
Broker: An Interprocess Communication Solution
for Multi-Robot Systems

Matthew McNaughton
Dept. of Computing Science

University of Alberta
Edmonton, Alberta, Canada
mcnaught@cs.ualberta.ca

Sean Verret
Defence R&D Canada

DRDC Suffield
Suffield, Alberta, Canada

sean.verret@drdc-rddc.gc.ca

Andrzej Zadorozny
Dept. of Computing Science

University of Alberta
Edmonton, Alberta, Canada

andrzej@cs.ualberta.ca

Hong Zhang
Dept. of Computing Science

University of Alberta
Edmonton, Alberta, Canada

zhang@cs.ualberta.ca

Abstract— We describe in this paper a novel implementation
of the interprocess communication (IPC) technology, called
Broker, in support of the development and the operation of
a complex robot system. We view each robot system as a
collection of processes that need to exchange information, e.g.
motion commands and sensory data, in a flexible and convenient
fashion, without affecting each other’s operations in case of a
process’s scheduled termination or unexpected failure. We argue
that the IPC technology provides an ideal framework for this
purpose, and we carefully make our design decisions about its
implementation based on the needs of robotics applications.Bro-
ker is programming language, operating system, and hardware
platform independent and has served us well in a RoboCup
project and collective robotics experiments, in both simulation
and real-world environments.

I. I NTRODUCTION

Examples abound in robotics in which the need arises for
robots within a group or for the components within a single
robot, e.g. a sensor module and a control program, to exchange
information seamlessly, a capability that is often critical for
both the development and the operation of these robot systems.
A flexible and transparent communication infrastructure facili-
tates design modularity and enhances the fault-tolerance of the
robot systems. Interestingly, the same need has long existed
in networked computer systems in which processes running
on a single or multiple computers must communicate to share
the information required to function as an integrated system.
The solution in that case is what is known as interprocess
communications (IPC). In this paper, we will describe our
implementation of an IPC concept, which we refer to as
Broker, and its use in our development and deployment of
a multi-robot system designed to compete in RoboCup.

Our multi-robot system (see Figure 1) has the ability to
run eight physical robots, under the control of a multitude
of processes. All these processes have the ability to share
information with each other throughBroker. To achieve a
high level of collective intelligence and to enhance system
effectiveness, it is necessary for the processes to communi-
cate and share information with ease. These processes which
may be, running on different operating systems, implemented
in different programming languages, compiled on different
development platforms, all require the ability to “talk” with
each other. It is this requirement that presents the interesting

link between a multi-agent system and IPC in a networked
computer system.

Fig. 1. The robotic system in action. Initially designed to play robot soccer
[15], it can monitor and control up to 8 robots.

Our team of robots have very limited sensing capability
on board. Their vision is, for example, shared through an
overhead camera, as is the master radio for command trans-
mission to the robots. Each robot is equipped with a CPU and
receives motion instructions over a wireless link by AI (artifi-
cial intelligence) processes running off-board. Because several
people may be concurrently involved in the development of the
system components, it is highly desirable for the failure of any
component not to affect the rest of the system. In addition, we
need a flexible and extensible data format in order to handle
the constant evolution of the semantics of the communicated
messages and the addition of system components and data
types associated with the components. Finally, message trans-
missions must be of low latency, although no retransmission
is attempted due to dropped packets in most cases.Broker
has succeeded in meeting all but one of the above constraints
and requirements. TheBroker server process itself is a single
point of failure. However, the implementation is very simple
and stable, reducing the risk of catastrophic failure. This paper
explains its design considerations and implementation, and
serves as a useful reference for robot system designers faced
with the same set of challenges.

The remainder of the paper is organized as follows. Sec-
tion II surveys existing IPC systems designed specifically for
robotic applications. Section III discusses the development



process ofBroker. Our use ofBroker in a multi-robot sys-
tem is described in Section IV, which describes in detail
the convenience provided byBroker for sharing information.
Finally, Sections V and VI discuss the positives and negatives
of Broker, and conclude the paper.

II. RELATED WORK

We have developed an IPC system for robotics that is
designed to facilitate seamless development and integration
of a robotic system with many components. In this section we
review several other IPC systems used in robotics.

