
 1

Validation of a Distributed Field Robot Architecture Integrated with a
MATLAB Based Control Theoretic Environment: A Case Study of Fuzzy

Logic Based Robot Navigation

K. P. Valavanis1, A. L. Nelson, L. Doitsidis2, M. Long, R. R. Murphy
Center for Robot Assisted Search and Rescue

Department of Computer Science and Engineering
University of South Florida

Tampa, FL 33620

Abstract

The paper presents fundamental aspects of a multi layer, hybrid, deliberative and
reactive Distributed Field Robot Architecture (DFRA) that has been designed to support
functionality of heterogeneous teams of unmanned (ground and aerial) robot vehicles.
The DFRA is implemented in Java using Jini to manage distributed objects, services and
modules between robots and other system components. It is interfaced with a control
theoretic MATLAB environment, which is supported and integrated into the Java based
framework using the JMatLink Java class library. This allows modules and services
implemented as native interpreted MATLAB code to be accessed as remote and
distributed objects. The combination of the Java based distributed architecture and the
use of MATLAB in its interpreted form for autonomous robot navigation and control is a
unique aspect of the reported research.
 Experimental validation of the DFRA and its MATLAB integration is
demonstrated by implementing simple prototype support modules for robot navigation.
These modules include: i) a time-history laser filter module; ii) a heuristic GPS-based
pose detection module; iii) fuzzy logic controllers that utilize laser, GPS and odometer
data as inputs. Navigation experiments in the field utilize single and multiple robots and
included scenarios in which a single robot navigated through an environment with many
unknown obstacles to reach a distant goal location, and scenarios in which robots
executed search routines by traveling through sets of way points. Robots negotiated both
static obstacles and dynamic obstacles including other robots.

Acknowledgement: This work has been partially supported by a grant form ONR, N00014-03-01-
786 (with USF 2132-033-LO). L. Doitsidis is also supported partially by “IRAKLITOS”
fellowships for research from the Technical University of Crete, EPEAEK II – 88727.

1 Corresponding author, E-mail:kvalavan@csee.usf.edu

2 Technical University of Crete, DPEM, Chania, Crete, Greece.

 2

1. INTRODUCTION

Multirobot field research and development systems require a diverse set of system
competencies, ranging from delivery of low level services to coordination of complex
high level multi-agent interactions. Such systems must support multiple operation
modes, including teleoperation, guarded teleoperation, and semi-autonomous operation;
they must be capable of mission planning and replanning, task generation, navigation,
control, coordination, fault tolerance, and fault detection and isolation (FDI).
 The paper presents fundamental aspects of a multi layer Distributed Field Robot
Architecture (DFRA) designed for heterogeneous teams of unmanned (ground and aerial)
robots operating in uncertain and possibly hostile environments. The DFRA is a hybrid
deliberative/reactive architecture implemented in Java using Jini to manage distributed
objects, services and modules between robots and other system components [39].
Emphasis is given to the control theoretic MATLAB based environment of the lower
level of the architecture, which is supported and integrated into the Java based
framework using the JMatLink Java class library [30]. The MATLAB based environment
is then experimentally validated by implementing simple prototype support modules
for outdoor mobile robot navigation.
 Derivation of such a distributed architecture, during its design as well as during
its implementation and testing phases, brings together concepts and ideas from the
diverse fields of Distributed Artificial Intelligence, Human Robot Interaction and Multi
Agent Systems at the higher levels, combined with Control Theoretic approaches at the
lower levels. This is where the main contribution and novelty of the paper lies: although
the DFRA is implemented in Java/Jini, the MATLAB environment (supported using the
JMatLink library) allows for mathematical control theoretic research and experimentation
and for rapid prototyping of behavioral and control modules and services. Wrapping
the MATLAB workspace environment with JMatLink, in conjunction with the Jini
distributed object platform, allows modules and services implemented as native
interpreted MATLAB code to be accessed as remote and distributed objects. Although it
is the case that many behavioral architectures and languages support implementation of
modules in different languages, this approach allows MATLAB to be directly
incorporated into behavioral architectures resulting in speed up of development and
added flexibility of implementation. The combination of Java based distributed
architectures and the use of MATLAB in its interpreted form for autonomous robot
navigation and control is not well represented in the literature, and up to now, no
complete approach has been published.
 Experimental validation of the DFRA and its MATLAB integration is
demonstrated by implementing simple prototype support modules for robot navigation.
These modules include: i) a time-history laser filter module; ii) a heuristic GPS-based
pose detection module; iii) fuzzy logic controllers that utilize laser, GPS and odometer
data as inputs.
 The laser and GPS modules are not meant to challenge the state-of-the-art of
robot positioning or sensor filtering - their purpose is to show rapid development and
testing of these modules on real robots operating in the field, justifying and
demonstrating the abilities of the overall architecture to integrate disparate components
of varying levels of sophistication and development into a unified functional whole. For
example, the pose detection system that provides adequate positioning data in the

