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Abstract

Mobile wireless sensor networks (MWSNs) will enable information systems to gather de-

tailed information about the environment on an unprecedented scale. These self-organising,

distributed networks of sensors, processors and actuators that are capable of movement have

a broad range of potential applications, including military reconnaissance, surveillance, plan-

etary exploration and geophysical mapping. In many of the foreseen applications the MWSN

will need to form a geometric pattern without assistance from the user. In military recon-

naissance, for example, the nodes will be dropped onto the battlefield from a plane and land

at random positions. The nodes will be expected to arrange themselves into a predetermined

formation in order to perform a specific task. Thus, we present algorithms for forming a

line, circle and regular polygon from a given set of random positions. The algorithms are

distributed and use no communication between the nodes to minimise energy consumption.

Unlike past studies of geometric problems where algorithms are either tested in simulations

where each node has global knowledge of all the other nodes or implemented on a small

number of robots, the robustness of our algorithms has been studied with simulations that

model the sensor system in detail. The simulations demonstrate that the algorithms are

robust against random errors in the sensors and actuators.



Conventional sensor systems use one of two approaches to a sensing problem 12. One

approach is to use large complex sensors positioned far from the phenomena being observed.

The other approach is to use several sensors with a carefully engineered placement and

communications topology. There is another approach, however, that is starting to receive

more research attention:

• use a large number of spatially distributed nodes (sensor units equipped with pro-

cessing and communications hardware) embedded within or in close proximity to the

phenomena being observed7; and

• use cooperation among the nodes to autonomously perform the sensing task.

Such a network is called a wireless sensor network (WSN).

There is a field within WSNs that is highly ambitious and has only just begun to emerge.

This area of research, called mobile wireless sensor networks (MWSNs), presents many in-

teresting research challenges. MWSNs will enable information systems to gather detailed

information about the environment on an unprecedented scale. They have a vast range of

potential applications, including

Defence: They can carry out reconnaissance and search for land mines, preventing human

casualties.

Security: They can provide mobile surveillance, unlike present security systems.

Exploration: They can gather sensor data of unexplored environments, including those on

other planets.

Mapping: They can perform scientific mapping tasks such as geophysical mapping.
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A major challenge in the development of MWSNs is coordinating the motion of the nodes

to achieve the desired objective. In the envisioned applications, this is a non-trivial problem

for a number reasons:

• Nodes are prone to failure or damage, especially in military applications.

• The user might be unable to manually configure the network, because (a) the operating

environment is difficult to access or dangerous, as in military applications; or (b) the

network must be deployed on short notice.

• The sensors and actuators are subject to error.

• Wireless communication requires a lot of power while the nodes have a limited supply

of energy, restricting the amount of information that can be shared between the nodes.

For these reasons, the motion coordination algorithms should be robust, self-organising and

distributed. The aim of this paper is to explore motion coordination algorithms that meet

these requirements.

Where do we begin in our investigation of motion coordination algorithms for MWSNs?

What are the fundamental motion coordination problems that will be encountered in typical

MWSN applications? We note that in many of the foreseen applications the given task

must be carried out with the nodes arranged in a certain geometric pattern. Furthermore,

in many applications where a certain geometric pattern is required, the MWSN must be

deployed without assistance from the user. In military applications such as reconnaissance,

for example, the nodes will be dropped from a plane behind enemy lines, landing at random

positions. As explained by Balch and Arkin2, the formation used has a major impact on

performance in such tasks. Thus, in this paper, we investigate the problem of forming a

geometric pattern from a given set of random positions.
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The proposed algorithms were tested through simulation. The velocity of each node was

set according to the algorithm being tested and the positions of the nodes were computed

for each interval of simulation time. The nodes used vision to locate their neighbours. A

ray-tracer was used to construct a simple model of each scene and generate images from the

perspective of each camera on each of the nodes. The simulations included random errors

to test the robustness of the algorithms.

Little research has been done on the problem of forming a geometric pattern with multiple

mobile robots beginning from a random set of positions. Sugihara and Suzuki17 and Défago

and Konagaya6 propose algorithms for forming a circle, but their algorithms require the

robots to have global knowledge of all other robots. Using our algorithm this task can be

performed with only partial knowledge of the other robots and this has been demonstrated

with simulations.

