
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS2003)
pp. 1939-1944, Las Vegas, Nevada, October 27-31, 2003

Sensor Network-based Multi-Robot Task Allocation

Maxim A. Batalin and Gaurav S. Sukhatme
Robotic Embedded Systems Laboratory

Center for Robotics and Embedded Systems
Computer Science Department

University of Southern California
Los Angeles, CA 90089, USA

maxim@robotics.usc.edu, gaurav@usc.edu

Abstract— We present DINTA, Distributed In-network
Task Allocation - a novel paradigm for multi-robot task
allocation (MRTA) where tasks are allocated implicitly to
robots by a pre-deployed, static sensor network. Experi-
mental results with a simulated alarm scenario show that
our approach is able to compute solutions to the MRTA
problem in a distributed fashion. We compared our approach
to a strategy where robots use the deployed sensor network
for efficient exploration. The data show that our approach
outperforms such an ’exploration-only’ algorithm. The data
also provide evidence that the proposed algorithm is more
stable than the ’exploration-only’ algorithm.

I. INTRODUCTION

This paper presents DINTA, Distributed In-network
Task Allocation - a novel paradigm for multi-robot task
allocation (MRTA) where tasks are allocated implicitly to
robots by a pre-deployed, static sensor network. In prior
work [1], [2] we have developed an algorithm for the
deployment, and maintenance of such a static network by
robots. We have also developed algorithms for exploration
and navigation [1], [2] where robots use the deployed
network to efficiently explore their environment and nav-
igate to a designated goal. In this paper, we assume the
network is pre-deployed (through means outlined in [1],
[2]), and robots have to perform spatially and temporally
distributed tasks efficiently. Our solution is to allow the
process of task allocation to occur in the static network
through distributed computation and implicit assignment
of robots to tasks.

We are generally interested in the mutually beneficial
collaboration between mobile robots and the static net-
work. The underlying principle in interaction between
the network and robots is: the network serves as the
communication, sensing and computation medium for the
robots, whereas the robots provide actuation, which is used
among other things for network management and updating
the network state.

We study a particular experimental scenario, emergency
handling, as an experimental substrate. In prior work [3],
we have used a similar scenario to study the role of
opportunism vs. commitment MRTA. In our experimental
scenario, events in the environment trigger alarms. An
alarm is spatially focused, but has temporal extent (i.e.

it remains on until it is turned off by a robot). Alarms
are detected by nodes in the static network. The task of
the team of robots is to turn off the alarms by notionally
responding to the emergency signaled by each alarm. This
is done by a robot navigating to the location of the alarm
which causes the alarm to shut off. The goal is to minimize
the cumulative alarm OnTime across all alarms, over the
duration of the entire experiment. Each Alarm’s OnTime
is computed as the difference between the time the alarm
was turned off by a robot and the time the alarm was
detected by one of the nodes of the network. We make
the following assumptions:

1) The sensor network is predeployed into the environ-
ment using algorithm given in [2].

2) In addition to deploying the network nodes, the
deployment algorithm also computes the distribution
of transitional probabilities P (s′|s, a) from network
node s to s′, when the robot executes action a [1].

3) An alarm requires at least one robot to service it.
To turn of an alarm, a robot needs to appear in its
vicinity. Thus, the handling of the alarm is purely
notional since that is not our focus here.

More telling, perhaps, is a list of what we do not
assume:

1) The robots do not have a pre-decided environment
map or access to GPS.

2) The environment is not required to be static.
3) The robots do not perform localization or mapping.

The key result of this work is that our approach sta-
tistically outperforms an ’exploration-only’ algorithm. In
addition, the obtained results show that the proposed algo-
rithm is more stable than the ’exploration only’ algorithm.

II. RELATED WORK

Our work is closely related to the body of literature on
using markers to aid mobile robot navigation. This idea
has received attention in coverage and exploration [1],
[2], [4], [5], [6], and navigation [1], [7], [8]. Ant-like
trail laying algorithms [7], [6] consider a special case of
the marker deployment approaches - when the distance
between the two consecutive markers is small. Therefore



a trail is formed that the robots can follow and cover
the environment and/or navigate. In these cases, no inter-
marker communication is necessary, indeed the markers
are passive ’read-only’ devices.