 3

outdoor experimental environment demonstrates how the architecture is used to
generate useful test-support modules rapidly and with a minimum of effort. Even
though this module is almost minimally rudimentary, it is shown to be effective in
supporting the derived fuzzy logic controllers. These simple modules in no way
compare to or challenge the large body of complex state of the art positioning systems
and sound mathematical approaches reported in the literature (for example see [41] and
[42]).

The paper is organized as follows: Related research is presented below, while
Section 2 discusses the DFRA and MATLAB integration. Section 3 presents the support
module development while Section 4 describes details of the fuzzy logic controllers for
outdoor navigation, Experimental results are the topic of Section 5 while Section 6
concludes the paper.

A. Related Research

A recent review of autonomous robot control architectures is presented in [20].

Behavioral robotics architectures [3], [4], [31], [34], [38], [39] support robot control within
the methodological and conceptual constraints of the behavior based robotics [2]. A
defining feature of behavior based architectures is that they provide methods for parallel
integration of simple behaviors to generate more complex emergent robot behaviors. The
DFRA is an example of an architecture falling within the behavioral robotics paradigm.

Utilization of MATLAB as the primary computing environment for mobile robot
control experimentation has been reported in [32], [33]. In those examples, utilities in the
form of standard MATLAB function calls have been developed to allow for access to all
sensors and actuators and these could be used in any standard MATLAB script. These
systems also exemplify architectures explicitly intended to provide as few restrictions on
robot control programming as possible while allowing platform transparent
implementation.

In the general robotics and engineering cases, integration of MATLAB into Java
based systems has been addressed in [35], [40]. In those cases, however, MATLAB does
not run in its full interpreted form on remote self powered agents such as autonomous
mobile robots.

Although it is the case that many behavioral architectures and languages support
implementation of modules in different languages, the approach reported here allows
MATLAB to be directly incorporated into behavioral architectures resulting in speed up
of development and added flexibility of implementation. Modules and services
implemented as native interpreted MATLAB code can be accessed as remote and
distributed objects. This is particularly useful because all MATLAB Toolboxes can be
fully access, and MATLAB scripts need not be compiled, even in their final production-
phase form. The combination of Java based distributed architectures using MATLAB in
its interpreted form for autonomous robot navigation and control is not well represented
in the literature, and up to now, no complete approach has been published.

Methods employing fuzzy logic based mobile robot navigation are reported in
[5], [7], [10], [11], [12], [13], [14], [15], [16] and [17]. Most of these address navigation in
indoor structured laboratory environments. In [18] and [19] outdoor navigation using
fuzzy systems is discussed. Waypoint navigation in which vehicles move in predefined
environments is reported in [26] and [27]. Outdoor environment navigation using

 4

odometer data only has been proven inadequate due to significant cumulative odometer
errors [21], [22]. The use of absolute position sensing such as GPS is generally
considered to be essential for successful outdoor navigation [23], [24], [25], at least
within the confines of current autonomous field robot localization.

