
Motion-Constrained Mobile Sensor Networks
Zack Butler

Department of Computer Science
Rochester Institute of Technology

zjb@cs.rit.edu

Abstract— The addition of mobility to sensor networks gives users the
ability to efficiently monitor environments about which little is known
ahead of time. For example, if there is a suspected path through the forest
that should be monitored, but its exact location is not known, sensors can be
scattered through the area and converge on the path as people or animals
are detected on it. In this work, we present several distributed algorithms
for sensors to produce this convergence. The first is a robust positioning
technique for open rectangular spaces. We also build on this to produce an
algorithm for arbitrary connected spaces. In addition, we consider sensors
that are inherently constrained in their motion, such as tethered sensors
fixed to a single line of motion. We present both analytical and empirical
results for a variety of cases and discuss extensions that will provide greater
effectiveness.

I. INTRODUCTION

Sensor networks are increasingly important in monitoring
dangerous or critical areas and providing large amounts of in-
formation to a central repository. Endowing networks of sensors
with mobility can enable them to be more effective in monitor-
ing environments. Sensors can move close to more active areas
and redeploy as the situation changes. In particular, we are inter-
ested in the case where events tend to occur in the same portions
of the environment, and we would like to have more sensors
in those “hot spots” compared to the rest of the environment. If
these hot spots cannot be known ahead of time, or if they change
over time, we would like the sensors to discover them and grad-
ually move toward them. Specifically, if the events in the envi-
ronment come from a particular distribution, we would like the
sensors to approach an approximation to that distribution.

In our previous work [1][2], we considered the basic case of
a completely open, simply shaped environment, and developed
distributed positioning and coverage algorithms. These algo-
rithms used little or no communication among the sensors and
produced globally correct sensor motion. Distributed coverage
algorithms were overlaid on the basic positioning algorithms to
guarantee that no portion of the environment would be left un-
sensed. However, these algorithms assumed that environment
was simply shaped and that all sensors could move to any point
in the environment. Here we extend these algorithms to more re-
alistic systems; namely those in which the sensors have motion
constraints, whether inherent or due to obstacles in their envi-
ronment. This allows sensors to converge on event distributions
in arbitrary connected spaces. We also present a new positioning
algorithm which is more amenable to use in environments with
obstacles, and can still be easily implemented.

While sensor networks have attracted a great deal of attention,
mobile sensors have been investigated only recently. The addi-
tion of motion capability to the Mote sensors, creating Robo-
motes, was described in [3]. Early algorithmic work included
even dispersal of sensors from a source point and redeployment
for network rebuilding [4][5]. More recently, Bullo et al [6]

developed Voronoi-based methods to arrange mobile sensors in
various distributions in an analytic way that requires that the dis-
tributions be defined a priori. Another important consideration
in sensor networks, whether mobile or not, is energy conser-
vation. This has been investigated by Cerpa and Estrin [7] in
traditional sensors and Rao and Kesidis [8] in mobile sensors.
In the latter, sensors move so as to most efficiently relay data
while producing sensor data of their own. Our work does not
explicitly consider energy consumption, but is designed implic-
itly to produce limited motion and communication to achieve
the desired formation. Our work is also similar to formation
control (e.g. [9]) and related cooperative robotics tasks, but uses
a common geometric algorithm rather than explicit planning and
develops configurations specified entirely by sensed data.

II. BASIC POSITIONING ALGORITHMS

In previous work [1], we proposed two algorithms for sen-
sors to independently determine their correct position based on
sensed events. We summarize these here and present a new po-
sitioning algorithm. In each of these algorithms the goal is to
have the sensors move so that their overall distribution will be
similar to the distribution of events.

The first of these algorithms is purely reactive and heuristic,
in that each sensor makes a short step toward each event when it
occurs. The length of each step is determined by a simple func-
tion, and constraints can be placed on the form of this function
to minimize clustering and produce reasonable sensor distribu-
tions. This method is desirable in its simplicity (memory and
computational requirements) but can suffer from parameter sen-
sitivity common to many heuristic algorithms. In this case, the
sensitivity manifests in the sensors converging too quickly or
too slowly on clusters of events. The second algorithm uses a
coarse history of the events (in the form of a spatial cumula-
tive distribution) to calculate a transform of the space, and from
that determines the proper current position. This algorithm can
be shown to be correct in the one-dimensional case, and is still
quite simple. In two dimensions the transform is no longer one-
to-one and a heuristic decision (in which the sensor chooses its
best position from a small number of candidates) must be made.
In practice, the sensor can simply choose the closest candidate.
This works well for many types of distributions, but in some
cases causes sensors to cluster overly tightly.