The approach taken in this paper enables us to gain insight into the issues that would

arise in real implementations of motion coordination algorithms. There are challenges that

must be considered in the design of motion coordination algorithms if vision is used to locate

other nodes, such as occlusion and image noise. Our study is unique in that the impact of

some of the errors in the sensors and actuators are investigated in simulations that model

the sensor system in detail.

The rest of the paper is as follows. A review of related work is given in Section 1.

In Section 2, algorithms for forming a line, circle and regular polygon are presented. The

robustness of the algorithms under various conditions is tested through simulations in Section

3. Our final conclusions for this paper are discussed in Section 4.
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1 Review of Related Work

The field of MWSNs is relatively new, so literature relating specifically to this area is scarce.

The following areas make a valuable contribution to research on MWSNs:

1. Wireless sensor networks

2. Cooperative mobile robotics

WSNs provide the main foundation for research on MWSNs, as MWSNs are essentially an

extension of WSNs. Cooperative mobile robotics addresses the highly complex problems in

motion coordination and cooperative behaviour which are introduced when the nodes have

mobility. Akyildiz et al.1 provide a comprehensive and recent survey of research in WSNs.

A survey of research on cooperative mobile robotics is given by Cao et al. 3.

Sugihara and Suzuki17 develop distributed algorithms for forming geometric patterns

with mobile robots. They present the following algorithms:

• Algorithm CIRCLE: Forms a circle.

• Algorithm CONTRACTION: Given a parameter n, forms an n-sided polygon when

n ≥ 3 and distributes the robots uniformly along a line segment formed with Algorithm

FILLPOLYGON when n = 2.

• Algorithm FILLCIRCLE: Distributes the robots uniformly within an approximation

of a circle.

• Algorithm FILLPOLYGON: Distributes the robots uniformly within a convex polygon.

• Algorithm FOLLOW: Divides the robots into a specified number of groups.

Simulations show that sometimes a Reuleaux’s triangle results from Algorithms CIRCLE and

FILLCIRCLE. Also, “bubbles”—convex regions with no robots—sometimes appear within
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the shape with Algorithms FILLCIRCLE and FILLPOLYGON. Chen and Luh4,5 modify

Algorithm CIRCLE to incorporate collision avoidance.

Yamaguchi uses feedback control laws to achieve a desired formation 20 and enclose a

target using holonomic19 or nonholonomic18 mobile robots. Yamaguchi’s approach is decen-

tralised, well grounded mathematically and includes collision avoidance, however it is limited

to formations that are already organised into some form of open chain.

Flocchini et al.8–10, Prencipe15 and Prencipe and Gervasi16 study the computational

issues of pattern formation. A model of time and motion is proposed which the authors

believe more realistically models a system of robots. They also investigate how the agreement

between the robots’ local coordinate systems affects the solvability of a pattern formation

problem. The following theorem summarises their findings:

1. With a common coordinate system of (that is, the robots agree on) both x and y

directions and orientations, the robots can form an arbitrary given pattern 10. This is

equivalent to assuming that the robots are equipped with a compass.

2. With agreement on only one axis direction and orientation, the pattern formation

problem is unsolvable when n is even, while it can be solved if n is odd10.

3. With agreement on only one axis direction and orientation, an even number of robots

can form only symmetric patterns that have at least one axis of symmetry not passing

through any vertex of the pattern9.

4. With no agreement at all, the robots cannot form an arbitrary given pattern 10.

Défago and Konagaya6 propose a distributed algorithm for forming the smallest enclosing

circle from a given set of initial locations. The motion planning of each robot is based on

the relationship between its Voronoi cell and the smallest enclosing circle of the beginning

5



configuration. The drawback of this algorithm is that the nodes must have global knowledge

of all the robot locations to compute the smallest enclosing circle.

Fredslund and Matarić11 develop a simple algorithm for establishing and maintaining

a formation where each robot, except the leader of the formation, follows a neighbouring

robot. The algorithm is limited to formations with a single chain of positional dependencies

and under the assumption that each robot’s field of view is limited to ±90◦ from the front,

a robot cannot follow another that is behind it. The leader of the formation is called the

conductor, and the robot that a neighbouring robot chooses to follow is called the friend of

that robot. Each robot except the conductor maintains a certain distance and bearing from

its friend. If one end of the chain of friends is at the front of the formation, the formation

is noncentred ; otherwise, it is centred. A centred and noncentred formation are shown in

Figure 1. Each robot is assigned a unique numerical ID, which is used to determine the

appropriate friend. If a robot has an ID lower than that of the conductor, it chooses a friend

with an ID greater than its own. Similarly, if a robot has an ID greater than that of the

conductor, it chooses a friend with an ID lower than its own. For noncentred formations the

conductor has the lowest ID, thus the robots will always choose friends with a lower ID for

these formations. The soundness of the algorithm was demonstrated with simulations and

experiments using four robots.

