iterative control.

shown in fig. 7, where a leader is placed at (755 mm, 1420
mm) with 43.5 degree of orientation. Other MAS-motes are
initially placed near the left edge of the platform. From top
to bottom, they are labelled as “Follower 1” to ”Follower3”
and commanded to follow the leader with parameters(rf , θf )
equal to: (400 mm, 0 degree), (400 mm, 120 degree) and (400
mm, 240 degree), respectively. Fig. 7(a) is the trace record of
the three followers forming the formation. After the formation
is formed, the leader is commanded to move toward the right
side of the picture and then move toward bottom of the picture
a little to show how the formation turn. The position errors of
the three followers in fig. 7(b) are shown in fig. 8. The leader’s
movement is shown by its position difference between two
pseudo-GPS samples. The plot of the leader only intends to
show the time during which the leader is moving. The leader
receives the command and starts moving at the time point A
in fig. 8. The leader waits the followers from time points B to
C. The leader waits again between time points D and E. At the
time point F, followers ask the leader to wait again. The leader
stops but it happens to be at the destination of the leader so
the leader never moves again. Followers eventually catched
up with the leader and regain the formation. In fig. 7(c),
the formation can still be obtained after the leader turned its
direction to the bottom of the picture and moved a little.

VI. CONCLUDING REMARKS

In this thesis, the MAS-motes are able to maintain a forma-
tion by observing the position information and coordinating
each other. Although the formation can not be maintained
very well during movement, the formation can always be
obtained after the leader arrives its destination. Therefore,
there will be a MAS-mote formation at the desired location
with desired orientation and pattern. This research also tries
to push the limit of current works of wireless sensor networks
by doing robot formation on the most widely used platform,
Mica2 motes. The most significant bottleneck we experienced
in this research lies in wireless communication. The need
for low-power consumption motes has limited the ability for
coordinating robots. Through this research we have built a
foundation, learnt experience and created many new ideas for
future researches of the MAS-Net project.

A. Future Work

Real-time operating system and communication protocol
should be used to have deterministic latency in the system. The
accuracy of the pseudo-GPS and encoder and responsiveness
of the controller can be improved in real-time system. In
the future, the MicaZ with ZigBee wireless communication
protocol will be adopted so that the wireless communication
can have wider bandwidth, less and deterministic latency and
more reliable connection[16][17]. Kalman filter can be used
to combine the observation from pseudo-GPS and the built-
in odometer[18]. The result can be even more accurate and
smooth. Some researches have been done in the localization
by RF signal strength[19][20][21][22]. This approach can be
adopted in our system to replace pseudo-GPS. All decision
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Fig. 7. Formation movement trace.
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Fig. 8. Follower’s position error during the movement of fig. 7(b).

making can be distributed to MAS-motes and eventually
eliminate the role of the central computer. All MAS-motes will
serve missions by coordinating each others independently.
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