It should be noted that both of these algorithms are themselves
deterministic, but their success comes in part from the assump-
tion that the sensors are initially uniformly scattered over their
environment. With this assumption, a transform of space based
on the event distribution will allow the sensors to implicitly ap-
proximate this distribution without communicating their posi-



Fig. 1. Example run of the divide-and-conquer positioning algorithm, with the event histogram shown in the top row and the workspace in the bottom row. The
sensor’s initial position is shown as a black dot. (a) At the first step of the recursion, 30 and 20 events are counted in each half of the space, so the workspace is split
accordingly. (b) The second step is to split the left half (containing the sensor’s position). (c) After additional divisions, an area of the histogram corresponding to
a single sensor is reached. (d) The sensor moves to the position in the environment corresponding to the relevant area in the histogram.

tions to each other. This assumption also allows the algorithms
to be robust to noise in the positioning and motion of the sensors
— if each sensor is out of place in a non-systematic way, the ef-
fective initial distribution of sensors will still be nearly uniform,
and so there is graceful degradation of the final distribution as
noise is introduced.

A. Divide-and-conquer positioning

We have also developed a new positioning algorithm which
is one-to-one, simple and gives good results, although it is still
dependent on an underlying coordinate representation. In this
algorithm, which we refer to as a divide-and-conquer algorithm,
we also use the event histogram to compute a transform between
the space of initial positions and the desired positions.

As in the previous algorithms, each sensor uses a histogram of
detected event locations and its initial position to independently
determine where to move to. Here we assume that each sensor
will be informed of all events, so that all sensors are using the
same histogram in their computation. The algorithm computes a
spatial transform recursively by successively dividing the space
in half, first along one axis and then the other. This allows each
sensor to compute only the portion of the transform that is cur-
rently relevant for its position. At each iteration, it divides the
event histogram in half, but divides the workspace in two un-
equal rectangles that are sized proportionally to the number of
events in each half of the event histogram. The recursion takes
the portion of each space that corresponds to the sensor’s initial
position, and splits these along the other axis in the same fash-
ion. The recursion terminates when the relevant portion of the
workspace has an area proportional to 1/n of the total area (for
n sensors), so that on average each sensor will choose a different
area of the appropriate size. At this point, the sensor moves to a
point within the remaining area of the event histogram. This is
shown in pseudocode as Algorithm 1.

An example run of this algorithm for a workspace of unit size

Algorithm 1 Divide-and-conquer procedure. Desired position
for a sensor is computed by calling COMPUTE-POS(overall-
histogram-bounds, overall-workspace-bounds, x, normalized-
histogram, my-initial-position).

COMPUTE-POS(hr, wr, axis, hist , ipos)
Variables:

hr: region of hist to be sensed
wr: region of initial positions used to cover hr
hr∗i , wr∗i : divided sub-regions of hr and wr
c: number of events in each hr∗

if axis = x then
hr∗1,2 ← SPLIT-RECT(hr, x, (hr.xmin + hr.xmax)/2)

else
hr∗1,2 ← SPLIT-RECT(hr, y, (hr.ymin + hr.ymax)/2)

ci =
∑

hri
hist

total = c1 + c2

if axis = x then
midpoint = wr.xmin+(wr.xmax−wr.xmin)∗(c1/total)
wr∗1,2 ← split-rect(wr, x,midpoint)
if ipos.x < midpoint then

if c1 ≤ 1 then
return position in hr∗1

else
return COMPUTE-POS(hr∗1 , wr∗1 , y, hist , ipos)

else
if c2 ≤ 1 then

return position in hr∗2
else

return COMPUTE-POS(hr∗2 , wr∗2 , y, hist , ipos)
Similarly for axis = y

SPLIT-RECT(rect , axis, value)
r1 = rect |axis ≤ value
r2 = rect |axis > value
return r1, r2



(a) (b)

(c) (d)
Fig. 2. Results of simulations using the divide-and-conquer positioning al-
gorithm. (a) and (c) show event locations and (b) and (d) the corresponding
resultant sensor positions.

is portrayed in Fig. 1. In the first iteration the algorithm divides
the event histogram parallel to the y-axis into two equal sections.
Here, the left histogram contains 60% of the total events, so the
real space will be divided parallel to the y-axis into portions
[0, 0.6) and [0.6, 1]. Since the sensor’s initial position has x <
0.6, the process is repeated with the left portion of the workspace
and the left half of the event space. Since the splits of the event
histogram may not fall along bin lines, the algorithm counts the
fraction of the events in each bin corresponding to the fraction
of that bin in the subset under consideration.