In [4], [5] the problem of graph coverage using a few
markers is considered. In both cases the authors study
the problem of dynamic single robot coverage on an
environment consisting of nodes and edges (a graph). The
key result was that the ability to tag a limited number of
nodes (in some cases only one node) with unique markers
dramatically improved the cover time.

The problem of multi-robot task allocation (MRTA)
has received considerable attention. For an overview
and comparison of the key MRTA architectures see [9],
which subdivides MRTA architectures into behavior-based
and auction-based. For example, ALLIANCE [10] is a
behavior-based architecture that considers all tasks for
(re)assignment at every iteration based on robots’ utility.
Utility is computed by measures of acquiescence and
impatience. Broadcast of Local Eligibility [11] is also
a behavior-based approach, with fixed-priority tasks. For
every task there exists a behavior capable of executing the
task and estimating the utility of robot executing the task.
Auction-based approaches include the M+ system [12]
and Murdoch [13]. Both systems rely on the Contract Net
Protocol (CNP) that puts available tasks for auction, and
candidate robots make ’bids’ that are their task-specific
utility estimates. The highest bidder (i.e., the best-fit robot)
wins a contract for the task and proceeds to execute it.

DINTA differs from the above MRTA approaches in the
following ways:

1) DINTA relies on a static network, thus communica-
tion, sensing and computation are distributed.

2) The utilities of task assignments are propagated and
computed by the network based on purely local
communication between network nodes.

3) The system does not require mobile robots to be
within communication range of each other. The
network is used for propagating messages between
robots.

4) The system does not place a limitation on the
number of robots. There is no computation or com-
munication overhead associated with increasing the
number of robots.

5) The system does not require one robot to recognize
another robot.

III. APPROACH

The basic idea of DINTA is that given a set of alarm-
weight pairs (ai, wi) detected by the network, every node
k in the network computes a suggested direction that a
robot should take if in the vicinity of k. This computation
results in a direction which maximizes the net utility of
the robot. The weight wi is an abstraction, which is a

(a) One alarm (b) Three alarms; A1, A2

and A
3

Fig. 1. Examples of navigation field computed.

scalar representation for several parameters like priority,
magnitude, time (older alarms should be served first), etc.
The ensemble of suggested directions computed over all
nodes is called a navigation field. An adaptive distributed
value iteration algorithm is used to compute the navigation
field. An example of a navigation field for one and three
alarms is shown in Figure 1.

It may be noted that an alternative approach for the
construction of a navigation field has been proposed in the
sensor network literature [8]. Instead of value iteration [8]
uses potential fields and the hop count to compute the
magnitude of the directional vectors.

A. Philosophy

The general idea of DINTA is to use a static network
and mobile robots cooperatively. The network provides a
’sensor’ that is ’stretched’ over the environment and thus
widens the range of applications for groups of robots that
do not cover the whole environment - ’can’t be everywhere
at the same time’. Thus, an alarm can be detected even
though no robot is within sensor range. In addition, mobile
robots can communicate through the static network even
if they are not within communication range of each other.
The other benefit of using the network is distributed
computation. First, there is no redundant computation (on
each separate robot). Second, since every node of the
network updates its state based only on the state of its
neighbors and robots in the vicinity, the system is scalable.
Third, utilities are computed in the network distributively
and propagated from the alarm (the goal state). Another
benefit is that the robots used can be very simple since
they do not need to localize and map the environment
- they navigate by listening to the suggestions from the
sensor network.

The DINTA approach has two subsystems - Cover-
age/Exploration and Alarm Response. If no alarms are
detected, the system operates in Coverage/Exploration [1],
[2] mode. In this mode, the navigation field computed by



the network, causes the robots to patrol the environment.
If, on the other hand, an alarm is detected, the system
switches to the Alarm Response mode where the navi-
gation field computed by the network guides the robots
to turn off alarms, thereby implicitly solving the MRTA
problem.

