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Abstract— This paper presents the distributed robot control
software architecture developed for the autonomous service
robot Albert2. The development of this architecture is focused
on two major issues: Modularity and the integration of
learning aspects. Each module within the architecture is
presented, as well as the underlying event-based communi-
cation framework. An approach for integration of learning
capabilities is proposed.

I. I NTRODUCTION

The architecture of a robotic system strongly influences
the functionality and usability of such a system. In the last
decades, many architectures have been presented which re-
flect the different requirements a robotic system has to cope
with. Many requirements have to be considered during the
design of a robot architecture, e.g. reactivity, which means
the ability to react spontaneously to unexpected events,
or the need for an adequate type of control flow. Other
requirements are robustness, programmability, extensibility
and adaptability amongst many more.

Extensibility and adaptability become very important if
the robot has to act in a dynamic and partially unknown
environment. This applies only in a very limited way
to industrial robots, in contrast service robots are faced
permanently with unknown or partially known situations.
Due to the fact that service robots are not restricted to a
well-defined working area but work together with humans
in a human-centered environment, they must be prepared
to cope with unknown, i.e. new, situations as well as to
acquire and integrate new knowledge.

Extensibility can be reached through learning of task
knowledge. Learning can be done offline or online, re-
spectively, and it is desirable to have the possibility to
add newly acquired knowledge to the robot’s existent
knowledge. Adaptability is the robot’s ability to adjust
itself to dynamic or even new environments. Furthermore it
should be able to use its task knowledge if applicable even
if the knowledge was learned in a different environment.

In this paper we concentrate on integrating into the archi-
tecture the robot’s ability to learn task knowledge. On the
one hand, this knowledge will be acquired offline through
single user demonstrations, and on the other hand, the
system should be able to adapt and to extend its knowledge
at runtime. It is clear that these abilities have to be taken
into account while designing a robot’s architecture.

Section II gives a short overview of existing approaches,
section III introduces our robot system Albert2, and sec-
tion IV explains the learning approach ”Programming by
Demonstration”. The proposed software architecture is pre-
sented in section V. First results are shown in section VI.

II. STATE OF THE ART

As has been stated by many research groups, e.g. [1],
architectures form the fundament of robotic systems. Ty-
pically the existing approaches can be divided mainly into
three different classes:

Hierarchical architectures are based on a top-down
approach. Communication and controlflow is only done
vertically between the different layers. Higher levels de-
legate subgoals to lower levels to achieve superordinate
goals. An advantage of this approach is that planning is
straightforward because there is a superior view on the
system. A drawback of these systems is their insufficient
reactivity to dynamical environments. Examples for hier-
archical systems can be found in [2] and [3].

Behavioralsystems (e.g. [4], see [5] for an exhaustive
discussion) consist of several modules each representing
a specific behavior. These behaviors are not grouped in a
hierarchical manner but are running concurrently. These sy-
stems are robust because they don’t rely on the existence of
specific functional units compared to hierarchical systems.
Because of their modular style single behaviors can easily
be added. The lack of a high-level control unit complicates
the planning to achieve certain goals. Moreover safety
considerations are not easy to integrate.

Hybrid architectures try to combine the well defined
control flow of hierarchical systems with the advantages
of behavior based systems which are highly reactive.
These approaches have become very famous recently and
there exists a vast number of architectures with different
foci (e.g. [6], [7], [8]) and [9].

Another aspect which must be considered during the
design of a robot architecture is the learning ability of the
system. Zhang and Knoll [3] use a hierarchical approach
to learn operation sequences of two arm manipulations.
Bonasso et al. (cf. [10], [11]) use an architecture organized
into three layers: skills, sequencing and planning. Learning
is possible in each layer and through different layers. Other



research work concentrates on learning a specific behavior
[12] or mappings of sensor data [13].

III. SERVICE ROBOT ALBERT2

The architecture which is presented in this paper has
been realized on the service robot Albert2. Up to now it is
mainly used in a kitchen environment and the focus of task
learning and execution is laid on household environments.