In practice, this produces accurate results with small amounts
of sensor motion. Figure 2 shows two results of using this al-
gorithm. Sensors are initially scattered through the environment
with a uniform random distribution, and events occur at posi-
tions shown in Fig. 2a. The final positions of the sensors after all
events have occurred is shown in Fig. 2b. The results of another
run with a different event distribution is shown in Fig. 2c-d.

In these examples, the sensors closely approximate the event
distribution, sometimes at the detriment of leaving portions of
the environment empty. We have also developed algorithms
under which the sensors cooperate to ensure that their entire
workspace remains sensed[2]. These algorithms require only
that each sensor can easily predict other sensors’ motions. As
long as the divide-and-conquer technique is implemented with
each sensor using the same event history, since it requires only
simple calculations based on a sensor’s initial position, it is quite
compatible with our existing coverage algorithms.

III. SENSOR-BASED CONSTRAINTS

The positioning algorithms presented above assume that the
sensors can move to any location within the environment. How-
ever, for many systems, this will not be the case. One potential
situation would be tethered sensors with a limited range of mo-
tion. Another case that we have investigated more deeply is sen-
sors that are constrained to work only along a line. These con-

Fig. 3. (Top) Sensor distribution as a function of distance for sensors con-
strained to random lines and attracted to a single point. (Bottom) Simulated
final locations of sensors restricted to lines and attracted to a single point.

straints are different from obstacle-based constraints detailed in
Sec. IV in that each sensor has a unique restriction.

In order to correctly position motion-constrained sensors, we
have several different options. One is simply to use one of the
algorithms for unconstrained sensors to determine its desired lo-
cation, and move the sensor to the closest possible point within
its motion range. For well-clustered distributions, this may be
a good choice. However, we have developed other algorithms
specific to this case which have better empirical properties.

A. Analysis of linearly-constrained sensors

To determine the value of using the algorithm for uncon-
strained sensors for the constrained case, we can in fact analyze
the overall behavior of the group, and in fact give a closed-form
description of the group’s distribution for simple cases. Namely,
we assume a random distribution (for three different definitions
of “random”) of sensors and determine for a single given point
of attraction, what is the resulting distribution of sensors? For
the unconstrained case the sensors would eventually converge to
a single point. For the constrained sensors, we can use a integral
geometry argument to describe the resulting distribution.

To determine what distribution the constrained sensors would
achieve in response to events at a single location, we note that
the distribution will necessarily be radially symmetric and ask
the question this way: For a given distance r, what fraction
of sensors will move to a point within r of the event location?
Equivalently, what fraction of sensors will have a line of motion
that intersects a disk of radius r centered at the event location?
Let us first assume that the sensor lines are given by a random
point (ρ, θ) within a disk of radius R and a random orientation.
The question is then, for a given point, what set of orientations



Fig. 4. Under the default algorithm, a sensor constrained to the thick straight
line will be influenced by both clusters of events in its environment (as suggested
by the curve below its line), but as it can only get close to one cluster it should
probably ignore the other. For linear or other less-clustered distributions, the
correct behavior becomes less obvious.

will allow the sensor’s line of motion to intersect a disk of a
radius r around the event. This is given by:

Φ(ρ, θ) =

{
1 0 < ρ ≤ r
arcsin(r/ρ)

π/2 r < ρ ≤ R

We can then integrate Φ over the entire disk to find the propor-
tion of all sensors whose lines pass within the smaller disk. This
final relation is given by:

F (r) =
2r

πR2

√
R2 − r2 +

2
π

arcsin
r

R
.

Similarly, we can choose sensor locations randomly by choosing
two points within the disk, and consider the sensor’s range of
motion to be either finite or infinite and defined by these points.
These lead to slightly different definitions of Φ, which can also
be integrated to give similar but more complex analytic results.