The Object Oriented Toolkit for Inter-process Communica-
tion (IPT) [7] was the first IPC system specifically for robotics,
followed by the Inter-Process Communications toolkit (CMU-
IPC) [17]. CMU-IPC follows the message based paradigm
and exchanges messages either through the IPC server or on
a peer-to-peer basis. CMU-IPC can be implemented using
several languages, on different machine types and operating
systems [14]. We have found two flaws with CMU-IPC. First,
CMU-IPC takes over the main program event loop and it
cooperates poorly with other libraries such as Qt. Second,
CMU-IPC does not have a simple, fixed message format.

Real-Time Communications (RTC) was designed as IPC
middleware to provide real-time capabilities specifically for
robotic applications [13]. RTC is written in C/C++ [3], is
message based, and features a server for registering module
names. RTC was designed for high-bandwidth, point-to-point
connections over TCP and for load balancing CPU-intensive
robotics tasks such as LADAR data analysis. RTC and CMU-
IPC share the same marshalling API.

The following four systems are also worthy of mention.
The Network Data Distribution System (NDDS) implements
a publish-subscribe model to perform network operations
for any number of data-sharing processes [5]. The Message
Passing Interface (MPI) [4] was developed as an IPC toolkit
optimized for parallel computing problems. The Adaptive
Communications Environment (ACE) [10] began as a C++
platform-abstraction library. The Common Object Resource
Broker Architecture (CORBA) [8] is not a toolkit but instead a
specification of an architecture or infrastructure such that com-
puter applications can cooperate together over a network [1],
[9] which is inherently what IPC tries to achieve. Finally,
various frameworks using their own methods of IPC have been
developed like [6], [18], and [2].

All were developed to ease data sharing and to enable an
efficient, robust system that was still flexible and near real-
time. Broker was created with a focus on developer conve-
nience, whereas CORBA was not. Building robotic systems
is difficult and every piece of the system must be reliable.
The more fundamental its role, the more reliable it must
be. The robotic system must ease problem diagnostics and
program development. WithBroker, we have stayed away
from the application control flow yielding the widest variety
of OS/language choices. We do not have specific libraries for
marshalling/unmarshalling data. Instead we have specified a

very stable packet format. In the next section we describe
Broker, our solution to robotic IPC.

III. IPC DESIGN AND MECHANISM

Existing IPC systems are arbitrarily chosen points in the
IPC design space, cementing design decisions along several
independent design axes into a single implementation. The
major axes are:

• Language API - locus of main program control flow, data
marshalling style.

• Network connectivity graph. (e.g. hub vs. peer-to-peer)
• Message based vs. stream based.
• Data serialization format.
• Service location protocol.
• Anonymous publish-subscribe vs. peer-to-peer remote

procedure call.

The ideal IPC system would be a flexible toolkit allowing
the developer to choose and combine functionality at any
desired point along each axis. No existing IPC system allows
that but some allow a few choices.Broker does not reach
the ideal either. It embodies a principled design made with
the convenience of developersas a primary goal. Certain
design choices exclude or enable other desirable design targets.
Desirable design targets are to be small, lightweight, and
convenient to integrate into a system. These qualities are
enabled or made impossible by the design choices made
along the major axes listed above. An IPC system is not
difficult to develop. However, it is much more challenging to
demonstrate its utility. The true test is this: is the system easy
and convenient to use? If a developer balks at the complexity
of learning and integrating an IPC system and chooses instead
to implement his own, then regardless of how robust and
flexible the system is, it is a failure. In the RoboCup Small-
Size League, we are aware of no team that makes use of any
published IPC system. This is an indictment of their obscurity
and complexity. For example, the code CMU published in
2002 [16] divides responsibility among multiple processes that
communicate via UDP and TCP, but each program is written to
directly contact the processes they need to communicate with.
Communication is accomplished by writing C structs directly
into UDP packets. Other teams approach IPC in a similarly ad-
hoc manner, or simply compile all functionality into a single
process.

With the convenience of developers being the most impor-
tant consideration, certain design choices become obvious. For
example, the system should be designed, asBroker is, to allow
any component of the system, including the central server, to
abort and resume at any time without causing disruptions to
the rest of the system.

A. Network Topology

A Broker network is centralized around a single server
process called the broker, as illustrated in Figure 2. All
communication is sent in the form of UDP packets which flow
only between clients and the broker. For a client to join the
Broker network, it is given the IP address and UDP listening



client client

client

client

broker

Fig. 2. The hub architecture ofBroker in which processes (software agents)
communicate via a central packet relaying mechanism.

port of the server process. Clients send request packets to
the server process to subscribe to any of several defined data
channels. If the client does not receive data on the channel, it
periodically resends the request. This ensures that the system
can regain stability if the broker server process should die and
be restarted. Other valid requests are to unsubscribe from one
or all channels, request system status information, or set the
minimum priority required for a message to be repeated on
any channel. This latter ability is used only by the system
console. Clients may also publish data on a defined channel
by sending packets to the server, which repeats the packets to
all subscribed clients. The server does not attempt to arbitrate
contention between processes that are publishing contradictory
messages on the same channel.