B. Coverage/Exploration

The Coverage/Exploration subsystem is described
in [2]. The approach uses interaction between the two
entities: the markers (nodes of the network) and the
mobile robots. The task of each marker is to recommend
a locally preferred direction of exploration for the robot
within its communication range. Thus each marker acts
as a local signpost telling a robot which direction to
go next. However, the robot treats this information as
a recommendation, and combines this advice with local
range sensing to make a decision about which direction
to actually pursue.

Each marker has a state associated with the four car-
dinal directions (South, East, North, West). The choice
of four directions is arbitrary. It implies that the marker
is equipped with a 2 bit compass. For each direction,
the marker maintains a state and a counter. A state can
be either OPEN or EXPLORED, signifying whether the
particular direction was explored by the robot previously.
A counter C is associated with each direction; it stores
the time since that particular direction was last explored.
When the robot is in the vicinity of a marker, the marker
emits a suggested direction the robot should take. This
implies that the robot’s compass and the marker’s compass
agree locally on their measurement of direction. Given the
coarse coding of direction we have chosen, this is not a
problem in realistic settings. The algorithm used by the
markers to compute the suggested direction is simple. All
OPEN directions are recommended first (in order from
South to West), followed by the EXPLORED directions
with largest last update value (largest value of C).

The robot remembers the identification of the marker it
heard most recently. If, during motion, a new marker is
heard, (i.e. the robot moved to the communication zone of
a different marker), the robot analyzes the data messages
received from the current marker and orients itself along
the suggested direction. In addition, the robot sends an
update message to the marker telling it to mark the
direction from which the robot approached the beacon as
EXPLORED. This ensures that the direction of recent ap-
proach will not be recommended soon. After the robot has
been oriented in a new direction, it checks its range sensor
for obstacles. If the scan does not return any obstacles, the
robot proceeds in the suggested direction, while sending
an update beacon message (upon receiving this message
the current marker updates the state of corresponding
direction to EXPLORED and resets the corresponding C

Utility Update

Task AllocationGeneral Task

ALARM(a,w,hc)

ALARM_OFF(a)

SUGGESTION(...)

Sensor Data

UTILITY_REQUEST/
UPDATE(...)

ROBOT_UPDATE(...)

Controller

IN

ALARM(a,w,hc)

ALARM_OFF(a)

UTILITY_REQUEST/
UPDATE(...)

Controller

OUT

Fig. 2. Generalized Node Architecture.

value). If, however, the suggested direction is obstructed
(something is in the way), robot sends a broadcast message
updating the marker with this information and requests a
new suggested direction. For the details of the approach
and theoretical analysis the reader is referred to [2].

[2] shows that the asymptotic performance of Cov-
erage/Exploration is between the performance of breadth-
first search O(n) and O(n ln n), where n is the number of
nodes in the network. Simulations show correspondence in
performance to theoretical results and that this algorithm
constantly outperforms a random walk (O(n2)).

C. Alarm Response

Figure 2 shows the data flow on a network node. If a
node receives an ALARM message with identification a

of the node that detected the alarm, weight w (estimation
of the alarm’s importance) and hop count h (estimation
of how far away node a is), the alarm is placed on the
list L of currently active alarms according to its utility
U (Utility Update block). We define the utility as
the ratio U =w

h
. This ratio helps node to decide which

alarm has the highest priority (i.e utility). In other words,
since only one global field is maintained (every node
computes one assignment direction), the nodes have to
decide which alarm would give larger reward to the robot
if it would start at the node. Every node maintains a
current alarm variable, which is the element of L with
largest utility. If the current alarm changes, the Task
Allocation block computes a new task assignment for
a robot (discussed next) and reroutes the alarm message
with incremented hop count to neighboring nodes. In the
global perspective, prioritizing between the tasks accord-



0 1 a b c n-1 nd e

0.25

0.45

0.3

0

0

b

c

d

k

e

a

Fig. 3. An example of a discrete probability distribution of node k for
direction (action) ”East”(i.e. right).

ing to their utility value results in creation of multiple
superimposed navigation fields (for example three alarms
case of Figure 1). Note that if Sensor Data block
indicates that an alarm is detected by the node itself,
then the node initiates a message ALARM(thisNodeID,
w, 0). General Task block represents the approach of
subsection III-B, which, in case L is empty and based
on the current state, sensor data and robot update data,
computes the suggested direction of exploration.