F (r) is a cumulative distribution, so the actual sensor distri-
bution as a function of distance from the attractor, P (r), will be
its derivative. Plotting P (r) for R = 1 gives a form as shown
in Fig. 3, which is notably broad, i.e. even for events at a single
point, constrained sensors will not produce a tight cluster. This
is verified in simulation in the bottom plot of Fig. 3. With this
in mind, we note that even for broad event distributions, it may
not be possible to achieve desirable sensor distributions.

B. Event-scaling algorithms

For sensors constrained to a line, instead of trying to ap-
proximate an unconstrained sensor, we can also use a one-
dimensional cumulative-distribution-based motion algorithm.
In this case, all events that take place are projected onto the sen-
sor’s line of possible motion. The sensor then computes its de-
sired position along this line based on its initial position along
the line and the event distribution. (See [2] for more details
on this algorithm.) However, this is not ideal, see Fig. 4, since
some events may be closer to a given sensor’s line of motion and
therefore more relevant to it.

One obvious thing to do is to ignore events outside of a given
distance from the line, but this leads to discontinuities in the sen-
sor distribution when the events are not well clustered. Instead

we can scale the events by distance, so that close ones count as
full events while farther ones count as fractional events. In this
way, if the sensor can move into a cluster of events, it will base
its motion primarily on this cluster, but if it does not, it will move
based on the cluster that is closest to its line of action. The scal-
ing functions that were used were of the form e = min(k/d,m),
where d is the distance from the event to the sensor’s line of mo-
tion, and k and m are heuristic constants. The sensor then adds
e events (where e is often less than 1) to its histogram in the
appropriate bin before computing its new position based on the
cumulative distribution of the events along its line of motion.

The scaling functions were compared empirically to the case
without fading and the case where distant events are simply ig-
nored. The success of a particular technique is defined here by
how well the final sensor distribution approximates the sensed
event distribution. To compare these distributions, we look at
the number of events in each bin of the histogram (even where
this is zero) and the number of sensors in the corresponding area
of the environment. The histogram is scaled so that its sum is
equal to the number of sensors, and the difference between the
number of sensors and events in each bin is averaged. A low
value of this mean deviation is desirable.

To generate empirical data, 50 simulation runs were per-
formed for each scaling function with different initial sensor lo-
cations. As was expected, the default unscaled algorithms per-
formed the worst, although ignoring distant events performed
better under this metric than scaling. For events along a line
through the workspace, the unscaled algorithm had a mean de-
viation of 1.416, compared to 0.908 for ignoring distant events
and 1.111 and 1.144 for inverse distance functions with differ-
ent constants. In all cases the standard deviations over the 50
runs was about 0.10, so these are significant differences. For
comparison, unconstrained sensors were able to achieve a mean
deviation of 0.580 for this event distribution. Similar results
were obtained for events in two clusters similar to those seen in
Fig. 2c: 3.073 for unscaled, 2.280 for the step, and 2.427 and
2.744 for inverse distance. Here unconstrained sensors had a
mean deviation of 0.684, showing that for more clustered events,
constrained sensors will perform relatively worse.

One drawback of this technique is that each sensor will main-
tain a different version of the event history. This will prevent the
sensors from using a predictive coverage algorithm as presented
in previous work. We have also developed more reactive cov-
erage algorithms which could be used in this case[2], although
these require a large amount of communication. In general, the
issue of maintaining complete coverage with constrained sen-
sors is an interesting topic in itself.

IV. ENVIRONMENTAL CONSTRAINTS

Another important consideration in mobile sensor systems
is that the environment or workspace will generally not be an
simply-shaped open area. Therefore, we wish to augment our
algorithms to handle more complex environments, starting with
arbitrary convex regions and then allowing non-convex and non-
simply-connected environments.

First, we note that although the positioning algorithms pre-
sented in Sec. II can be used in convex non-rectangular areas,
the correct results will not be obtained. That is because bas-



(a) (b)

(c) (d)
Fig. 5. Results of a simulation using the divide-and-conquer positioning algo-
rithm in a non-rectangular environment. (a) Initial sensor positions. (b) Event
positions. (c) Final sensor positions without accounting for environment shape.
(d) Correct final positions.