The design of the fuzzy logic controllers reported here differs from related work
in [18] and [19]. The reported research in [18] uses dead reckoning requiring a-priori
knowledge of initial position, it is not robust against cumulative odometer errors, and at
times the robot remains stationary during execution. The approach followed in [19] for
outdoor navigation used small lab-based robots to prototype controllers for large
outdoor vehicles in agricultural environments. The indoor robots used hierarchical
fuzzy controllers having a set of different behaviors including obstacle avoidance, goal
seeking, and edge following, which were then transferred to outdoor vehicles. However
that work was applied mainly to corridor and edge following and used an IR beacon for
homing on goal positions thus avoiding the need for absolute position knowledge. This,
of course rules out the general case of navigation to a novel unvisited location because it
requires someone or something to place the IR beacon in the first place. Finally,
compared with reported research in [5], [6], [7], the fuzzy controllers introduced here
use GPS and laser data and they are applied in outdoor environments, as opposed to
using only sonar sensor data for indoor navigation.

2. DISTRIBUTED FIELD ROBOT ARCHITECTURE AND INTEGRATION WITH

MATLAB

The Distributed Field Robot Architecture (DFRA), presented in detail in [39], is a
distributed multi agent Java based generalization of the Sensor Fusion Effects (SFX)
architecture [2]. It provides distributed capabilities by adding a distributed layer to SFX
using the Jini package for distributed Java based system implementation. The
formulation of the distributed layer is inspired from the concept of a persona from
psychology, in that distributed services, up to and including individual robots, are
represented by their functional characteristics to the broader distributed system as a
whole. Hence, services can be searched for, based on needed functionality, rather than
by name or physical location. The DFRA is the backbone of the overall heterogeneous
multirobot system.

Jini is utilized for the underlying middleware layer; the Java programming
language and runtime environment are utilized for implementation and execution.
 Seven key constraints have influenced the design of the DFRA:

• Behavior based and deliberative support: The architecture must support
common robotic paradigms. Behavior based control has historically worked well
for low level, time sensitive control, while the deliberative approach is geared
toward learning, artificial intelligence and processes with weaker time
constraints. This requirement is met by the inclusion of the SFX hybrid
deliberative reactive architecture as a base.

• Open standards: Robot hardware and software platforms lave a limited life
cycle; hence, it is important to build on a base that is open, flexible and
extensible. While specific robot hardware is beyond the scope of this work, an
important working requirement is that the software be built on open standards

 5

and on open source if possible. Java, Jini, XML and other core technologies are
common, with large user bases and active development

• Fault tolerant: Both the overall system and individual modules should be reliable
in the face of hardware faults, software errors and network problems. The use of
Jini as foundation contributes to system level fault tolerance, while the use of SFX
incorporates prior work on robot fault recovery.

• Adaptable: The system should be able to adapt to its operating environment.
Because the overall system is implemented in Java, software portability is not an
issue as long as all services correctly implement specified interfaces. However,
modules need to adapt and be good ``network citizens'' to allow the network
environment as a whole to function efficiently. This may involve limiting
communication and message passing to maintain sufficient bandwidth for
critical services (such as live video) to function correctly.

• Longevity: A robot should not be taken out of service for installation of updates
and other modifications. To support this, components need to be modified,
administered, logged and maintained at runtime. This is accomplished using
dynamic class loading, a feature of the Java language.

• Consistent programming model: Implementation should abstract object locality.
The same method should be able to access local or remote services without
sacrificing error handling or performance. While this constraint is of primary
concern for implementation, it does impact the approach taken and the
conceptual model of how services are located, acquired, and used.

• Dynamic system: The system should be dynamic rather than static and should
be able to flexibly accommodate new sensors, effectors, or other components.
This implies that clients are able to discover needed services at runtime and
adapt to the addition and removal of services over time. For a client in a general
distributed computing environment, the salient characteristics of a service are the
capabilities and attributes of the service. This is also true for robotics. For
example, if a robot has two identical cameras providing color images (the
capabilities of the sensors), then a client will not have a preference between
which camera provides an image, all else being equal. However, if the two
cameras are mounted in different locations on the robot (the attributes of the
sensor) then there may be differences in the client's preference for service. Thus,
a service should provide a listing of its various capabilities and attributes to
clients in the distributed system, allowing a client to make intelligent choices
related to available services. Since the design constraints require adaptation to a
changing environment, these capabilities and attributes must be changeable as
the system evolves or services fail.

The above design constraints are addressed by the application of three key

technologies: the SFX architecture, Java, and Jini, as briefly discussed below.