Since the system is arranged around a central server, we are
able to capture logs of all communications sent by clients for
later replay and analysis.

B. Message Format

The most important requirements of the data packets them-
selves, in order of importance are:

1) Observability/Debuggability. The packets must be easy
for a human to observe and find implementation errors
in transmitting agents. It must also be easy for a human
to “forge” a packet of any format quickly and inject it
into the system.

2) Speed. The packets must be rapidly written and read.
3) Ease of writing parsers. It must be easy to write a packet

parser in any programming language. It must be easy to
write a packet generator in any language.

4) Flexibility. Changes to the semantics of a packet type
must not impact the parsers.

These requirements determined the packet format. The
observability requirement strongly suggests a textual format.
One could write tools to display and edit a binary packet
format but the additional coding effort may not be worth it. It
is especially difficult to write display and edit programs that
operate on and diagnose incorrectly formatted packets. The
third requirement also suggests a textual format, since it can
be a challenge to write binary parsers. Adding new optional
data fields to a simple binary dump of a C-struct necessitates
updates to all parsers. The CMU-IPC format, for instance, has
the same flaw as all binary formats, i.e. the parser is vulnerable
to packet corruption and can bring down the whole process.

This can happen if, for example, an element count field for an
array is corrupted, causing the parser to access invalid memory.

The speed requirement argues that the format must be
simple and contain very little excess verbiage. This rules out
XML. We tried XML and found that even with a custom parser
that dispensed with all of XML’s complex semantics, it was
noticeably slower than the textual format we settled upon.
The obvious format for the fastest textual message would
dispense with all field and attribute names, but this would
break requirements for observability and flexibility. Both the
requirements for observability and flexibility require some
form of field naming.

With the above considerations in mind, we settled upon a
simple textual message format, e.g.:

@ <vision_out> 0
ball x 5.3 y -2.5
blue id 0 x 15.2 y -98.3 xh 1.0 yh 0.0
blue id 4 x 98.4 y -87.2 xh -0.707 yh 0.707
yellow id -1 x 139.5 y 167.2
latency millis 152

The first line is a header, naming the channel the packet
is being published to. The integer value (0 in this example)
defines the message priority. The broker can be instructed to
ignore all messages below a given priority. The remaining
lines, not examined by the broker, contain message data. Each
line consists of textual tokens. The first token on each line
is a distinguished label. There may be any number of lines
starting with the same token. The packet is like a struct, with
each line a component structure. Multiple lines starting with
the same token may be interpreted as an array. The remaining
tokens on a line are name-value pairs. Each of these is a field
in the line struct. Arrays are not allowed on a line, that is, a
line may not contain more than one name-value pair with the
same name. As with XML, the parser can parse the packet
without knowing the semantics of the line-start tokens or the
named fields on each line. Normally, a packet may contain any
number of lines (up to 65kB, the maximum capacity of a UDP
packet). The size of a packet is a semantic issue, not syntactic.
In our RoboCup system, “blue” and “yellow” indicate the team
affiliation of a robot, and the number of lines of each type may
vary from frame to frame.

A major design option our format does not provide is
arbitrary nesting of structures. The message semantics we were
attempting to send initially did not require nesting. There is
the question of whether we would have used nesting were it
convenient to do so. Regardless, nesting should be easy to add
without falling into the XML trap of excessive verbosity and
redundant syntax. Simple parenthesization ought to suffice.

If a line consists of a single field, then there are two attribute
names required, the first naming the line, the second naming
the field. If there are many such lines, it could result in
significant waste. However, there is a workaround available:
simply establish a “misc” line type and aggregate all the
single-attribute line types into it.



