
The Analysis of an Efficient Algorithm for Robot Coverage
and Exploration based on Sensor Network Deployment

Maxim A. Batalin and Gaurav S. Sukhatme
Robotic Embedded Systems Laboratory

Center for Robotics and Embedded Systems
Computer Science Department

University of Southern California
Los Angeles, CA 90089, USA

maxim@robotics.usc.edu, gaurav@usc.edu

Abstract— In this paper we present the design and theoret-
ical analysis of a novel algorithm (LRV) that efficiently solves
the problems of coverage, exploration and sensor network
deployment at the same time. The basic premise behind
the algorithm is that the robot carries network nodes as a
payload, and in the process of moving around, emplaces the
nodes into the environment based on certain local criteria.
In turn, the nodes emit navigation directions for the robot
as it goes by. Nodes recommend directions least recently
visited by the robot, hence the name LRV. We formally
establish the following two properties: 1. LRV is complete
on graphs, and 2. LRV is optimal on trees. We present some
experimental conjectures for LRV on regular square lattice
graphs and compare its performance empirically to other
graph exploration algorithms.

Index Terms— Coverage, exploration, mobile robot, graph.

I. INTRODUCTION

This paper addresses the design and analysis of an
algorithm which simultaneously solves the robot coverage
and exploration problems, as well as the sensor network
deployment problem. These problems are complementary
in that each is difficult to solve on its own. Our key insight
is that an efficient algorithm exists which can solve them
together.

Coverage: The coverage problem [3] is the maximization
of the total area covered by a robot’s sensors. Static
coverage is the problem of deploying robot(s) in a static
configuration, such that every point in the environment is
under the robots’ sensor shadow (i.e. covered) at every
instant of time. Clearly, for complete static coverage of
an environment the robot group should be larger than a
critical size (depending on environment size, complexity,
and robot sensor ranges). Determining the critical number
is difficult or impossible if the environment is unknown
a priori. Dynamic coverage, on the other hand, is ad-
dressed by algorithms which explore and hence ’cover’
the environment with constant motion and neither settle
to a particular configuration, nor necessarily to a particular
pattern of traversal.

Exploration: The exploration problem [9] is the discov-
ery of all traversable regions of the environment by the
robot. A robot is said to have explored the environment
completely, if at some time during its motion, no location

of the environment remains which has not been under
the robot’s sensor shadow at some prior time instant.
Exploration may be thus viewed as the initial (startup or
transient) phase of dynamic coverage.

Sensor Network Deployment: The network deployment
problem [17], [6] is the emplacing of individual network
’nodes’, each with limited communication range, into the
environment by a process that guarantees certain commu-
nication properties of the resulting node ensemble. The
simplest of these properties is that the emplaced nodes
form a single network, in other words they form a graph
with a single connected component where the nodes are the
graph vertices, and an edge between vertices signifies that
the corresponding nodes are within communication range.

Our domain of interest in this paper is a planar bounded
environment, large enough to prevent complete static cov-
erage by sensors on one robot. The robot must thus move in
order to observe all points in the environment frequently. In
other words we address the dynamic coverage problem with
a single robot. Further, we assume that the environment
is initially unknown and unexplored. Thus the robot’s first
complete tour of the environment is a solution to the explo-
ration problem. Last, we assume the existence of a number
of nodes, each capable of short range communication and
local processing, and able to act as a constituent of an
adhoc network. Our interest is in emplacing these nodes
into the environment such that they form a single network.

We present the Least Recently Visited (LRV) algorithm,
which is an efficient method to simultaneously address
these three problems. The basic premise behind the algo-
rithm is simple. The robot carries the network nodes as a
payload, and in the process of moving around, emplaces the
nodes into the environment based on certain local criteria.
In turn, the nodes self-organize to form a network, and
emit navigation directions for the robot as it goes by.
The process by which nodes compute navigation directions
depends on local frequency counts of which directions the
robot has recently pursued. Informally, nodes recommend
directions least recently visited by the robot, hence the
name LRV. LRV is simple, decentralized and robust. It is
a local algorithm and does not rely on a map or GPS and
does not perform explicit robot localization. Moreover, the
deployed network can be used for tasks other than coverage

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 3489

and exploration: robot navigation [1] and Multi-Robot Task
Allocation [4], [2] are two examples.