Fig. 6. In this example, (a) a sensor that started on the left side of the wall is
there after 16 events — since half were on either side, it remains in the middle.
In (b), after one more event on the right, it must move to the other side since
the balance of the events are on that side and as the sensor in the middle it is
responsible for any left-right imbalance. Another event on the left would send it
back to the position in (a).

ing the sensor’s desired position on its initial position within the
overall rectangular histogram will bias the results. For example,
consider the situation in Fig. 5. The histogram is the full size of
the figure, but the sensors are all in the free space in the lower
right. If this constraint on initial positions was not taken into ac-
count, the sensors would all think they started in the lower right
half of their environment, and move to the lower right half of the
event distribution as shown in Fig. 5c.

In the divide-and-conquer algorithm, the shape of the
workspace is handled by changing how the workspace is di-
vided in the recursion. Instead of dividing it along a line based
solely on the proportion of events in each half, the shape of the
workspace is considered. The division line is chosen such that
the amount of free space in each half will be proportional to the
number of events in the corresponding half of the histogram.
Since the region is convex, the amount of free space to one side
of a given line will be monotonic as the line moves, and so this
division can always be made accurately and uniquely.

Non-convex and non-simply-connected environments give

rise to further modifications to the basic algorithms. There are
two natural ways to handle these cases in the context of the non-
heuristic positioning algorithms. The choice between the exten-
sions involves a tradeoff between inaccuracy in the distribution
and requiring sensors to perform complex path planning.

In one method, we use the cumulative-distribution-based po-
sitioning algorithm and simply keep at zero the histogram values
for any bin that contains part of an obstacle. This works imme-
diately, since it enforces that no sensor should attempt to achieve
a position within the obstacle, but the underlying function is still
well-defined over the entire workspace. It is also immediately
reactive in that when a new obstacle is detected, its bin of the
event histogram can be zeroed and the sensors will immediately
position themselves correctly. Depending on the granularity of
the histogram, this may be overly conservative. One potential
issue with this method is that when a sensor computes its new
position, it may have to go to the other side of an obstacle. In
an extreme case with two rooms and events alternating between
the two rooms, such as in Fig. 6, a sensor in the middle of the
environment could have to switch rooms after each event.

The alternative method is to decompose the environment into
a set of convex regions and run a basic positioning method in-
ternal to each region. This requires the computation of such
a decomposition (and recomputation if obstacles are later dis-
covered), but has the advantage that any correctness properties
of the underlying positioning algorithm will carry over locally.
That is, within each region the relative sensor density will match
the event density. However, globally this will not be the case —
if one region has many sensors but no events, the sensors will not
move, even if another region sees many events and few sensors.
Therefore, we need to enable reassignment of sensors between
regions.

To generate a reassignment, we first determine how many sen-
sors should be in each region of the environment, and then build
a cost matrix based on the distance from each sensor to each
region. The assignment problem (in this case, of sensors to re-
gions) is solved using the traditional Hungarian algorithm. In
this particular application, the rows of the cost matrix corre-
spond to sensors, and the columns to destinations, with the value
in the matrix cell equal to the distance between the sensor and
the destination. The result is a reassignment that puts the cor-
rect number of sensors in each region with the minimum overall
travel (based on the particular distance metric used).

To create the cost matrix, we need to have a number of des-
tinations equal to the number of sensors. For each region r, we
scale the number of events in that region Er to determine the
number of sensors Sr that should go into that region. There
will then be Sr identical destinations (and therefore identical
columns in the cost matrix) corresponding to region r. Also
note that each sensor currently in a particular region should be
treated equally, to preserve the assumption of a uniform initial
distribution — if we moved the nearest sensors from one region
into an adjacent region, the remaining sensors would be imbal-
anced within their region. Therefore, in the cost matrix, each
sensor’s distance to each destination is computed solely as the
number of regions the sensor would pass through to reach the
destination region. This produces a random correct assignment
with minimal region traversal. When a sensor is reassigned, it



(a) (b) (c)
Fig. 7. Effects of reassigning sensors between regions: (a) Event positions (b) final sensor positions without reassignment, (c) final sensor positions with reassign-
ment every 28 events.

picks a new “initial position” randomly from the free space of
its new region. It does not go to this position, but rather uses
it to determine its new desired location. Note that due to the
nature of the divide-and-conquer positioning algorithm, it is not
necessary to inform the other sensors of a reassignment or new
initial position unless an additional coverage algorithm is in use.