Figure 1 shows the service robot Albert2 used for
experiments in a household environment. For manipulation,
it is equipped with 7 DoF arm and a three finger hand.
A mobile platform serves for navigation. Built in sensors
are a laser range sensor, a color stereo camera mounted
on a pan tilt unit, and a force torque sensor mounted
on the arm. For user interaction, the speech recognition
system Janus [14] is used in combination with an external
microphone, and loudspeakers on the robot provide speech
output. Additionally, a touchscreen is attached to the front
of the robot’s upper body. It is used for displaying the
robot’s current internal state (e.g. waiting, working, idle)
and for user interaction e.g by prompting questions on how
to proceed (e.g. showing images of all graspable objects)
to the user.

Fig. 1. Service robot Albert2

IV. PROGRAMMING BY DEMONSTRATION

In this section we shortly describe our approach for
teaching a robot new task knowledge and how this know-
ledge is represented. A complete description of the learning
mechanisms can be found e.g. in [15]. The approach is
called Programming by Demonstrationsince the task is
simply demonstrated by a human user in order to offer an
easy to use interface for the unexperienced user. The focus
lies on teaching higher level tasks since we assume that
basic skills like specific grasps or basic motor control for
movements of the arm already exist on the robotic system.
We rely on one-shot-learning because users should not be
forced to demonstrate the same task multiple times. The
approach is basically composed of the following phases:

• Demonstration of the task
• Perception, data preprocessing and fusion
• Segmentation of the acquired data

• Generalization of the segmented data
• Simulation of the learned task and refinement of the

task knowledge through user interaction
• Transfer of the newly acquired task knowledge onto

the robotic system
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Fig. 2. Transfer of task knowledge of a human demonstration to a robotic
target system.

The teaching starts with the user’s demonstration in a
specially designed training center where the performed task
is perceived through different sensors like camera systems
and data gloves. This center is neccessary because todays
robot’s sensors do not provide enough information with
sufficiant precision. During the demonstration sensor data
is merged with respect to the different sensor models. In the
next stage the data is segmented depending on recognized
grasps and movements. After that the data is analyzed
and elementary operators which correspond to basic skills
of the robot are identified. For generalization these basic
operators are grouped hierarchically into so called macro-
operators.

Finally the knowledge has to be transferred to the robotic
system. Therefore we need a representation of the task
knowledge for the robot which needs to be reflected by
the architecture. Additionally a mapping of the macro-
operators to the robot’s task knowledge representations
needs to be defined. The robot’s representation must be
extendable to be able to add new task knowledge and be
adaptable in a way such that the existing knowledge could
be refined either through reinforcement by the robot itself
or by user interaction.

Figure 2 shows the learning process from user demon-
stration to generalized macro-operators on the left and
the transfer of the task knowledge to the robot system
on the right side. In thePerceptionand Executionphases



the type of background knowlegde which is used for data
processing is indicated, e.g. the implicit sensor models used
during the perception of the user demonstration, which
enables data fusion of different sensor sources. In contrary,
macro-operators are abstract and thus do not rely on this
background knowledge.

V. SOFTWARE ARCHITECTURE

A software architecture that is able to control a mobile
robot basically has to cover three aspects to comprise all
capabilities of the system: Control of the hardware, repre-
sentation of the environment and integration of knowledge
about skill and task execution. Including the demand for
a lifelong learning system, these requirements have to be
fulfilled in a way that the system remains extensible.

An expedient approach to design such an architecture is
therefore to identify the functional components as hard-
ware abstraction, environment model and skill and task
execution. Our proposed software architecture consists
consequently of the following components (see figure 3):

The hardware agentsencapsulate all hardware specific
functions. There is a hardware agent for each hardware
in the robot system, e.g. one for the robot arm, one for
the hand and one for the voice. Skill and task knowledge
is represented by theflexible programs. Example skills are
”drive to position” and ”open door”, tasks can be ”transport
an object” or ”put object on the table”. All information
about the environment is stored in anenvironment model.
This can hold all kinds of data: Coordinates, objects,
relations, features, images or sounds.