In past work [17], we have discussed an LRV-like algo-
rithm informally and focused on its experimental character-
ization. The key contribution of this paper is the theoretical
formulation of LRV and an analysis of its properties. For
purposes of analysis we treat the deployed nodes as the
vertices of a graph even though no explicit adjacency lists
are maintained at each node. The graph is thus purely an aid
to our analysis of the coverage and exploration algorithm,
not an entity used by the algorithm itself. In particular we
establish the following two properties:

1) LRV is complete on graphs (eventually terminates)
2) LRV is optimal on special graphs (i.e. trees)

Further, we present some experimental conjectures for
LRV on regular square lattice graphs.

II. RELATED WORK

The static coverage problem is addressed by algo-
rithms [5], [6], [7] which are designed to deploy robot(s)
in a static configuration, such that every point in the envi-
ronment is under the robots’ sensor shadow (i.e. covered)
at every instant of time. Dynamic coverage, on the other
hand, is a more general type of coverage and addressed by
algorithms which explore the environment with constant
motion and neither settle to a particular configuration [8],
nor necessarily to a particular pattern of traversal.

Exploration, a problem closely related to coverage, has
been extensively studied [9], [10]. The frontier-based ap-
proach [9] concerns itself with incrementally constructing
a global occupancy map of the environment. The map is
analyzed to locate the ’frontiers’ between the free and
unknown space. Exploration proceeds in the direction of
the closest ’frontier’. The multi-robot version of the same
problem was addressed in [11].

By contrast, LRV does not use a map, nor localization in
a shared frame of reference. It is based on the deployment
of static, communication-enabled, sensor nodes into the
environment by the robot.

There is prior work on robot exploration based on
the deployment of passive nodes (read-only devices), par-
ticularly using graph models [12], [13]. In both cases
the authors studied the problem of dynamic single robot
coverage on a graph world. The key result was that the
ability to tag a limited number of vertices (in some cases
only one vertex) with unique passive nodes dramatically
improved the cover time. We note that [12], [13] consider
the coverage problem, but in the process also create a
topological map of the graph being explored. They also
show that in certain environments exploration is impossible
without tagging. There are four key differences between
LRV and the work reported in [12], [13]:

1) We do not assume the robot can navigate from one
node to another in any reliable fashion. The robot
does not localize itself, nor have a map of the envi-
ronment (the structure of the graph corresponding to

Algorithm 1 Least Recently Visited (LRV) Algorithm
Robot Loop:
if no sensor node within communication range then

Deploy sensor node
else

Move in direction d suggested by nearest sensor node
i
Notify node j of arrival in its vicinity

Sensor Node Loop:
Emit least recently visited direction:
ANY OF (argmin∀d∈D(i)W (d))
Update sensor node weight if necessary: W := W + 1

the environment is not known to the robot, nor does
it construct it on the fly).

2) We assume the number of sensor nodes available for
drop-off is unlimited; in [12], [13] a limited number
of nodes is used.

3) We assume that each node being dropped off is
capable of simple computation and communication
- the nodes are active; in [12], [13], the nodes are
passive - they neither compute nor communicate.

4) We do not assume that nodes need to be retrieved;
in [12], [13] retrieval and reuse of nodes by the robot
is implied.

Our work is closely related to the ant robots litera-
ture [14], [15], [16] where the idea of a node with decaying
intensity (a semi-active node) is used. The robots sense the
change in intensity and are able to change the direction
of exploration to cover the environment efficiently. Our
algorithm differs from the these approaches - we assume
that each deployed node is capable of sensing, simple com-
putation and communication. We exploit the computation
and communication capabilities of the nodes to address
problems beyond coverage and exploration.

III. THE LRV ALGORITHM

As shown in Algorithm 1, LRV is the concurrent exe-
cution of two algorithms - one on the robot (Robot Loop)
and another on every node (Sensor Node Loop). For every
node i, let D(i) be the set of directions along which the
robot can move away from i. Then ∀d ∈ D(i),W (i, d)
is the weight (cached on node i) which stores the number
of times direction d was actually traversed when the robot
moved away from node i. In some cases, we will refer to
the weight of direction d as W (d) if the node identifier
is implicit. The function ANY OF (T) returns a single
element of a set T according to some rule (i.e. in order,
random, etc).