The task allocation problem for emergency handling can
be formulated as guiding robots towards a specific goal
state (alarm). Hence, the problem can be considered as
the problem of navigation. We assume that the network
is deployed and every node has a discrete probability
distribution of the transitional probability P (s′|sC , a)
(probability of arriving at node s′ given that the robot
started at node sC and commanded an action a). The
reader is referred to [1] for detailed discussion on how
such distributions can be obtained. Figure 3 shows a
typical discrete probability distribution for a node per
action (direction). Note that in practice the probability
mass is distributed around neighboring nodes and zero
otherwise.

Note that the state the robot transitions to depends only
on the current state and action. We model the navigation
problem as a Markov Decision Process [14]. To compute
the best action at a given node the value iteration [15] can
be used on the set of nodes S − sg , where sg is the goal
state. The general idea behind value iteration is to compute
the values (or utilities) for every state and then pick the
actions that yield a path towards the goal with maximum
expected value. The value is incrementally computed:

Vt+1(s) = C(s, a)+ max
a∈A(s)

∑

s′∈S−s

P (s′|s, a)×Vt(s
′) (1)

where C(s, a) is the cost associated with moving to
the next state (node). Usually the cost is chosen to be a
negative number which is smaller than −(minimalreward)

k
,

where k is the number of nodes. The rationale is that the
robot should ’pay’ for taking an action (otherwise any path
that the robot might take would have the same value),
however, the cost should not be too big (otherwise the
robot might prefer to stay at the same state).

Initially the value of the goal state is set to the weight
parameter and of the other states to 0. Given the values,
an action policy is computed for every state s as follows:

π(s) = arg max
a∈A(s)

∑

s′∈S−s

P (s′|s, a) × V (s′); (2)

The value iteration algorithm assumes central compu-
tation. We augment the traditional algorithm for usage
in sensor network. The idea is that every node in the
network updates its value and computes the optimal task
assignment (navigation action) for a robot in its vicinity on
its own. Once the current alarm has been changed, every
node starts the computation of the optimal task assignment
by updating values according to equation 1. Note that
the values of neighboring nodes are needed as well,
hence, the node queries its neighbors for corresponding
values. Note also that Distributed Value Iteration is a
Dynamic Programming problem and the general solution
to asynchronous Dynamic Programming was proposed
in [16].

After the values are computed, every node computes
an optimal policy for itself according to equation 2.
Neighboring nodes are queried once again for the final
value. The computed optimal action is stored at each
marker and is sent as a SUGGESTION message, to any
robots in the vicinity.

Note that the action policy computation is done only
once per alarm, and does not need to be recomputed. Also,
note that value update equations have to be executed until
the desired accuracy is achieved. For practical reasons the
accuracy in our algorithm is set to 10−3, which requires
a reasonable number of executions of the value update
equation per state (approx. 20) and thus, the list of values
that every node needs to store is small (20). Since the
computation and memory requirements are small it is
possible to implement this approach on the real marker
device that we are using (the Mote [17]).

IV. SIMULATION EXPERIMENTS

In our experiments we used the Player/Stage [18], [19]
simulation engine populated with a simulated Pioneer
2DX mobile robots equipped with 180◦ field-of-view
planar laser range finders (used for obstacle avoidance),
wireless communication and a mote base station (to com-
municate with the Motes, used as network nodes). A net-
work of 25 Motes was predeployed in a test environment.
The communication range of motes and robots was set to
approximately 4 meters. The task of the team of robots
is to serve emergencies by navigating towards the point
of alarm and minimize the cumulative alarm OnTime.
Alarm’s OnTime is computed as difference between the
time alarm was served by a robot and the time alarm
was detected by one of the nodes of the sensor network.



0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of Robots

O
n

T
im

e

exploration only
DINTA (exploration &  
alarm responce)       

Fig. 4. Comparison between implementation of DINTA and efficient
exploration

We conducted experiments in an environment of 576m2

with robot group sizes varying from 1 to 4, 10 trials
per group. For experiments the schedule of 10 alarms
was drawn (time-wise) from a Poisson distribution, with
uniformly distributed nodes that detected the alarm and the
weights that were assigned to the alarms. The parameter
of Poisson distribution was set to λ = 1

60 , which means
that the expected number of alarms is 10 in 600 seconds.