Evidently, there needs to be a way of communication for
these components. The proposed communication bus seen
in figure 3 allows communication between all components,
but nevertheless standardizes and restricts data exchange to
a defined set of data structures. It is event-based and is able
to incorporate internal as well as external (user triggered)
events.

This approach is very much inspired by the way an
operating system works. The components are in detail:

• The communication infrastructure consists of a
notification distribution instance, where clients can
subscribe for certain notification types. Notifications
may be delivered by internal or external sources.

• Hardware agents(resources) represent real or virtual
sensors and/or actuators. There is an agent forlaser
scannerand for cameras, but there may be also an
agent fordetection of humanswhich incorporates laser
scanner and vision information. Hardware agents are
also referred to asresources.

• The agent manageradministrates all hardware agents
and provides the resource management. Each notifi-
cation that is passed to an agent is filtered by the
agent manager. Thus, unauthorized commands (from
instances which have not locked the called resource)
to agents can be intercepted.

• Flexible programs contain the skill and task know-
ledge. These flexible programs (FPs) are the core
of the proposed robot control architecture. Learning,

within our context, means creation, extension and
adaption of flexible programs.

• The flexible program manageradministrates the fle-
xible programs. All notifications addressed to flexible
programs are filtered and delivered by the flexible
program manager. It also holds a list of all currently
existing FPs, including their type.

• Domain controlling and supervision as well as
FP instantiation and priority control is done by the
flexible program supervisor. Depending on the current
context, FPs are created, prioritized or deleted. In later
development, learning capabilities will be extended to
this component.

• The environment modelholds environmental data as
well as the robot’s internal state. It is implemented as
a blackboard. An intelligent xml data base, which is
being developed at our research group, will soon be
integrated and used for storage of task, skill and object
feature knowledge.

The implementation of the proposed software architec-
ture (see figure 3) consists of a set of CORBA object types,
which communicate via a communication instance using a
publish-subscribe mechanism (see also [16]).

Each public object’s interface is described in CORBA’s
Interface Definition Language, which enables the use of
different programming languages within the same frame-
work. We use C++ and have base classes implemented for
each object type, which encapsulate all communicational
and infrastructural aspects. This simplifies usage and im-
plementation of new elements, as users do not have to know
any details about communication and functionality of other
objects.

Instantiating each component as a separate CORBA
object allows object distribution over several computers and
different operating systems. It also decouples operation of
caller and callee, which is essential in complex systems. By
running different system parts on different machines, it is
on the one hand possible to split up required computation
power, and on the other hand it enables different users to
use the same infrastructure.

As most of the communicated information is very high-
level symbolic information, real-time constraints are not
defined primarily by data transmission, but by hardware
restrictions; nevertheless, the use of distributed objects
holds the risk of data loss or speed reduction.

Some of these architecture components will now be
described in detail.

A. Communication layer

The basis for every distributed architecture is formed by
the communication layer. The proposed architecture uses
a special message format (referred to asnotifications) as a
basic information container for communication.

Notificationsare small data blocks, wherein most of the
information is coded as plain text. This is important for
debugging and readability.

Notifications are always of one of three types:
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Fig. 3. CORBA-based software architecture with flexible programs, hardware agents and communication bus

• Events are always delivered to flexible programs.
Events are generated either from hardware agents or
from external sources like speech or gesture recogni-
tion. Events are data directed from sensors/actors to
the control level.

• Actions are delivered to hardware agents. They are
mostly generated by flexible programs. Actions cor-
respond to data flow from the symbolic control level
to the sensor/actor level.

• Requestsare demands to the resource management
and therefore delivered to the agent manager. Requests
can be to lock, free, or try-lock resources.