When a robot is placed into the environment initially,
according to Algorithm 1, it deploys a node because there
is no node within communication range. Over time the
algorithm causes a network of nodes to be deployed since
every time a new node is deployed it must be able to
communicate with at least one other sensor node in the

3490

network. Once deployed, each sensor node starts to emit
the locally least recently visited direction (hence the name
LRV), which is one of the directions with smallest weight
W (if there are multiple directions of the same weight, one
is arbitrary picked). In practice the number of directions
per node is often bounded and application dependent. In
our experimental work we set this bound to 4. Each node
locally associates a weight with each direction of travel
away from it. The weight is incremented in two cases:
right before a direction is traversed and on the destination
node right after a direction is traversed. Suppose the robot
is in the vicinity of a node i and is directed by node i to
move in direction d. The weight W (i, d) is incremented
right before direction d is traversed. Suppose now that the
robot enters the vicinity of node j through direction d.
The weight W (j, d) is incremented right after direction d
is traversed.

Several practical issues arise when the implementation of
LRV is considered. These include the detection by the robot
of which node vicinity it is in, and the problem of the robot
actually following the directional suggestions it is given
while avoiding obstacles, etc. For a detailed discussion of
such practical issues see [17], [1].

IV. THE GRAPH MODEL

For purpose of analysis, consider an open bounded
environment with no obstacles. In this case, given our node
deployment algorithm (LRV) described in the previous
section, we can model the steady state spatial configuration
of the nodes as a finite graph G = (V,E), where V is
a set of vertices (the deployed nodes) and E is a set of
edges such that ∀i, j ∈ V there is en edge between i
and j iff 1. i and j are within communication range; 2.
there is a physical path between i and j. Consider the
schematic of the environment in Figure 1a. We represent
the LRV-deployed network in this environment as a graph
G = (V,E) (shown in Figure 1c). A graph model is a
natural choice because of its flexibility and ubiquity of
usage in such problems.

Before discussing the theoretical properties of LRV we
provide working definitions for coverage and exploration
on graphs and corresponding performance metrics.

Definition (Coverage on a graph) 3.1: Coverage on a
graph is the act of visiting every vertex of a graph.

The performance of a coverage algorithm is measured
using the cover time [18] metric defined as follows:

Definition (Cover time) 3.2: Cover time is measured
in terms of the number of edges traversed such that every
vertex of a graph is visited at least once, i.e. the graph is
covered.

Note that in order to cover a graph, a robot needs to at
least traverse one edge per node (consider a spanning tree
of a graph). This notion is distinct from graph exploration
or ’complete’ graph coverage (where the robot needs to

Algorithm 2 Least Recently Visited (LRV) Algorithm on
Graph.

if Covered/Explored the graph then
Exit

else
n′ = ANY OF (argmin∀j∈E(n)W (n, j))
W (n, n′) := W (n, n′) + 1
n := n′

traverse every edge of a graph). This later notion is called
graph exploration, defined as follows:

Definition (Exploration on a graph) 3.3: Exploration
on a graph is the act of traversing every edge of the graph.

An exploration algorithm is evaluated using the Explo-
ration time metric defined as follows:

Definition (Exploration time) 2.4: Exploration time is
measured in terms of the number of edges traversed such
that every edge is traversed at least once.

It follows from the above definitions that exploration
is a superset of coverage. Therefore, Cover T ime =
O(Exploration T ime).