C. Marshalling API

The beauty ofBroker is that it does not impose a strict API.
The simplicity of the message packet format makes creating
packets as easy as, for example, usingprintf in the C language,
and renders it instantly accessible to basically all languages.
Parsing is as easy as usingscanfin C, or regular expressions.
Our code base provides convenient packet parsing functions
in Java and C. By contrast, other systems such as CMU-IPC
require the developer to define aC-struct for each message
type they wish to send or receive. In order to send or receive
the packet, the developer must additionally provide a specially
formatted string which describes the layout of the struct.
CORBA provides a language (IDL) for describing message
structures to be marshalled which in turn requires a special
compiler to interface with the host language. Automatic data
marshalling/unmarshalling APIs are ungainly. The design of
choice for a lightweight IPC system is to force a manual
approach and provide a library to make this convenient.

D. Program Control Flow

A typical robotics program runs in an infinite loop that
accepts input, processes it, and sends output. Libraries that
perform two-way IPC, which include not only robotic IPC
systems such asBroker, but also windowing system libraries
such asXlib, require the application programmer to integrate
their main program event loop with the library’s loop. This
poses a difficulty for programs that use both an IPC system for
robotics communication and another indirectly through their
windowing library. These libraries often demand that the main
program loop be formed around them. As a way to cooperate
with the developer’s other asynchronous I/O connections, they
occasionally allow one to pass in a file handle and receive
notification events when there is data available. However, the
correct design is for the library to make its file handle available
and depend upon the developer to invoke the library when data
is available. The take-home design message is:always give the
developer control over the main event-handling loop.

E. Other Considerations

There is one disadvantage to the publish-subscribe model we
chose forBroker. The needs of a remote procedure call (RPC)
appear not to be well served. However, it is easy to build an
RPC framework on top of the publish-subscribe model. The
developer may establish a dedicated RPC channel and clients
who wish to receive RPC calls may publish their existence on
the channel. Clients may then make calls by publishing their
requests, or sending a request packet directly to the RPC target
client.

Broker depends on fast, local connectivity between all
components of the system. The server process sends a copy of
each message published on a channel to each subscribed client.
If all clients resided on the opposite end of a bandwidth-limited
connection, this behavior might overwhelm the capacity of
the link. One solution is to allow a system to contain multiple
server processes, one for each high-speed domain. They would

forward only one copy of each message along each low-
bandwidth channel. Client implementations would not have to
change and would simply connect to the server process within
their local networks, ignorant of any other server processes.

Broker has good communication latency, but does not
achieve the theoretical minimum. Each packet must make two
hops: from the publisher to the broker and from the broker
to each subscriber. On a fast local network, the performance
hit for this is low. In addition, the packet body text must
be generated from data in memory within the publisher, and
subsequently parsed by the subscriber. Any conceivable packet
format that is not a raw write of memory will have some
parsing overhead. It was not our goal withBroker to achieve
the lowest possible latencies and CPU overheads, however, we
did require that it be negligibly low (e.g. transmission latencies
of less than one millisecond) while possessing the ability to
parse multiple megabytes of data per second.

The purpose ofBroker was to have acceptable performance
while being easy to use. Due to time constraints we were not
able to reimplement our system using other IPC toolkits for
the purpose of comparison.

IV. D ISTRIBUTED ROBOTIC SYSTEM

In the previous section we described the design parameters
of IPC systems in general and the design ofBroker in
particular. In this section we describe the distributed robotic
system that we have developed for conducting experiments
in cooperative and adversarial collective robotics and the role
Broker plays in it. The system has been used to compete in
the RoboCup Small-Size League [15] and for experiments in
collective sorting [19], [20].

Our robots are approximately 180 mm in diameter and
140 mm tall, and their work area is a flat, enclosed pen
approximately 2 by 3 meters. Additional hardware includes
multiple fixed cameras offering a global view of the robot
work area, a radio transmitter, and several PCs. Software
modules include vision analysis, wireless communications,
agent processes, system monitor, miscellaneous system control
inputs, and theBroker server process (see Figure 5).

Fig. 3. Vision analysis console [12].

A. Vision processing

The vision system [12] includes two Point Grey DragonFly
cameras mounted above the robot work area, providing global



vision input. Each camera provides a 640x480 colour image,
via an IEEE1394 interface, directly to a PC. Each pixel is
colour-classified and contiguous colour regions are identified.
Robots are marked with unique identifying colour patches that
also indicate their orientation. Other objects on the field are
also marked with colour. Robot positions are then corrected
by an internal camera distortion model and camera pose esti-
mation algorithm provided by the Intel OpenCV library [11].
Finally, world coordinates of sensed objects in each frame
of video are published along with ancillary information, such
as the vision processing latency, which is used in predictive
motion control.

