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Context

Robot programming systems have not kept pace with developments in general purpose pro-
gramming environments. Robot researchers face difficulties developing medium to large software
systems for robots that are to assist humans in everyday human environments. Robot systems
present special demands and as a result much of the software infrastructure is proprietary, much
is necessarily targeted at specific hardware, robot software development kits may be limiting,
there is a lack of open standards to promote collaboration, code reuse and integration, and there
is a lack of techniques for bringing the human in to the robot’s programming infrastructure.

Problem

Robot systems have special demands related to the complex interactions robots have in real
environments, and the complex sensors and actuators that robots use, including:

e A large number of devices for input, output and storage, which far exceed human program-
mers’ familiar senses and effectors, compared to the few devices in a desktop or server.

Simultaneous and unrelated activity on many inputs and outputs.

Real time requirements, as the automation system must operate in the real world.

Unexpected real world conditions.

e Wide variations in hardware and interfaces, as opposed to the highly commoditized desk-
top.

Programmers of robot arms and other complex articulated automatic devices, must also deal
with non—intuitive geometry. Programmers of mobile robots must deal with widely varying and
unpredictable conditions as the robot moves through its environment. Standard debugging tools
give programmers access only to program data. This makes debugging robot programs difficult
because program data is at best an indirect representation of the robot and environment.

Forces

Robots are increasingly used in service roles, where the robot’s environment and tasks are more
varied and unpredictable, requiring more complex programming. At the same time robot sensors
and controllers provide for more sophisticated decision making, adding to the robot capability
but further increasing the demands on human programmers and the programming environment.
Advances in human-robot interaction promise improved communication between robots and
humans, and these advances should also be capable of improving the programming process.



Solution

We view robot programming systems as having three important conceptual components that
are of interest to their designers:

e The programming component, including designs for programming language/s, libraries
and application programming interfaces (APIs), which enable a programmer to describe
desired robot behaviour.

e The underlying infrastructure including designs for architectures that support and execute
robot behaviour descriptions, especially in distributed environments.

e The design of interactive systems that allow the human programmer to interact with the
programming component, to create, modify and examine programs and system resources,
both statically and during execution. The human programmer may also interact with the
infrastructure component, to examine, monitor and configure resources, and directly with
robots as they perform tasks.

There are other components that are not of particular concern to designers of robot programming
systems, such as the robots themselves, operating systems, compilers, robot hardware drivers
and so on. A few aspects, such as real time operating system performance, will be of concern.

Programming component Some of our previous work includes problem solving and in-
structable systems for teaching robots [1, 2, 3, 4, 5, 6, 7]. For example, a robot must model and
reason about the human programmer’s intentions, and be able to recognise plans presented by
the human [2]. Robot programming systems can be combined with direct human-robot interac-
tion, where the programmer provides a text skeleton of the program and details are completed
interaction during the robot’s initial executions of the task [4]. Geoff Biggs’ work [8] is providing
better programming language tools, and his paper recently submitted to IROS05 describes the
use of dimensional analysis specially tailored to robotic programming applications.

Underlying infrastructure Evan Woo’s [9] three layer CORBA based, service broker appli-
cation architecture provides a distributed programming infrastructure, including tests on robots
ranging from those with only a single microcontroller (LEGO Mindstorm, Khepera) to those
with a considerably more sophisticated platform (B21r). Oscar Kuo’s work [10] extends this
to add real-time aspects using real-time CORBA and adds a services layer and other classes to
make programming easier. Barry Hsieh has studied the difficulties of reusing robot software in
a university environment and proposes a system architecture and simple templates for CORBA
use by new postgraduates (recently submitted to IROS05).

Interactive systems for programming Félix Trépanier’s [11] Graphical Simulation and
Visualisation (GSV) tool aims to help humans visualise robot behaviours operating in different
environments. It is integrated in a broader robot programming environment supported by the
service based architecture mentioned above. The GSV tool can display any robot model con-
trolled by a robot behaviour using a state-of-the-art game engine to render the virtual world thus
giving an accurate 3D perspective of the behaviour of the robots in the virtual environment.
Toby Collett’s work is providing an augmented reality tool to aid programmers, giving them
the capability to interact more directly with the robot’s view of the world during programming
(recently submitted to TROSO05).
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