2 Algorithms

We present three algorithms:

Algorithm L: Forms a line parallel with the x-axis with the nodes separated by a specified

constant distance S1.

1In the thesis by Lee13, this algorithm is labelled Algorithm CS/G.
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Figure 1: Algorithm of Fredslund and Matarić which uses “friendships” to form and maintain
a geometric pattern.

Algorithm C: Forms a circle with a given radius Rc centred at a landmark.

Algorithm P/n: Forms a regular polygon with n sides centred approximately at the cen-

troid of the initial locations of the nodes. The distance from the centre to the closest

point on the perimeter of the regular polygon is specified by the constant Rmin.

Each algorithm is comprised of two components:

Vision: To determine the relative positions of other nodes using images captured by the

cameras.

Motion Planning: To determine the appropriate adjustment in the node’s velocity to

maintain the desired formation.

Each of these components is described below.

2.1 Vision

A number of assumptions have been made about the environment:
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1. The ground is an infinitely large, perfectly flat plane.

2. The nodes are cylindrical in shape and always upright.

3. Each node is equipped with eight cameras positioned evenly on the circumference of

the cylinder to achieve a 360◦ field of view, as illustrated in Figure 2. The views of

adjacent cameras overlap to ensure coverage in all directions.

4. No other objects are present.

As a result of the above conditions, finding the nodes in the images is simply a matter of

searching for objects approximately rectangular in shape centred on the horizon. The image

was repeatedly segmented using a recursive algorithm. As illustrated in Figure 3, regions of

interest are identified and segmented using histograms of (a) the number of feature pixels

counted in each column, and (b) the number of feature pixels counted in each row of the

segment. Once a node has been identified, the relative position is calculated using geometry.

A detailed description of the vision algorithm is given by Lee13.

2.2 Motion Coordination

2.2.1 Algorithm L

In the discussion that follows, it is assumed that the desired line runs parallel to the x-axis

in the Cartesian plane.

The x- and y-components of the velocity are treated separately in the motion planning.

The x-component depends purely on the relative x-coordinates of neighbouring nodes, and

likewise the y-component depends purely on the relative y-coordinates of neighbouring nodes.

x-velocity The approach of Algorithm L is for the nodes at each end to maintain a separa-

tion of S from their neighbour while the other nodes maintain an equal separation from their
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camera field of view

camera

Figure 2: Using several cameras to achieve a 360◦ field of view.

neighbour on each side. When the system reaches a state of equilibrium, all neighbouring

nodes are separated by S.

The algorithm is as follows. If another node is in-line with the node, that is, has the

same x-coordinate, then move left or right, choosing the direction at random. Otherwise, if

there is a neighbour on the left as well as on the right, move to the mid-point between them.

If there is only a neighbour on one side, that is the node is at one end of the array, then

maintain a constant distance S from the neighbouring node.

Since the aim is to concentrate on the fundamental issues of coordinating the motion of a

group of robots that must rely on local information, the algorithm is designed to be as simple

as possible. Hence, the magnitude of the x-velocity is set to a constant ∆vx when moving.

When choosing the value of ∆vx and the motion constants used in the other algorithms, a

decision is made based on the trade-off between convergence time and stability, as well as
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Figure 3: Isolating the nodes in an image using histograms of the number of feature pixels
counted in the columns and rows.
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other issues that are specific to the implementation of the mobility system.

Let

neighbour in-line = Boolean variable that is TRUE when another
node has the same x-coordinate and FALSE
otherwise;

I = random variable that assumes a value of 0 or
1 with equal probability;

left neighbour = Boolean variable that is TRUE when a neigh-
bour is detected on the left and FALSE oth-
erwise;

right neighbour = Boolean variable that is TRUE when a neigh-
bour is detected on the right and FALSE oth-
erwise;

dleft = x-distance of the left neighbour;

dright = x-distance of the right neighbour; and

vx = set x-velocity.