V. RESULTS: COMPLETENESS AND ASYMPTOTIC

COVER TIMES

Given the graph model we formally exhibit two im-
portant properties of LRV. First, we show that LRV is
complete, and second we establish a relationship between
its cover time and exploration time. For purposes of this
analysis we are interested in the behavior of LRV in the
’steady-state’ when all nodes have been deployed. In this
special case one can consider a simple version of LRV
on a graph as follows. For every vertex i, E(i) is the set
of edges incident to i. For clarity we identify an edge in
E(i) with the node this edge connects node i to. Then
∀e ∈ E(i) : W (i, e) is the weight (cached on node i)
maintaining the number of times edge (i, e) was traversed
from i. In some cases, we will refer to the weight of edge
e as W (e) if the originating node is implicit. Note that in
LRV the weight of an edge is incremented twice: before
and after traversal, but on different nodes. This redundancy
is required for practical purposes: the weights are cached on
nodes and since the environment is dynamic, sensing and
actuation are noisy, starting at the same node and traversing
the same direction at different points in time does not
guarantee that robot would arrive at the same node. In the
graph model we study the steady state spatial configuration
of the nodes on a finite unchanging graph. Hence, for
clarity of presentation, ∀i, j ∈ V the weight associated with
i → j transition is stored on the edge ei,j ∈ E. This weight
is identical to the one associated with j → i transition (e.g.
W (i, j) = W (j, i)). We increment the weight just in one
case: right before an edge is traversed, and associate it with
the edge ei,j ∈ E.

3491

R

(a) Initial environment

R

(b) Deployed sensor net-
work and a mobile robot

(c) Graph representation
of a)

Fig. 1. Modelling the network as a graph.

Fig. 2. Illustration for Theorem 1.

Algorithm 2 shows this simplified LRV on a graph. Note
that the deployment function is removed since we are in
the steady state.

A. Completeness of LRV on Finite Graphs

Theorem 1 (Completeness): The exploration time of
LRV on a finite graph is finite.

Proof: The goal is to show that LRV traverses every
edge of any finite graph in finite time. The proof is by
contradiction. Suppose the exploration time of LRV is
infinite. Therefore, there is a time t after which LRV
traverses only those edges that it traverses infinitely many
times (edges of the graph Gexp in Figure 2). By definition,
the weights of these edges grow without bound, including
the edge that is considered for traversal infinitely many
times but is never picked after time t (edge eij in Figure 2).
By definition, LRV will be forced to traverse this edge after
time t, which is a contradiction.

Note that the completeness result of Theorem 1 can be
applied to a wider set of real-time search algorithms [19].

Theorem 2: For a graph G=(V,E) with maximum degree
d, if Cover time = O(f(V)), then Exploration time =
d*O(f(V)).

Proof: Suppose LRV executes on a graph G until every
vertex is visited at least once. It is obvious that at least
one edge per vertex is traversed. Thus, after the first
execution of the algorithm, the number of untraversed

edges at every vertex is at most d−1. Note, that at a given
vertex, while there are untraversed edges, LRV will choose
one arbitrarily. Hence, after at most d executions of the
algorithm every vertex would be covered and every edge
would be traversed. Thus, if Cover T ime = O(f(V)),
then Exploration T ime = d ∗ O(f(V)).

B. LRV on a Square Lattice: Empirical Results from Sim-
ulation

In this section we consider the performance of LRV on
the following special graph G:

1) G is undirected.
2) G has degree degG ≤ 4. If all nodes have degree

4, then G is a square lattice i.e. a regular graph of
degree 4.

3) |V | = Θ(|E|).
We consider this special graph because in practical

implementations of LRV, a physical compass on the sensor
node determines direction. If this compass has k bits of
resolution, then each node is capable of identifying 2k

directions resulting in a graph of degree ≤ 2k. In previous
work [17] we performed experiments with k = 2, resulting
in a square lattice-like deployments. Hence we analyze
LRV on a square lattice. It has been shown [18] that the
cover time of a random walk (RW) on a regular graph
with V vertices is bounded below by V ln V and above by
2V 2. If we assume that passive nodes can be used, and the
graph G = (V,E) is known (a topological map is available)
and the robot can drop nodes of three independent colors,
then the problem of coverage can be solved optimally by
applying Depth-First Search (DFS) which is linear in V .
DFS assumes that all resources are available - nodes, map,
localization and perfect navigation.