A. SFX Base Architecture

SFX is a managerial architecture [2] with deliberative and reactive components
designed to incorporate sensor fusion. The primary component of the reactive layer is
the behavior. A behavior maps from some sensing percept generated by a perceptual

 6

schema to a template for motor output, known as a motor schema. A perceptual schema
processes sensory data and other percepts to generate a representation of what is sensed.
For example, a perceptual schema may process a camera image to generate a mine
percept representing the location of the closest mine in the image.

Once a percept is generated, the behavior passes the information to a motor
schema. The motor schema incorporates the control necessary to act on the percept.
This may involve actions ranging moving the robot to orienting a pan-tilt unit to achieve
a better view. Behaviors can act and react rapidly, allowing the robot to operate in real
time.

While reactive components operate rapidly, they do not have the ability to plan
or even to maintain past state. Deliberative components executing at a slower pace do
have this ability, however, and many are incorporated in the SFX architecture.

B. Java Implementation Language

The Java programming language and runtime environment serve as base and
foundation for the distributed system controlling multiple robot platforms. It has been
chosen for five reasons:

• Platform independence: Java is an interpreted language that can be executed on
any platform that runs the Java Virtual Machine (JVM).

• Strong typing: Java is a strongly typed language, so it is possible to specify via
interfaces certain actions that a class must implement. It is possible to interact
with objects of the class in a known manner. Strong typing aids in system
development and with error handling during system execution.

• Library support: There are many available software libraries for Java providing
various functionalities. Some of the most important utilized in this research are:
JDOM, an XML parser; Java3D, a vector math and 3D visualization package; a
Java-MATLAB bridge, and, a Java-CORBA library to communicate with robot
control software.

• Dynamic class loading: Dynamic class loading is a critical benefit of the Java
platform, especially in a distributed scenario. Dynamic class loading allows a
Java program to load classes at runtime. This enables the use of classes that may
not even have been written when the Java program was started. In a distributed
environment programs or services may run for extended periods of time. Robots
may move around their environment and may wish to share information or code
with programs on other robots. The ability to do this dynamically is vital.

• Performance: Since Java is a byte compiled language, it has traditionally been
considered slow. Java runs through a virtual machine that interprets the byte
code stream and generates the native machine instructions to perform each
operation. This interpretation step reduces performance. However, modern
virtual machines include a just-in-time (JIT) compiler that compiles basic blocks
of Java code to machine code the first time the block is executed. Subsequent
executions will use the newly-compiled code rather than re-interpret the byte
code.

 7

C. Jini Distributed Layer

Middleware frameworks [43] are abstractions of a distributed computing
environment. These frameworks allow software developers to more easily extend
system infrastructures into a distributed environment. This is because the middleware is
``in the middle'', between the operating system or network services and the application
layer, abstracting the details of the system specific networking and other low level code.
Jini is an example of a middleware framework [44], which has a goal of providing for
spontaneous networking of services --- connecting any device to any other device in the
network. Jini consists of a set of specifications that describe an operational model for a
Jini network and how components interact within the system. The use of a standard
middleware layer such as Jini has a benefit --- systems built on top of the middleware
layer automatically inherit the attributes of a distributed system.

 There are four primary benefits to Jini that are heavily used in this approach: Jini
provides protocols that enable services to dynamically adapt to the network and
computing environment; Jini provides a form of naming service, called the lookup
service, which enables advertisement of services and availability to potential clients; Jini
provides a distributed event system in which a client can register interest in a service,
and can be notified when that service becomes available; Jini uses a leasing mechanism
to handle partial failures that enables a client to obtain a lease on a service, and when the
lease expires, the client can either stop using the service or attempt to renew the lease.

The DFRA uses modular services to implement all robot capabilities, including
sensors, effectors, and behaviors. Modules are exported to a distributed runtime system
as services with certain attributes and types. Services can then be searched for (using a
distributed-object lookup service) based on functional attributes rather than details of
actual implementation or physical location. This architecture allows a decoupling of
client and server, providing an interface (proxy) to the requesting process in a modular
fashion regardless of where the requested service physically resides or how it is
implemented at the local level.