The vision system uses a graphical monitor (Figure 3) to
show the camera view, and allows an operator to optionally
view superimposed debugging information to diagnose per-
formance problems. In addition, the operator may also control
any parameter of the vision system, such as camera shutter
settings, colour lookup tables, or processing modes.

B. AI processes

An AI process subscribes to all available inputs from the
sensors of the system. In our system, this information is limited
to vision and status transmissions sent back over the radio link
from the robots. The AI process then rapidly makes a decision
and publishes commands for the robot or robots it is assigned
to control. The wireless radio manager subscribes to the radio
command channel and repeats the messages over the wireless
link. AI processes can run on any networked CPU.

C. Radio transmitter

Our present radio hardware is a Linx Technologies HP-
Series operating at 902-928 MHz with 8 available channels.
There is one main base transmission station and one receiver
module on each individual robot. The radio transmitter process
forwards motion commands published by the AI processes.

Fig. 4. The main system monitor has the ability to take control of all the
robots in the system either separately or as a group. More importantly a single
user has the ability to monitor the entire system from a single PC using the
system monitor.

D. System monitor

The system monitor provides a graphical view of system
status. It displays vision system output, i.e. robot positions
in world coordinates, alongside status updates sent back by
robots, and superimposed graphics sent by AI processes
indicating intentions and attempted movements. The system
monitor also allows the operator to override AI processes and
take control of robot motion.

E. Data Flow

vision out

radio out

radio in

debug out

broker in

broker out

system
monitor

agent(s)

vision
processor

broker

controller
radio

simulator

Fig. 5. Information flows throughout the system. When the simulator is
active, it replaces the vision and radio modules.

Figure 5 shows the flow of data between the system
components. Rectangles represent processes in the system.
Rhomboids represent data channels. An arrow pointing from
a process to a channel means the process publishes packets to
the channel. An arrow pointing from the channel to the process
means the process subscribes to the channel and receives all
packets sent to it by other processes. The simulator is inactive
when the vision and radio modules are active. The flexibility
and robustness ofBroker allows for the operator to kill both
the radio and vision systems, and then run the simulator. It
can do all of this without restarting other system components
such as the agents or system monitor.

V. D ISCUSSION

In this section, we will discuss the higher-level design
advantages of usingBroker. We will also discuss its strengths
and weaknesses.

A. Simultaneous Development

Our RoboCup development process is intense, with multiple
developers working on the code base simultaneously. Each
programmer could be aborting and restarting his processes
frequently while it is actively transmitting to and receiving data
from system processes run by others. Development would have
come to a complete standstill if any intervention was required
by other programmers to re-initialize their processes. Any
process, including the broker server process, can terminate at
any time without permanently disrupting other processes. Once
the terminated process is replaced, communications resume
smoothly and transparently.

This design requirement strongly indicates a stateless mes-
sage protocol (i.e., when designing packet semantics, it must
be ensured that it is possible to correctly interpret a packet
without having seen any previous packet).Broker provides
this functionality.



B. System Design

The correspondence between a physical robot and a process
need not be one-to-one. Several processes may correspond to
different aspects of a robot, (e.g. its radio, its camera, or its
wheels). However, it is also possible that a single process may
represent all the capabilities of several physical robots. The
correspondence is arbitrary. Responsibilities should be parti-
tioned among the processes so that communication resources,
CPU resources, and latency requirements are all optimized.

C. Implementation Advantages

The simplicity of theBroker packet format and API make
it trivial to extend it to any operating system (e.g. Linux,
OpenBSD, Windows) or library. It can run on several OS’s
with UDP sockets and any language with basic string parsing
functions. No special libraries are required. We have imple-
mentedBroker client libraries in C, C++, Java, Python, and
Perl.

Broker does not have a complex implementation so there is
no need to reimplement code when porting to a new language.
Scripting languages typically allow the developer to link in
“native” compiled machine-code but this causes build system
and installation headaches. Whenever possible, it is better
to avoid using libraries that require this style of scripting
language integration.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the utility of an IPC
concept for handling communication and sharing information
and resources within a complex robot system which may
have a number of software and hardware modules under
the control of separate processes. Upon reviewing the IPC
literature and the design constraints for a typical robot system,
we have implemented our own IPC system,Broker, which has
successfully served as the communication infrastructure that
was required for the RoboCup project. The system can work
equally well in both a simulation and real-world environment.