In [12] the problem of coverage is considered in the
context of mapping a graph-like environment with V
vertices. Their algorithm explores the environment and
constructs a topological map on the fly. The assumptions
of the algorithm are that the robot has k(k < V) nodes,
and perfect localization and navigation within the graph.
The cover time of their algorithm is bounded by O(V 2).
It is important to note that the problem addressed in [12]

3492

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

2

4

6

8

10

12
x 10

7

Number of Nodes

C
o

ve
r

T
im

e

LRV
nlog(n)
DFS
RW

(a) Comparison of Cover Time n ln n curve,
DFS, RW and LRV

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

2

4

6

8

10

12

14
x 10

6

Number of Nodes

C
o

ve
r

T
im

e

LRV
nlog(n)
DFS

(b) A comparison between DFS and LRV.
This graph is a magnified view of (a)

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Number of Nodes

C
o

ve
r

T
im

e

LRV
DFS
1−LRTA*

(c) Comparison of Cover time DFS, 1-
LRTA* and LRV.

Fig. 3. Comparison of graph coverage algorithms. The n ln n curve is shown for reference.

is more complex than simple coverage, since they build a
map while exploring.

We have conducted simulation experiments running RW,
DFS and LRV on graphs with V ∈ [1002, 10002] nodes.
For every experiment the steady state recurrent cover
time is reported. In other words, LRV performed multiple
coverages of the graph until the average cover time reached
a steady state and the weights of edges were not reset after
a particular graph coverage had completed. The results of
the experiments are shown in Figure 3. The figure also
shows the n log n curve for reference. These experiments
lead us to

Conjecture 1: The asymptotic cover time of LRV is
O(V 1+ε).

From Figure 3 it is clear that cover time of LRV is less
than V ln V , however the bound is not tight. We suggest
the following technique of determining an ε for graphs
with given number of nodes. Assuming that the function
representing LRV cover time is monotonic we can analyze
the sequence LRV (i)

f(i) . If this sequence is increasing then
asymptotically LRV (i) = Ω(f(i))), if it is decreasing
then asymptotically LRV (i) = O(f(i))), and if it is
constant then asymptotically LRV (i) = Θ(f(i)). The
following is the sequence for i ∈ [1002, 15002] nodes and
f(i) = i1.0005, LRV (i)

i1.0005 :

[3.9406 3.9587 3.9639 3.9661 3.9672 3.9678 3.9682
3.9684 3.9685 3.9685 ... 3.9682]

Note that the sequence increases initially, then stabilizes
at value 3.9685 for i ∈ [9002, 10002] and finally decreases.
Hence, the value of ε for graphs with the number of nodes
≤ 15002 is ε ≤ 5 × 10−4 and the asymptotic cover time
of LRV is O(V 1.0005).

Using Theorem 2 and Conjecture 1, we get the following
result for a square lattice.

Algorithm 3 1-LRTA* Algorithm on a graph.
if Covered/Explored the graph then

Exit
else

n′ = ANY OF (argmin∀j∈E(n)W (j))
W (n) := W (n′) + 1
n := n′

Corollary 1: LRV explores the environment in asymp-
totic time O(V 1+ε).

C. LRV Tradeoffs

As mentioned earlier, the clear performance boundaries
for the coverage task are given by RW (upper) and DFS
(lower). The more interesting comparisons are between
LRV and DFS and our algorithm and an algorithm with
a limited number of passive node markers [12].

Figure 3b shows that the asymptotic performance of
our algorithm is similar to DFS. Note that in order to
determine the identity of neighboring vertices and to nav-
igate perfectly from node to node, DFS assumes that a
map of the environment is available and that the robot is
perfectly localized. Our algorithm, on the other hand, does
not have access to global information and the robot does
not localize itself. The nodes used in our algorithm are
more complicated than those used in DFS, and the cover
times are asymptotically somewhat larger than the cover
times of DFS.

In [12] the algorithm builds a topological map of the
environment and assumes perfect navigation (and thus,
localization) on the graph. The node markers are very
simple (the only function is to mark the vertex) and the
robot cannot differentiate between them. In addition the
algorithm assumes that there exists a local enumeration
of edges. The cover time of this algorithm, however, is
bounded by O(V 2). LRV, on the other hand, does not
have a map and the robot does not localize itself. Another

3493

(a)

(b)

Fig. 4. a) A map of the environment with an embedded sensor network
with a tree-like topology. b) Tree isomorphic to embedded sensor network
topology of a).

important difference is that we assume that the number of
nodes available to us is equal to the number of vertices.
In addition, the nodes used in our algorithm are more
complex, since they keep a certain state per direction, and
are uniquely identifiable. The cover time of our algorithm,
however, is conjectured to be less than V log V . Thus,
the apparent trade off is using a large number of ”smart”
nodes (and no global information or localization) vs. a
limited number of simple nodes (with mapping and partial
localization within the graph). The cover time achieved by
our algorithm is clearly better. However, if the nodes are
a precious resource, the algorithm described in [12] would
be preferred.