Simple path planning is still required, however only between
adjacent convex regions, which can easily be achieved by mov-
ing to a point on the boundary of the two regions and moving
to the new point in the new region. Both of these motions are
guaranteed to be navigable with straight lines since both regions
are convex. With a decomposition into convex cells even arbi-
trary path planning can be easily achieved with graph search, but
using local positioning with region reassignment will minimize
the number of long excursions in complex environments.

Figure 7 shows one example of using reassignment in a mod-
erately complex environment. The positions of 200 events are
shown in Fig. 7a, with obstacles outlined by the dashed lines.
Without reassignment, the sensors move somewhat reasonably,
but a large number in the lower right are stuck in their (rather
boring) region. In Fig. 7, we show the results of reassignment
every 28 events. In this example, a total of 84 sensors out of
200 changed regions a total of 106 times. In another case, we
generated a tight cluster of events in one corner of the same envi-
ronment. In this case, 55 of the 200 sensors started in the region
containing all the events, and by the end, 192 of the 200 were
there. This included a total of 190 sensor motions (by 138 sen-
sors), so this algorithm produced very efficient overall reassign-
ment. This efficiency is largely due to the stationary distribution
assumption, but does show that the algorithm is stable.

V. DISCUSSION

The algorithms presented in this paper provide a step toward
useful real-world networks of mobile sensors. Systems can now
generate reasonable sensor distributions over a wide variety of
environments, although the method of decomposing the envi-
ronment was not specified here.

These techniques still implicitly assume a stationary distribu-
tion of events (one that does not change over time), in that any
event added to the histogram stays there forever. We have inves-
tigated different ways to handle time-varying distributions, such
as rescaling the histogram over time to give more recent events

greater weight, or adding a small virtual force between the sen-
sor and its initial position. These can each be successful, but are
heuristic in nature, and the quantitative nature depends on the
particular situation. We are now working on meta-heuristics;
that is, how to watch the event distribution evolve and feed this
back onto the heuristic values in the time-dependent algorithm.
This strategy would make better use of the sensors’ mobility in
that it would more accurately and automatically track situations
that change over time.

Acknowledgments

Much of this work was performed at the Institute for Security
Technology Studies (ISTS) at Dartmouth College. Thanks to
Scot Drysdale and Amit Chakrabarti for helpful discussions on
the statistics of linear-motion sensors. Daniela Rus was instru-
mental in suggesting and encouraging this work. This work was
supported under Award No. 2000-DT-CX-K001 from the Office
for Domestic Preparedness, U.S. Department of Homeland Se-
curity. Points of view in this document are those of the authors
and do not necessarily represent the official position of the U.S.
Department of Homeland Security.

REFERENCES

[1] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor net-
works,” Pervasive Computing, vol. 2, no. 4, pp. 34–43, 2003.

[2] Z. Butler and D. Rus, “Controlling mobile sensors for monitoring events
with coverage constraints,” in Proc. of IEEE ICRA, April 2004.

[3] G.T. Sibley, M.H. Rahimi, and G.S. Sukhatme, “Robomote: A tiny mobile
robot platform for large-scale sensor networks,” in Proc. of IEEE ICRA,
2002, pp. 1143–8.

[4] M.A. Batalin and G.S. Sukhatme, “Spreading out: A local approach to
multi-robot coverage,” in Distributed Autonomous Robotic Systems 5, 2002,
pp. 373–382.

[5] A. Howard, M.J. Mataric, and G.S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution to the
area coverage problem,” in Distributed Autonomous Robotic Systems 5,
2002, pp. 299–308.

[6] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Trans. on Robotics & Automation, vol. 20,
no. 2, pp. 243–55, 2004.

[7] Alberto Cerpa and Deborah Estrin, “Ascent: Adaptive self-configuring sen-
sor networks topologies,” in INFOCOM, New York, NY, June 2002.

[8] R. Rao and G. Kesidis, “Purposeful mobility for relaying and surveillance
in mobile ad hoc sensor networks,” IEEE Trans. on Mobile Computing, vol.
3, no. 3, pp. 225–32, 2004.

[9] Tucker Balch and Maria Hybinette, “Social potentials for scalable multi-
robot formations,” in Proc. of Int’l Conf. on Robotics and Automation, San
Francisco, April 2000, pp. 73–80.