Broker has several key characteristics that prove to be
extremely valuable. First, it provides a communication channel
among any pair of processes within the system with a simple
API and yet, at the same time, prevents the processes from
affecting each other in case of a process failure. Secondly,
Broker uses a text-based message format which makes it easy
to develop parsers and which can be easily modified and
extended to handle changing communication needs. Finally,
sinceBroker is based on a standard network protocol (UDP
in our case), it is capable of linking processes written in any
language and running under any OS that support this standard
protocol.

One deficiency of our current implementation ofBroker is
its scalability with respect to the number of processes that run
in the system. We believe that this deficiency can be addressed
with simple technical measures using, for example, multicast
to send packets rather than multiple unicasts so that the pro-
cesses or agents can communicate directly.Broker’s role will
change to that of a directory to set up the initial connections.

Another potential problem is the system’s dependence on
Broker, which introduces a single point of failure. This can be
mitigated by the similar measure, i.e., by allowing processes
to talk to each other directly upon detectingBroker failure.
Our current implementation does not include these measures
as it would considerably complicate the implementation. Our
future work includes analyzing how these can be implemented
without compromising the strengths ofBroker.

ACKNOWLEDGMENT

The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada, the Department of
Computing Science, the Faculties of Science, and Engineering
at the University of Alberta for their support of this project
and the members who contributed to the RoboCup project.

REFERENCES

[1] F. Bolton. Pure CORBA: A code intensive premium reference. SAMS,
2002.

[2] Luiz Chaimowicz, Anthony Cowley, Vito Sabella, and Camillo J. Taylor.
Roci: A distributed framework for multi-robot perception and control.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
1:266–271, 2003.

[3] Robotics Engineering Excellence. Robotics engineering excellence -
software products, 2004. http://www.resquared.com/RTC.html.

[4] Message Passing Interface Forum. Mpi: A message-passing interface
standard. Technical report, University of Tennessee, Knoxville, 1995.

[5] S. Schneider G. Pardo-Castellote and M. Hamilton. Ndds: The real-time
publish-subscribe middleware.Real-Time Innovations, Inc., 1999.

[6] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The
player/stage project: Tools for multi-robot and distributed sensor sys-
tems. Proceedings of the 11th International Conference on Advanced
Robotics, pages 317–323, 2003.

[7] J. Gowdy. Ipt: An object oriented toolkit for interprocess communica-
tion. Technical Report CMU-RI-TR-96-07, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, March 1996.

[8] Object Management Group. Introduction to omg specifications, 2004.
http://www.omg.org/gettingstarted/specintro.htm.

[9] M. Henning and S. Vinoski.Advanced CORBA Programming with C++.
Addison-Wesley, 1999.

[10] S. Huston, J. Johnson, and U. Syyid.The ACE Programmer’s Guide.
Addison-Wesley, 2004.

[11] Intel. Intel research - microprocessor research - media, 2004.
http://www.intel.com/research/mrl/research/opencv/.

[12] Matthew McNaughton and Hong Zhang. Color vision for robocup
with fast lookup tables. InIEEE International Conference on Robotics,
Intelligent Systems and Signal Processing, October 8-13 2003.

[13] J . Pedersen. Robust communications for high bandwidth real-time sys-
tems. Technical Report CMU-RI-TR-98-13, Carnegie Mellon University,
1998.

[14] Dale James Reid Simmons.IPC - A Reference Manual. Carnegie Mellon
University - School of Computer Science / Robotics Institute, February
2001. IPC Version 3.4.

[15] RoboCup. Robocup official site, 2004. http://www.robocup.org.
[16] Carnegie Mellon University. Carnegie mellon robot soccer, 2002.

http://www.cs.cmu.edu/ robosoccer/small/.
[17] R. Simmons Carnegie Mellon University. The inter-

process communications (ipc) system, 2004. http://www-
2.cs.cmu.edu/afs/cs/project/TCA/www/ipc/ipc.html.

[18] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar. Miro - middle-
ware for mobile robot applications.IEEE Transactions on Robotics and
Automation, June 2002.

[19] Sean Verret, Hong Zhang, and Max Q.-H. Meng. Collective sorting
with local communication. InProc. IROS’04, IEEE/RSJ International
Conference on Intelligent Robots and Systems (in press), pages 2687–
2692, Japan, September 2004.

[20] Sean R. Verret. Perception and communication – their relationship in
collective sorting. Master’s thesis, University of Alberta, Edmonton,
Alberta, September 2004.