Another algorithm to which we compare LRV is 1-
LRTA* [20]. 1-LRTA* is a well known graph search algo-
rithm that can be applied to graph coverage. Algorithm 3
shows the details of 1-LRTA*. In 1-LRTA*, a weight is
associated with a node. The edge to traverse is chosen on
weights of neighboring nodes. The weight of a node is
incremented with the weight of a node the robot transitions
to. Hence, 1-LRTA* requires nodes to communicate.

Figure 3c shows that generally 1-LRTA* outperforms
LRV. However, it should be noted that in practice [17]
LRV is a deployment and exploration algorithm, whereas
1-LRTA* is a graph exploration algorithm which assumes
the graph is given.

D. LRV on Trees is Asymptotically Optimal

We now study the performance of LRV on trees. Fig-
ure 4a shows a map of the environment with an embed-
ded sensor network. The sensor network has a tree-like
topology. Figure 4b shows the tree which represents the

i j

k

l

m

eij

W(i,j)

W(i,m)

W(i,l)

W(i,k)

Tik

Tij

Tim

Til

T

Fig. 5. Illustration for Lemma 1.

embedding. A tree differs from square lattice in two major
ways: 1. The vertex degree is not bounded by 4; 2. A tree
does not contain cycles. The next two Lemmas establish
local properties of LRV needed for the main result of
this section: performance of LRV on trees is linear or
asymptotically optimal.

Lemma 1: An incoming edge eij is traversed twice iff
every other edge incident to vi is traversed twice.

Proof: Initially the weights of all edges are zero. Suppose
a robot enters vertex vi through an incoming edge eij (refer
to Figure 5). The weight of eij is incremented and equal
1, whereas the weights of other edges incident to vi are 0.

Next, LRV picks one of the 0-weighted edges, say eik,
and traverses it. The weight of eik is incremented and equal
1, the weight of eij is equal 1 and the weights of other
edges incident to vi are 0. Due to Completeness Theorem,
eventually robot returns back to vi by traversing an edge
eik. The weight of eik is incremented and equals 2, the
weight of eij is equal to 1 and the weights of other edges
incident to vi are 0.

Apply the same reasoning to every other 0-weighted
edge incident to vi. The weight of eij is equal 1, whereas
the weights of other edges incident to vi are 2. At this
point LRV is forced to pick eij as the only edge of
minimum weight incident to vi. Hence, an incoming edge
eij is traversed twice iff every other edge incident to vi is
traversed twice.

It follows from Lemma 1 that if before traversing an
edge eij , the weights of all edges incident to vi are equal
(initially all 0), then after an incoming edge eij is traversed
twice the weights of all edges incident to vi are equal and
incremented by two.

Lemma 2: An incoming edge eij is traversed twice iff
in a subtree T ′ = T − (Tij + eij) every edge is traversed
twice.

Proof: Consider a subtree T ′ (refer to Figure 6). LRV
starts at vertex vi. Applying Lemma 1 to vi results in every
edge incident to vi traversed twice. Applying Lemma 1
recursively to every vertex of T ′ results in every incident to

3494

i j
eij

W(i,j)

Tij
T’

T

Fig. 6. Illustration for Lemma 2.

v’ v
ev’v

W(v’,v)

T

Fig. 7. Illustration for Theorem 3.

every vertex edge traversed twice. Hence, an incoming edge
eij is traversed twice iff in a subtree T ′ = T − (Tij + eij)
every edge is traversed twice.

Theorem 3: The exploration time of LRV on a tree is
no more than 2|E|.

Proof: Consider a tree T (refer to Figure 7). Augment T
with a vertex v′ and an edge ev′v connecting v′ to vertex
v ∈ T . Consider LRV on the augmented tree starting at
v′. It follows from Lemma 2 that the robot executing LRV
would traverse ev′v twice when in tree T every edge is
traversed twice. Hence, the exploration time of LRV on a
tree is no more than 2|E|.