Algorithm 1 shows the algorithm for setting the x-velocity in Algorithm L.

Algorithm 1 Setting the x-velocity in Algorithm L.

if (neighbour in-line) then
vx ← (1− 2I)∆vx

else if (left neighbour and right neighbour and dleft < dright)
or (left neighbour and not right neighbour and dleft < S)
or (not left neighbour and right neighbour and dright > S) then
vx ← ∆vx

else if (left neighbour and right neighbour and dleft > dright)
or (left neighbour and not right neighbour and dleft > S)
or (not left neighbour and right neighbour and dright < S) then
vx ← −∆vx

else
vx ← 0

end if

y-velocity Determining the appropriate y-velocity to align a node with its neighbours is

basically a matter of determining the average relative y-displacement of neighbouring nodes

11



y
y0 y1 y3

y4v y∆ x

+ve

−ve

y

=v y +

Figure 4: Using the average relative y-displacement of neighbouring nodes to align the nodes
along the y-axis.

as illustrated in Figure 4. In the example shown in this figure the average is greater than

zero, so the y-velocity of the node at the origin is set to ∆vy to align itself with its neighbours.

The y-displacement is defined to be positive in one direction and negative in the other. The

y-velocity is chosen according to the sign of the average y-displacement.

Let

yi = relative y-displacement of neighbour i;

n = number of known neighbours;

∆vy = magnitude of the y-velocity when moving for-
ward or backward; and

vy = set y-velocity.

Algorithm 2 Setting the y-velocity in Algorithm L.

ȳ ← 1
n

∑

i yi

if ȳ < 0 then
vy ← −∆vy

else if ȳ > 0 then
vy ← ∆vy

else
vy ← 0

end if

Note that the algorithm does not depend on each node having accurate knowledge of
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the y-displacement of every other node. In fact, they only need to know the y-displacement

of their left and right neighbours. However, the more global knowledge that is used in the

decision the more efficient and robust the performance.

2.2.2 Algorithm C and Algorithm P/n

In the discussion that follows, for a given node i with polar coordinates (ri, θi), as illustrated

in Figure 5:

• The clockwise neighbour is the node with the closest θ-coordinate clockwise from θi

and is labelled node i− 1.

• The anticlockwise neighbour is the node with the closest θ-coordinate anticlockwise

from θi and is labelled node i + 1.

• The immediate neighbours are the clockwise and anticlockwise neighbours.

• θcw is the angle subtended by node i and its clockwise neighbour.

• θacw is the angle subtended by node i and its anticlockwise neighbour.

Algorithms C and P/n are analogous to Algorithm L in that the motion of each node

consists of two components that are determined independently, and one of these compo-

nents is responsible for achieving a symmetrical geometric relationship with the immediate

neighbours. The motion of each node is considered in terms of the following two vector

components, as illustrated in Figure 5, where the origin is the centroid of the nodes’ current

positions:

Radial component (vR): A component parallel to a line from the origin to the node. vR

is set to move node i towards the edge of the shape. If ρ(θi) is the distance of the edge
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Figure 5: The radial component, vR, and tangential component, vT.

of the shape from the origin at an angle of θi, vR is positive when ri < ρ(θi), 0 when

ri = ρ(θi) and negative when ri > ρ(θi).

Tangential component (vT): A component perpendicular to a line from the origin to the

node. vT is set to move node i in the direction of the line with polar coordinates

satisfying θ = θi−1+θi+1

2
. Eventually the nodes reach a state of equilibrium where the

angle subtended by every pair of neighbouring nodes is 2π
N

for a network with N nodes.

For simplicity, positive and negative values of the same magnitude were used for setting vR

and vT. That is, vR = ±∆vR or 0 and vT = ±∆vT or 0, where ∆vR and ∆vT are constants

chosen according to the capabilities of the actuators and vision processing system.

For Algorithm C, ρ(θi) = Rc. For Algorithm P/n, ρ(θi) depends on θi and is determined

as follows. Assume that the desired regular polygon is oriented so that one of the sides

intersects the line θ = 0 at 90◦. First, we determine which side of the shape intersects a line

drawn from the origin to the edge of the shape at an angle of θi with respect to the origin.

