Programming Robotic Assistants
Fxtended Abstract

Bruce MacDonald, Geoff Biggs, Toby Collett
Department of Electrical and Computer Engineering, University of Auckland
Email: {b.macdonald, ¢.biggs, t.collett} at auckland.ac.nz

March 15, 2005

Context

Robot programming systems have not kept pace with developments in general purpose pro-
gramming environments. Robot researchers face difficulties developing medium to large software
systems for robots that are to assist humans in everyday human environments. Robot systems
present special demands and as a result much of the software infrastructure is proprietary, much
is necessarily targeted at specific hardware, robot software development kits may be limiting,
there is a lack of open standards to promote collaboration, code reuse and integration, and there
is a lack of techniques for bringing the human in to the robot’s programming infrastructure.

Problem

Robot systems have special demands related to the complex interactions robots have in real
environments, and the complex sensors and actuators that robots use, including:

e A large number of devices for input, output and storage, which far exceed human program-
mers’ familiar senses and effectors, compared to the few devices in a desktop or server.

Simultaneous and unrelated activity on many inputs and outputs.

Real time requirements, as the automation system must operate in the real world.

Unexpected real world conditions.

e Wide variations in hardware and interfaces, as opposed to the highly commoditized desk-
top.

Programmers of robot arms and other complex articulated automatic devices, must also deal
with non—intuitive geometry. Programmers of mobile robots must deal with widely varying and
unpredictable conditions as the robot moves through its environment. Standard debugging tools
give programmers access only to program data. This makes debugging robot programs difficult
because program data is at best an indirect representation of the robot and environment.

Forces

Robots are increasingly used in service roles, where the robot’s environment and tasks are more
varied and unpredictable, requiring more complex programming. At the same time robot sensors
and controllers provide for more sophisticated decision making, adding to the robot capability
but further increasing the demands on human programmers and the programming environment.
Advances in human-robot interaction promise improved communication between robots and
humans, and these advances should also be capable of improving the programming process.



Solution

We view robot programming systems as having three important conceptual components that
are of interest to their designers:

e The programming component, including designs for programming language/s, libraries
and application programming interfaces (APIs), which enable a programmer to describe
desired robot behaviour.

e The underlying infrastructure including designs for architectures that support and execute
robot behaviour descriptions, especially in distributed environments.

e The design of interactive systems that allow the human programmer to interact with the
programming component, to create, modify and examine programs and system resources,
both statically and during execution. The human programmer may also interact with the
infrastructure component, to examine, monitor and configure resources, and directly with
robots as they perform tasks.

There are other components that are not of particular concern to designers of robot programming
systems, such as the robots themselves, operating systems, compilers, robot hardware drivers
and so on. A few aspects, such as real time operating system performance, will be of concern.

Programming component Some of our previous work includes problem solving and in-
structable systems for teaching robots [1, 2, 3, 4, 5, 6, 7]. For example, a robot must model and
reason about the human programmer’s intentions, and be able to recognise plans presented by
the human [2]. Robot programming systems can be combined with direct human-robot interac-
tion, where the programmer provides a text skeleton of the program and details are completed
interaction during the robot’s initial executions of the task [4]. Geoff Biggs’ work [8] is providing
better programming language tools, and his paper recently submitted to IROS05 describes the
use of dimensional analysis specially tailored to robotic programming applications.

Underlying infrastructure Evan Woo’s [9] three layer CORBA based, service broker appli-
cation architecture provides a distributed programming infrastructure, including tests on robots
ranging from those with only a single microcontroller (LEGO Mindstorm, Khepera) to those
with a considerably more sophisticated platform (B21r). Oscar Kuo’s work [10] extends this
to add real-time aspects using real-time CORBA and adds a services layer and other classes to
make programming easier. Barry Hsieh has studied the difficulties of reusing robot software in
a university environment and proposes a system architecture and simple templates for CORBA
use by new postgraduates (recently submitted to IROS05).

Interactive systems for programming Félix Trépanier’s [11] Graphical Simulation and
Visualisation (GSV) tool aims to help humans visualise robot behaviours operating in different
environments. It is integrated in a broader robot programming environment supported by the
service based architecture mentioned above. The GSV tool can display any robot model con-
trolled by a robot behaviour using a state-of-the-art game engine to render the virtual world thus
giving an accurate 3D perspective of the behaviour of the robots in the virtual environment.
Toby Collett’s work is providing an augmented reality tool to aid programmers, giving them
the capability to interact more directly with the robot’s view of the world during programming
(recently submitted to TROSO05).

References

[1] Rosanna Heise and Bruce A. MacDonald. Robot program construction from examples. In
Proc. National Irish AI Conf., Dublin, Ireland, September 1989. Also in book form, edited



[10]

[11]

by A. F. Smeaton and G. McDermott (Eds.), Al and Cognitive Sciences 89, Springer—
Verlag, 1990, pp 254-271.

John D. Lewis and Bruce A. MacDonald. Machine learning under felicity conditions: ex-
ploiting pedagogical behavior. In Proceedings of AI / CS 92, Limerick, Ireland, September
1992. Also presented at the AAAT Workshop on Constraining Learning with Prior Knowl-
edge, July 1992, San Jose, CA.

Bruce A. MacDonald and David Pauli. Adaptive robot training by programming and
guiding. Journal of Intelligent Manufacturing Systems, 4:385-404, 1993.

Bruce A. MacDonald. Instructable systems. Knowledge Acquisition, 3:381-420, December
1991.

Bruce A. MacDonald and Jacky Baltes. Learning, planning and understanding human
instructions. In Proceedings of the Machine Learning Workshop at AI/GI/VI’9/, pages
vii-1-vii-10, Banff, Alberta, Canada, May 1994. Proceedings available as Research Report
No. 94/539/08 from the Department of Computer Science, University of Calgary, 2500
University Drive NW, Calgary, Alberta, Canada, T2N 1N4.

Natascha O. Schiiler and Bruce A. MacDonald. Learning repetition in string transforma-
tions. In Proceedings of the Tenth Canadian Artificial Intelligence conference, pages 39—46.
Canadian Society for the Computational Studies of Intelligence, May 1994.

Jacky Baltes and Bruce A. MacDonald. A distributed architecture for an instructable
problem solver. In Proceedings of the 27th Hawaii International Conference on Systems
Sciences, pages 63-72, Wailea, Maui, 4-7 January 1994. Emerging Paradigms for Intelligent
Systems minitrack in the Decision Support and Knowledge—based Systems Track.

Geoffrey Biggs and Bruce MacDonald. A survey of robot programming systems. In Pro-
ceedings of the Australasian Conference on Robotics and Automation, CSIRO, Brisbane,
Australia, December 1-3 2003.

Evan Woo, Bruce A. MacDonald, and Félix Trépanier. Distributed mobile robot application
infrastructure. In International Conference on Intelligent Robots and Systems (IROS), pages
1475-80, Las Vegas, October 2003.

Yuan hsin (Oscar) Kuo and Bruce MacDonald. A distributed real-time software framework
for robotic applications. In Proc. IEEFE Int. Conf. on Robotics and Automation (ICRA’05),
Barcelona, 18-22 April 2005. To be presented.

Félix-Etienne Trépanier and Bruce A. MacDonald. Graphical simulation and visualisation
tool for a distributed robot programming environment. In Proceedings of the Australasian
Conference on Robotics and Automation, CSIRO, Brisbane, Australia, December 1-3 2003.