Theorem 3 asserts that the performance of LRV on trees
is linear or asymptotically optimal.

VI. IMPLICIT SENSOR NETWORK REPAIR AND

MAINTENANCE

An emergent property of LRV is the ability to perform
network repair and maintenance. Since the algorithm is
shown to be complete, it is guaranteed to visit the same
node over and over again. Suppose that one of the nodes,
say node k, ran out of power or was damaged. Further
consider a moment in time just before the robot traverses
direction d towards the damaged node. Now, the robot is
moving along direction d towards node k. According to
the deployment function that is used, there should be a
communication/sensing gap in the deployed sensor network
(unless the network was overdeployed and does not require
repair). Hence while facing the same deployment situation
and using the same deployment function at the location
where node k was deployed the robot simply deploys a
new node, thereby solving the problem of sensor network

repair and maintenance implicitly. Note that if the robot
can recognize the nodes then it can attempt repairing the
node first (or retrieving for later repair at the base) before
deploying the new node.

VII. SUMMARY

We presented an analysis of the Least Recently Visited
algorithm for the problem of coverage and exploration.
LRV is based on the idea of the robot deploying sensor
nodes into the environment from time to time. Once
deployed, every node acts like a signpost recording which
directions the robot have explored recently. When a robot
is in the vicinity of a node, it recommends to the robot
a direction that has been least recently visited (hence,
the name LRV). The algorithm is decentralized, scalable,
robust, fault tolerant and can be used on simple robots.

We analyzed the characteristics of LRV theoretically,
modelling the static steady state of the deployed network
as a finite graph G. We proved that LRV is complete on
G (i.e. the exploration time of LRV on a finite graph is
finite). For a graph G=(V,E) with maximum degree d, if
Cover Time = O(f(V)), then Exploration Time = d*O(f(V)).
We proved that Exploration Time is ≤ 2|E| (twice the
number of edges, or asymptotically optimal) for the special
case, when G is a tree. For another special case, when G
is a square lattice, we empirically conjectured that both
cover and exploration times are asymptotically O(V 1+ε).
We suggested a technique to determine an ε for graphs with
given number of nodes. The special case of a square lattice
is also interesting from practical perspective, because in
our LRV implementation and experiments [17] we chose
to maintain at most 4 directions, which results in a static
steady state of the deployed sensor network resembling a
square lattice.

We examined the tradeoffs that should be considered in
choosing one exploration algorithm over another to solve
the problem of coverage and exploration. The bounds for
the coverage task are given by random walk (the robot
has no information and explores randomly) and depth first
search (a map of the environment is available in the form
of a graph) which solves the problem optimally. The data
shown in Figure 3, suggest strongly that our algorithm
asymptotically outperforms the k node algorithm presented
in [12]. In addition, it is shown in [12] that if the number k
of available nodes reduces, the cover time increases rapidly.
Therefore, in dynamic environments the performance of
the algorithm decreases drastically even if one node is
destroyed. Whereas in our algorithm such a problem does
not exist, since a new node will be deployed in place of
the destroyed one automatically.

We compared LRV to 1-LRTA* [20]. 1-LRTA* is a
well known graph search algorithm that can be applied
to graph coverage. In 1-LRTA*, a weight is associated
with a node. The edge to traverse is chosen based on
weights of neighboring nodes. The weight of a node is
incremented with the weight of a node the robot transi-
tions to. Hence, 1-LRTA* requires nodes to communicate.
Figure 3c shows that generally 1-LRTA* outperforms LRV.

3495

However, in reality LRV deploys the network in addition to
exploring, whereas 1-LRTA* requires the graph to operate
on. In addition, LRV communicates only with a local node,
whereas 1-LRTA* communicates with the neighbors of the
local node as well.

The theoretical analysis on graphs shows that trade offs
in the assumptions can affect cover time significantly. Sim-
ple algorithms like RW or DFS can be used for coverage,
but only in the extreme cases as described above. In case,
where mapping and localization are not available, but the
number of available nodes is unlimited, our algorithm
appears to outperform others.