We then determine the angle φ of a line from the origin that intersects this side of the shape
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Figure 6: Calculating ρ(θi) when forming a regular polygon with Algorithm P/n.

at 90◦. These two lines and the edge of the shape form a right triangle, where the vertex

at the origin has an angle of |φ − θi|, as illustrated in Figure 6. Thus, using trigonometry,

ρ(θi) = Rmin

cos(φ−θi)
.

Once the values for vR and vT have been determined, we rotate the vector < vR, vT > by

θi to obtain < vx, vy >, the final velocity defined in the node’s local coordinate system.

The shape-formation algorithms are formally stated below. ρ(θi) is calculated in Step 1

and is different for each algorithm. The velocity is determined in Step 2.

Step 1. The origin is set to the centroid of the nodes’ current locations. Algorithm C

begins with

ρ(θi)← Rc

and Algorithm P/n begins with
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∆θ ←
2π

n

φ ← round
(

2π

∆θ

)

∆θ

ρ(θi) ←
Rmin

cos(φ− θi)

where round(x) is x rounded to the nearest integer.

Step 2. Step 2 is shown in Algorithm 3.

Algorithm 3 Step 2 for Algorithms C and P/n.

if ri < ρ(θi) then
vR ← ∆vR

else if ri > ρ(θi) then
vR ← −∆vR

else
vR ← 0

end if
if θacw > θcw then

vT ← ∆vT

else if θacw < θcw then
vT ← −∆vT

else
vT ← 0

end if
vx ← vR cos θi − vT sin θi

vy ← vR sin θi + vT cos θi
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3 Experiments

3.1 Simulation Setup

The algorithms were tested by simulation. The paths of the nodes were computed in discrete

steps according to the algorithm being tested. To simulate vision, the POV-Ray ray-tracer 14

was used to produce images of the scene as viewed through the side cameras of each node.

To test the robustness of the algorithms, a random error with a Gaussian distribution

was added to the following:

Image pixels: An error σEr,g,b
was added to the red, green and blue values of each pixel.

Orientation of cameras: A second source of error in the node’s local knowledge is the

compass reading, which is needed to determine the orientation of the cameras. The

impact of error in the compass reading can be investigated by either fixing the compass

reading and randomly varying the orientation of the cameras, or vice versa. In these

experiments the former approach was used, as illustrated in Figure 7. The orientation

of the cameras was rotated by a random angle σEθ
while it is assumed in the vision

system that they were pointing parallel to the x-axis.

Velocity: A node may move in one of eight directions depending on the x-velocity, which

may be −∆vx, 0 or +∆vx, and the y-velocity, which may be −∆vy, 0 or +∆vy. Thus

the velocity is expressed as a 2-D vector and an error σEVx,Vy
is added to both the x-

and y-components.

The simulations were carried out under the following conditions:

• The nodes are cylindrical with a height of 0.3 distance units and radius of 0.15 dis-

tance units. The cameras are positioned on the circumference of the cylinder mid-way

between the top and bottom of the node.
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Figure 7: Error introduced into the orientation of the cameras.

• The “snapshot” taken by each camera is 100 pixels wide and 100 pixels high. The

image plane is located 1 distance unit in front of the camera and is 1 distance unit

wide and 1 distance unit high. The colour of each pixel is represented by RGB values

ranging from 0 to 255. The chosen threshold value for deciding whether a pixel’s colour

is close enough to belong to a node is 50.

• For Algorithm L, S = 1 and ∆vx = ∆vy = 0.05.

• For Algorithms C and P/n, Rc = Rmin = 2 and ∆vR = ∆vT = 0.05.

• Each simulation lasted for a duration of 100 time units.

Figure 8 shows the initial locations of the nodes.

3.2 Performance Analysis

The following performance measures were defined to evaluate the performance of the algo-

rithms:

Error (e(t)): The deviation of the nodes from the desired geometric pattern.
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Figure 8: Initial locations of the nodes for the simulations.
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Efficiency (q(t)): How efficiently the motion of the nodes is being coordinated.

These measures are defined below.

3.2.1 Error

The error e(t) is defined as the average distance of each node i, i = 0, . . . , N − 1, where N

is the number of nodes, from its corresponding desired position (x̂i, ŷi) at a given time t.

When forming a line with Algorithm L, the desired positions are defined as the set of

positions that are separated by S, have the same y-coordinate and minimise the sum of the

square of the distance of each point from the corresponding node’s current position (xi, yi).