The implementation of the proposed approach in simu-
lation proceeds as follows. If there are no alarms detected
in the environment, then the robots execute exploration
algorithm of [1], [2]. If an alarm is detected, the network
computes task assignments (navigation field in our case).
Once the tasks are computed at every node, the robots
change from EXPLORATION to ALARM mode, and tra-
verse the directions suggested by the network. When one
robot reaches an alarm node, the robot injects an ALARM-
OFF message into the network, which when received by
any node causes removal of the alarm from its list L. Note
that if there are multiple alarms active at the same time, a
superposition of several navigation fields is produced, in
which case robots might follow different paths depending
on the portion of the environment in which they are
located. Examples of the navigation fields are shown on
Figure 1.

Figure 4 shows the OnTime comparison for exploration
only and the approach proposed in this paper (exploration
and alarm response). Clearly, the proposed approach out-
performs the exploration only algorithm even though as
environment becomes saturated with robots, the difference
becomes smaller. The difference is statistically significant
(the T-test p-value is less than 10−4 for every pair in data
set).

Moreover, the performance of DINTA is stable (small
and constant variance) whereas variances produced by
exploration approach change drastically and reduce as
environment becomes saturated with robots.

The proposed first-cut implementation of DINTA does
not make explicit assignments of tasks to robot or specific
robot subgroups, which may result in suboptimal behavior.
Consider the case when the robots are cluttered in one
region and therefore, can all be attracted towards the
same alarm. Although, in practice this phenomenon occurs
rarely, since exploration behavior of robots strives to
disperse robots in the environment. We are developing a
DINTA implementation which allows the computation of
multiple task assignments at every node (a task per robot
or robot subgroup). The space and time requirements for
this implementation are linear in the number of alarms,
which makes it realistic for implementation on our target
node platform (the Mote). In addition this approach would
allow online grouping of robots for more complex tasks.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced DINTA: Distributed In-
Network Task Allocation for solving the MRTA prob-
lem. DINTA allows us to combine the benefits of a
sensor network with mobility and functionality of robots.
The system compute task assignments distributively in-
network while, at the same time, providing a virtual sensor
and communication device that ’extends’ throughout the
whole environment and has obvious benefit over tradi-
tional MRTA approaches. The fundamental assumption,
though, is the existence of the sensor network. How-
ever, [1], [2] show that given set of markers large enough,
a sensor network can be deployed into an environment and
maintained by the robots.

There are several advantages in using DINTA as op-
posed to other MRTA approaches. The sensor network
allows robot to detect a goal (alarm) even though the goal
is not in robot’s sensor range. In addition, mobile robots
can use sensor network to relay messages if they are not
in the communication range of each other. One of the
other benefits of using DINTA is distributed in-network
computation, which 1. avoids redundant computation by
updating the state of a node based only on the state of
its neighbors and robots in the vicinity (scalability), 2.
computes utilities in network distributively and propagate
from the goal state (alarm). Another benefit is the ease of
determining relative distance to the goal (for determining
utilities) by considering ’hop counts’ from the goal state.
Note also that robots implementing DINTA can be quite
simple - they do not need to localize and map the environ-
ment - they can navigate by listening to the suggestions
from the sensor network.

In future work we plan to extend the current imple-
mentation of DINTA to allow explicit assignment of tasks
to robots or robot subgroups, which will improve the
performance in some cases and would allow more complex
task assignments as well as group formations.



We also plan to conduct further experiments both in
simulation and hardware in varying environments, with
tasks of varying complexity, requiring different numbers
of robots. A system would have to assign not only a task,
but also combine robots in a group if a task requires
participation of several robots.

VI. ACKNOWLEDGMENTS

This work is supported in part by NSF grants ANI-
0082498, IIS-0133947, CCR-0120778, and EIA-0121141.

VII. REFERENCES

[1] M. A. Batalin and G. S. Sukhatme, “Coverage,
exploration and deployment by a mobile robot and
communication network,” in The 2nd International
Workshop on Information Processing in Sensor Net-
works (IPSN ’03, Palo Alto, 2003, pp. 376–391.