VIII. ACKNOWLEDGMENT

This work is supported in part by NSF grants ANI-
0082498, IIS-0133947, EIA-0121141, and CCR-0120778.

REFERENCES

[1] M. Batalin, G. Sukhatme, and M. Hattig, “Mobile robot navigation
using a sensor network,” in Proc. IEEE International Conference on
Robotics and Automation, New Orleans, Louisiana, April 2004, pp.
636–642.

[2] M. Batalin and G. Sukhatme, “Using a sensor network for distributed
multi-robot task allocation,” in Proc. IEEE International Conference
on Robotics and Automation, New Orleans, Louisiana, April 2004,
pp. 158–164.

[3] D. W. Gage, “Command control for many-robot systems,” in the
Nineteenth Annual AUVS Technical Symposium, Huntsville, Al-
abama, USA, 1992, pp. 22–24.

[4] M. Batalin and G. Sukhatme, “Sensor network-based multi-robot
task allocation,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, Las Vegas, Nevada, October 2003,
pp. 1939–1944.

[5] J. O’Rourke, Art Gallery Theorems and Algorithms. New York:
Oxford University Press, 1987.

[6] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem,” in Proc. of 6th International
Symposium on Distributed Autonomous Robotic Systems, Fukuoka,
Japan, 2002, pp. 299–308.

[7] M. A. Batalin and G. S. Sukhatme, “Spreading out: A local approach
to multi-robot coverage,” in Proc. of 6th International Symposium
on Distributed Autonomous Robotic Systems, Fukuoka, Japan, 2002,
pp. 373–382.

[8] ——, “Sensor coverage using mobile robots and stationary nodes,”
in SPIE2002, vol. 4868, 2002, pp. 269–276.

[9] B. Yamauchi, “Frontier-based approach for autonomous explo-
ration,” in In Proceedings of the IEEE International Symposium
on Computational Intelligence, Robotics and Automation, 1997, pp.
146–151.

[10] A. Zelinsky, “A mobile robot exploration algorithm,” in IEEE
Transactions on Robotics and Automation, vol. 8, 1992, pp. 707–
717.

[11] W. Burgard, D. Fox, M. Moors, R. Simmons, and S. Thrun, “Col-
laborative multirobot exploration,” in Proc. of IEEE International
Conferenceon Robotics and Automation (ICRA), vol. 1, 2000, pp.
476–481.

[12] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration
as graph construction,” in IEEE Transactions on Robotics and
Automation, 7-6, 1991.

[13] M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan,
“The power of a pebble: Exploring and mapping directed graphs,”
in Annual ACM Symposium on Theory of Computing (STOC ’98),
1998.

[14] R. T. Vaughan, K. Stoy, G. S. Sukhatme, and M. J. Matarić, “Lost:
Localization-space trails for robot teams,” IEEE Transactions on
Robotics and Automation, Special Issue on Multi-Robot Systems,
vol. 18, no. 5, pp. 796–812, Oct 2002.

[15] S. Koenig, B. Szymanski, and Y. Liu, efficient and Inefficient Ant
Coverage Methods. Annals of Mathematics and Artificial Intelli-
gence, 31, 41-76, 2001.

[16] I. Wagner, M. Lindenbaum, and A. Bruckstein, distributed cover-
ing by ant-robots using evaporating traces. IEEE Transactions on
Robotics and Automation, 15(5):918 933, 1999.

[17] M.A.Batalin and G. Sukhatme, “Coverage, exploration and deploy-
ment by a mobile robot and communication network,” Telecommuni-
cation Systems Journal, Special Issue on Wireless Sensor Networks,
vol. 26, no. 2, pp. 181–196, 2004.

[18] L. Lovasz, Random Walks on Graphs: A Survey, ser. Combinatorics,
Paul Erdos is Eighty, Keszthely, Hungary, 1993, vol. 2, pp. 1–46.

[19] S. Koenig and R. Simmons, “The influence of domain properties on
the performance of real-time search algorithms,” School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
Tech. Rep. CMU-CS-96-115, 1996.

[20] ——, “Easy and hard testbeds for real-time search algorithms,” in
Proccedings of National Conference on Artificial Intelligence, 1996,
pp. 279–285.

3496

	MAIN MENU