Thus the desired positions for Algorithm L are given by

x̂i =
1

N

N−1
∑

i=0

xi − S
(N − 1)

2
+ Si (1)

ŷi =
1

N

N−1
∑

i=0

yi (2)

for i, i = 0, . . . , N − 1.

For Algorithms C and P/n the desired positions are chosen to minimise the sum of the

square of the angle between each node and its desired position with respect to the origin.

Since it is important only that any given pair of neighbouring nodes subtend an angle of 2π
N

with respect to the origin, the final angles of the nodes are rather arbitrary. Assume that N

nodes each with polar coordinates (ri, θi), for i, i = 0, . . . , N−1, are indexed so that θ0 < θ1,

θ1 < θ2, and so on until θN−2 < θN−1. The desired polar coordinates of node i are

r̂i = ρ(θ̂i) (3)

θ̂i =

∑N−1
i=0 θi − π(N − 1)

N
+

2πi

N
(4)
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where ρ(θ̂i) is determined using Step 1 of the motion coordination algorithm for the shape

that is desired.

3.2.2 Efficiency

The efficiency of the network was measured by computing the average of the displacement

divided by the distance travelled for each node. Thus the efficiency q(t) is defined as

q(t) =
1

N

N−1
∑

i=0

|pi(t)− pi(0)|

`i(t)
(5)

where pi(t) is the position of node i at time t and `i(t) is the total distance travelled by node

i since t = 0.

3.3 Results

3.3.1 Simulation Traces

Simulation traces of Algorithm L are shown in Figure 9. The progressive positions of the

nodes after every ten time units are shown in the plot. The desired positions at the end of the

simulation are also plotted. The lines formed are not quite parallel with the x-axis because

of occlusion. When the nodes are nearly aligned along the y-axis each node’s immediate

neighbours occlude all the other nodes in the array. If, for example, the left neighbour is

slightly in front by a distance ∆y for each node, then the node at the left end of the array

will be a distance (N − 1)∆y ahead of the node on the right end of the array.

Simulation traces of Algorithms C, P/3 and P/4 are shown in Figures 10, 11 and 12.

Note that the vertices of the final shape can appear cut-off even if the nodes are at their

desired positions because neighbouring nodes are always directly joined by a line and the

set of desired positions does not necessarily include the vertices of the desired shape. Due
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Figure 9: Simulation trace of Algorithm L.

to occlusion, the polygons were smaller than desired. The immediate neighbours of a given

node, except for neighbours belonging to other sides, occlude the other nodes forming the

same side. Since all the nodes forming the same side except the immediate neighbours are

not included in the calculation of the centroid, the centroid is calculated to be further away

than what it really is. As a result, there is a tendency for node i to finish with ri < ρ(θi). The

final error for Algorithm P/3 was greater than that for Algorithm P/4 because the triangle

formed had longer sides than those of the square and therefore was the most affected by

occlusion.

3.3.2 Robustness

The error and efficiency for each algorithm in simulations with σEr,g,b
= 0, σEθ

= 0◦ and

σEVx,Vy
= 0 is shown in Figures 13 and 14, respectively.
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Figure 10: Simulation trace of Algorithm C.
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Figure 11: Simulation trace of Algorithm P/3.
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Figure 12: Simulation trace of Algorithm P/4.
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Figure 13: Error with all error parameters set to 0.
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Figure 14: Efficiency with all error parameters set to 0.

Robustness Against Image Noise The error over time for each pattern-formation al-

gorithm using σEr,g,b
= 40 is shown in Figure 15. The efficiency over time for each of these

simulations is shown in Figure 16.

The error for Algorithms C, P/3 and P/4 initially decreased as the more distant nodes

moved closer to the centroid and then rose at about t = 15 because each node i continues to

move closer to the centroid than the desired distance ρ(θi). The vision algorithm tends to

exclude “noisy” segments of pixels in distant nodes and fragment distant nodes with “noisy”

vertical segments, causing the calculated location of the centroid to be further away than

the real location. Hence the final shape is smaller than desired.