TABLE I

NOTIFICATION DEFINITION

Header
Type Event, Action, Request
Time Time and date of creation
Sender Unique ID of sender instance
Receiver(s) Unique IDs of receiver(s)
Body
Name Notification specification
key value list Optional contents

A complete notification consists of a header and a body
(see table I), the notification body again holds a name and
a set of key value pairs. These have to be set by the sender
and transmit the information. As every slot within a noti-
fication is defined in plain text, debugging and readability
are simplified using a viewer and tools for manual creation
and sending of notifications. Each notification name and the
associated key value pairs have to be defined in advance.
Thus, all inter-object communication is standardized and
can be checked for consistency and conformity with the
specification.

To control the data flow of notifications and to avoid
storage of unattended messages, the timestamp in the
notification header controls notification deletion from the
delivery queues.

Notification distribution is performed by the commu-
nication manager using a publish-subscribe mechanism.
Undelivered messages are not stored within the commu-
nication manager, but discarded directly. In contrast, the
agent and flexible program manager possess a notification
queue, wherein messages are stored until they are either
delivered or expired.

B. Resource management

Real and virtual hardware agents are also referred to as
resources. These resources have to be locked and unlocked
before usage from any flexible program to avoid collisions.
This resource management is done by the agent manager,
which also administrates the hardware agents. Agent ad-
ministration comprises keeping track of the agent’s state
(running, sleeping, stopped), of current locks, of safety
aspects (stop/resume all agents in case of emergency stop)
and also notification surveillance and distribution among
hardware agents.

Agents can only be locked by one flexible program at a
time, but these usage authorizations can be inherited.

C. Hardware agents

Each hardware agent is identified by a unique ID and a
unique agent type. Depending on the agent type, an agent
can accept different notifications: A vision agent is able
e.g. to search objects, while an robot arm agent can move
or switch move mode.

The capabilities of an agent are context independent and
defined by the capabilities of the underlying (real or virtual)



hardware. The hardware agent for the mobile platform e.g.
accepts actions for geometric and topological navigation:
Rotate relative/absolute, drive relative/absolute, set posi-
tion, stop drivingas well asdrive to node X.

D. Interruption and exception handling

There are two cases, where running operations have to
be canceled immediately:

• The goal has changed while an operation was running.
This goal change can be caused by a human or by
other external events. The goal change has to be
carried out as ”smooth” as possible.

• An emergency situation occurs. This can either be an
internal one (like collision detection, or some other
conflict) or invoked by the user (e.g. saying ”stop”
or pushing a soft stop button). It is very important
that these exceptions trigger a stop of all hardware
components immediately and that the system remains
passive until an explicit resume command occurs.

While the latter is realized through direct stop calls
(which are not handled by the standard communication and
queuing software), to achieve the former, a continuous goal
adjustment has to be performed within the hardware agents.

E. Flexible programs

Flexible programs always have the following properties:

• A unique ID, used to identify the FP within the whole
system.

• A state (inactive/active, when active: FSM-like state
description).

• A list of notifications that are accepted at the current
state.

• A priority which can be used for the decision which
FP gets a notification that is accepted by more than
one FP.

• A list of currently owned resources.

These properties are used, set or read by the flexible
program manager and the domain controller and are needed
for communication.

Flexible programs encode the task knowledge. They
generate agent commands from background knowledge,
environmental data, and robot internal states. FPs also have
to handle errors.

The flexible program description is independent from the
robot’s kinematics, as all hardware specific algorithms are
encapsulated in the hardware agent objects. Of course, to
keep two robots exchangeable, they must possess similar
hardware components.

F. Flexible program specification

Within our concept, the flexible programs hold the task
knowledge that is included in the system. This knowledge
is represented as the number, type, parameterization and
order of the basic skills used. We propose to use a meta
programming language. This task description language has
to fulfill several requirements:

• It has to be powerful enough to describe all possible
action sequences as well as dependencies, decisions
and exceptions.