[2] M. A. Batalin and G. S. Sukhatme, “Efficient
exploration without localization,” in To appear in
Proc. of IEEE International Conference on Robotics
and Automation (ICRA’03), Taipei, Taiwan, 2003.

[3] E. H. Ostergard, M. J. Mataric, and G. S. Sukhatme,
“Distributed multi-robot task allocation for emer-
gency handling.,” in In Proc. of the IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems (IROS),
2001, pp. 821–826.

[4] M. A. Bender, A. Fernandez, D. Ron, A. Sahai,
and S. Vadhan, “The power of a pebble: Exploring
and mapping directed graphs,” in Annual ACM
Symposium on Theory of Computing (STOC ’98),
1998, pp. 269–278.

[5] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes,
“Robotic exploration as graph construction,” in IEEE
Transactions on Robotics and Automation, 7-6, 1991.

[6] J. Svennebring and S. Koenig, “Trail-laying robots
for robust terrain coverage,” in To appear in Proc.
of IEEE International Conference on Robotics and
Automation (ICRA’03), Taipei, Taiwan, 2003.

[7] R.T Vaughan, K. Stoy, G. S. Sukhatme, and M.J.
Mataric, “Lost: Localization-space trails for robot
teams,” IEEE Transactions on Robotics and Automa-
tion, vol. 18, no. 5, pp. 796–812, 2002.

[8] Qun Li, Michael DeRosa, and Daniela Rus, “Dis-
tributed algorithms for guiding navigation across a
sensor network,” Tech. Rep., Dartmouth, Computer
Science Department, October 2002.

[9] B. Gerkey and M. J. Mataric, “Multi-robot task
allocation: Analyzing the complexity and optimality
of key architectures,” in To appear in Proceedings
of the IEEE International Conference on Robotics an
Automation (ICRA03), Taipei, Taiwan, 2003.

[10] L. E. Parker, “Alliance: An architecture for fault-
tolerant multi-robot cooperation.,” in IEEE Transac-
tions on Robotics and Automation, 1998, vol. 14, pp.
220–240.

[11] B. B. Werger and M. J. Mataric, Distributed Au-
tonomous Robotic Systems 4, chapter Broadcast of
Local Eligibility for Multi-Target Observation, pp.
347–356, Springer-Verlag, 2000.

[12] S. Botelho and R. Alami, “M+: a scheme for
multi-robot cooperation through negotiated task al-
location and achievement.,” in Proc. of IEEE In-
ternational Conferenceon Robotics and Automation
(ICRA), 2000, pp. 293–298.

[13] B. P. Gerkey and M. J. Mataric, “Sold!: Auction
methods for multi-robot coordination.,” in IEEE
Transactions on Robotics and Automation, 2002,
vol. 18, pp. 758–768.

[14] D. J. White, Markov Decision Process, John Wiley
& Sons, West Sussex, England, 1993.

[15] S. Koenig and R. G. Simmons, “Complexity analysis
of real-time reinforcement learning applied to finding
shortest paths in deterministic domains,” Tech.
Rep. CMU-CS-93-106, Carnegie Mellon University,
School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburg, PA 15213, December 1992.

[16] D. P. Bertsekas, “Distributed dynamic program-
ming,” IEEE Trans. Automatic Control, vol. AC-27,
no. 3, pp. 610–616, 1982.

[17] K. S. J. Pister, J. M. Kahn, and B. E. Boser, “Smart
dust: Wireless networks of millimeter-scale sensor
nodes,” Electronics Research Laboratory Research
Summary, 1999.

[18] B. P. Gerkey, R.T. Vaughan, K. Stoy, A. Howard,
G.S. Sukhatme, and M.J. Mataric, “Most valuable
player: A robot device server for distributed control,”
in IEEE/RSJ Intl. Conf. On Intelligent Robots and
Systems (IROS), Wailea, Hawaii, 2001.

[19] R.T. Vaughan, “Stage: a multiple robot simulator,”
Tech. Rep. IRIS-00-393, Institute for Robotics and
Intelligent Systems, University of Southern Califor-
nia, 2000.