The error varied noticeably with shape because the accuracy of the calculated relative

position of a node decreases with distance and the average distance between neighbouring

desired positions varied with the shape. The average distance between neighbouring desired

positions for the circle was lower than that for the square, thus when the nodes were close
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to their desired positions they tended to locate their neighbours more accurately in the

formation of the circle than in the formation of the square. Likewise, when the nodes were

close to their desired positions they tended to locate their neighbours more accurately in the

formation of the square than in the formation of the triangle.

The image noise did not have such a great impact on the performance of Algorithm L.

The rate of convergence, that is the time taken for the system to become relatively stable,

was lower when image noise was added. Ignoring small movements, the nodes settled at their

final positions at about t = 90, while in the simulations with no image noise they settled at

their final positions at about t = 65.

Note that the efficiency is meaningful only when the error is decreasing, since the efficiency

for a node can be high after moving to a location that is further from the desired position if

the path taken to that point is close to a straight line.

Robustness Against Error in Orientation of Cameras The error over time for each

pattern-formation algorithm using σEθ
= 60◦ is shown in Figure 17. The efficiency over time

for each of these simulations is shown in Figure 18.

Compared to the results for σEr,g,b
= 40, the impact on performance when σEθ

= 60◦ was

greater for Algorithm L, but less for Algorithms C, P/3 and P/4. The rate of convergence

for Algorithm L was much lower than that for σEr,g,b
= 40. The efficiency of the algorithms

was significantly lower than that for σEr,g,b
= 40.

Robustness Against Error in Velocity The error over time for each shape-formation

algorithm using σEVx,Vy
= 0.1 is shown in Figure 19. The efficiency over time for each of

these simulations is shown in Figure 20.

In terms of error, there was not much difference in the performance of the algorithms

between this setting and σEθ
= 60◦. However, as expected, the efficiency was lower than
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Figure 15: Error with σEr,g,b
= 40.
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Figure 16: Efficiency with σEr,g,b
= 40.
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Figure 17: Error with σEθ
= 60◦.
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Figure 18: Efficiency with σEθ
= 60◦
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that plotted for σEθ
= 60◦ because of the unnecessary movement that is introduced by the

velocity error.

Robustness Against All Types of Error Combined Figures 21 and 22 show the error

and efficiency for simulations carried out with σEr,g,b
= 40, σEθ

= 15◦ and σEVx,Vy
= 0.05.

The performance of the algorithms was similar to that when σEr,g,b
= 40, σEθ

= 0◦ and

σEVx,Vy
= 0, only a little more degraded.

4 Conclusion

In this paper we presented algorithms for forming a line, circle and regular polygon with mo-

bile nodes beginning from random positions. These algorithms are distributed and only use

locally obtained sensor information, making them suitable for implementation in MWSNs,

where communication is costly in terms of energy consumption. Unlike past approaches to

the formation of geometric patterns which were discussed in Section 1, the practical value of

the algorithms was demonstrated with simulations that tested the robustness by introducing

random errors into the system. The pattern formation algorithms presented in this paper

have many potential defence, security and scientific applications where an MWSN must form

a geometric pattern to carry out a reconnaissance, security or surveying task.

We have demonstrated using simulations that these algorithms will perform with un-

reliable sensor information and imprecise control of motion. One issue that needs to be

addressed is the effect of occlusion on the calculation of the centroid. When forming a reg-

ular polygon, a node will not be able to locate other nodes on the same side of the shape

beyond its immediate neighbours. This results in the positions of some nodes being omitted

in the calculation of the relative position of the centroid. There are two approaches to this

problem:

29



0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

e(
t)

t

Algorithm L
Algorithm C

Algorithm P/3
Algorithm P/4

Figure 19: Error with σEVx,Vy
= 0.1.
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Figure 20: Efficiency with σEVx,Vy
= 0.1.
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Figure 21: Error with σEr,g,b
= 40, σEθ

= 15◦ and σEVx,Vy
= 0.05.
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Figure 22: Efficiency with σEr,g,b
= 40, σEθ

= 15◦ and σEVx,Vy
= 0.05.
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• Memorise the last known position and velocity of nodes before they become occluded

and include an estimate of the position in the calculation of the centroid while the

node is hidden from view.

• Use local knowledge, such as the positions of immediate neighbours, to coordinate the

motion of the nodes. This may be combined with global knowledge, such as the centroid

of the nodes’ positions, in which case the optimal balance between local knowledge and

global knowledge for coordinating the motion of the nodes should be determined.
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