• On the other hand, this language should make as
many restrictions as possible to ensure ease of use and
debugging capabilities as well as to avoid ambiguities.

• It should be easily convertible to a standard data des-
cription format like xml. This enables use of standard
tools for saving, searching, comparing and merging
different flexible programs.

• To guarantee extendibility at runtime, the language
must not need a compilation process. A program
should be directly executable.

There are languages that fulfill some of these requirements
(e.g.ESL, see [17], orTDL, see [18]), but in particular the
program extendibility has not been an explicit demand.

G. Task knowledge representation

A flexible program holds task knowledge, which is
encoded in its specific structure and parameters. The
implementation of an FP which provides the interface
and functionality described in section V-E is proposed as
follows:

A flexible program is composed of functional blocks.
These functional blocks define functionality, pre- and post-
conditions in the same way FPs do; in fact, often FPs are
used as functional blocks within other FPs.

One functional block consists of an input parameter list
(coordinates, object names, persons, area of interest, etc),
different result states (several success and failure states)
and their output parameters (positions, objects, persons,
etc), and the immanent functionality. This can consist of
one or more calls to hardware agents or other flexible
programs, including requests to the environment model to
get or set required or perceived data and results. Such a
functional block comprises manipulation and/or perception,
the environment (including the robot itself) is always in
the loop. It also contains information about interruptibility.
If the current block is interruptible, there are additional
suspend and resume methods.

Inside a flexible program, these blocks are then wired
according to the task specification and depending on the
respective results. As this sequence is a high level action
chain, it is very easy to understand and debug.

It is important to note that there must not exist con-
current, asynchronous processes within one FP. This as-
sumption has to be made to avoid collisions in resource
management. This case has to be solved with different
flexible programs.

H. Generation and extension of flexible programs

As flexible programs are defined on a high abstraction
level using functional blocks, generation and extension is
possible offline and online. Basically, there are three ways
to integrate new knowledge into the system:

1) Manual FP definition: Flexible programs can be
defined by a programmer. This can be done either using a
GUI to build and connect functional blocks or by coding
by hand.



2) FP derivation from user demonstrations:Flexible
programs can be generated from macro operators (see
section IV). Macro operators are set up by observation of
a human demonstrating a task. This observation can either
be done offline using extra hardware and software or online
by the robot itself. Currently, a special demonstration
environment is used with special sensors and software.

This transformation process will presumably be carried
out semiautomatic; the operator will still need to correct
and modify robot programs that are generated automatical-
ly.

3) FP extension by user interaction at runtime:Robot
programs that are not complete, i.e. not every possible
outcome situation is covered by the FP, can be extended
at runtime. If such a situation occurs, the system can ask
the user for a solution. Then, an empty functional block
is constructed and filled by joining information given by
the user with background and context knowledge. If this
extension leads to a satisfying result, the FP is saved and
used at the next time.

If e.g. the robot fails to move to the next room because
the door is closed (and closed doors are not modeled as
obstacles yet), the user can tell it to open the door and try
again. This knowledge is then saved and reused whenever
this situation occurs.

VI. RESULTS

The architecture has been successfully implemented and
tested on the service robot ”Albert2”. The robot is able
to execute tasks like fetch-and-carry or pick-and-place
operations successfully.

The required skills and time needed for implementation
of additional functionality was drastically reduced, becau-
se the chosen architecture and knowledge representation
supported the programmer by encapsulating most low level
and infrastructural issues related to communication, timing,
resource management, etc.

VII. C ONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for a service
robot architecture. The way task knowledge is represented
within the architecture allows for permanent extension of
the knowledge base. Knowledge is perceived through user
demonstrations, and can be extended at runtime by the
robot itself or by user interaction. Taking these options into
account, a suitable task knowledge representation has been
proposed, where task knowledge is described byflexible
programs.

The proposed learning capabilities will now be imple-
mented and integrated in the presented framework. The
architecture will be extended by a task planner, which will
be incorporated into the learning process.
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