Figure 1 shows a pictorial representation of the DFRA, emphasizing the
distributed layers and their relationship to the base SFX architecture. The diagram is
divided into three main layers. The lowest layer represents the base SFX behavior based
hybrid deliberative reactive robot control architecture as seen on any individual robot.
This layer implements all functionalities of a single robot. The middle layer (distributed
resource protection) provides access guards and security protections for any services
that are distributed and available for other agents in the larger multirobot system to
access. The highest level (persona) provides representations and actual access to
distributed services, and this is where components may be accessed based on
functionality. The entire system is implemented in Java, including the SFX base as
reported in [34].

Distributed services and modules are exported to a distributed runtime system as
services with certain attributes and types. Services may be searched for using a
distributed object lookup service based on functional attributes, rather than details of
actual implementation or physical location. Each module is roughly divided into three
components, namely the Proxy, Server and Driver. The proxy is the representation of the
service that is transported around the network, providing the ability to move code and
data (it is not merely a local representation of a remote object). The server is the

 8

representation of the service that deals with the distributed system, mediating between
the implementation of the service (the driver) and the remote clients. The driver is the
actual implementation of the service.

Figure 1: Distributed Field Robot Architecture showing the relationship between the

distributed system components and the base SFX architecture.

The JMatLink Java class library [30] is used to integrate MATLAB into the Java-
based system. JMatLink includes methods and objects that allow Java to initialize a
workspace, write data members of any format to the workspace, read from the work
space, and execute command line functions. The MATLAB workspace engine is accessed
by delivering a formatted string to MATLAB and its behavior is identical to that seen by a
user entering command via the MATLAB workspace command line. MATLAB scripts
and functions may run locally on the robots as interpreted code without the need to be
compiled into stand-alone executables. Figure 2 shows the forms of support for MATLAB
within the larger distributed SFX architecture. The block on the right of Figure 2
(Development Phase) represents several MATLAB based modules in development and
testing. On the left of the figure (Production Phase), a completed MATLAB based module
is shown. Note that MATLAB modules do not need to be compiled, even in the
production phase.

 MATLAB is supported at the driver module implementation level and it may be
used as the native server implementation of a service as shown in Figure 3. The

 9

associated server and proxy handle the remote overhead and interaction with other
services. Details are provided in [29].

Jmatlink
native JMatlink

Write Data to MATLAB
(Sensors readings,

Percepts)

Read Data From MATLAB
(Actuator Commands,

Processed Data)

MATLAB Module

MATLAB Module

MATLAB Module
(Developed Service

Implementation)

MATLAB Workspace

Control Loop
Body

MATLAB Module

Java/Jini

Research Experimentation and
Module Development Tool

Distributed SFX

Production Phase Development Phase

Completed service
implementation

(interaction with the larger
Distributed SFX architecture,

see Fig. 1)

Figure 2: Relationship between MATLAB and overall DFRA

Module

Remote Module

Driver

MATLAB

Proxy

Jmatlink
native

Server

JMatlink

Delegates to

Native Layer

Delegates to

uses

Figure 3: Horizontal hierarchy with MATLAB as driver implementation module

3. SUPPORT MODULE DEVELOPMENT

Module prototyping using MATLAB is demonstrated to support multi sensor
fuzzy logic based navigation. Two very simple modules are discussed:

 10

• A laser range data filter designed to reduce noise and ghost readings caused by
laser bouncing, variations in grass and vegetation, as well as other unforeseen
outdoor environment conditions. This module is an example of a heuristic
filter that relies on MATLAB’s matrix and data processing power for ease of
implementation.

• An extremely simple GPS based position detection module designed to show
how the overall system integrates modules of varying sophistication and
quality into a functional whole.

A. Laser Scan Filtering

Range data needed for object avoidance is obtained from scanning planar laser

units mounted on the robots. Information from the recent time history of sensor inputs
is integrated to eliminate noise. The field of view of the laser scanner is 180 degrees,
centered on the robot body attached reference frame. Each consecutive point in a single
scan is offset by 1 degree (181 total points per scan).
 The laser scan filtering process integrates information from the most recent scan
at time k, up to n previous scans, k-1, k-2, …, k-n. Figure 4(a) shows several consecutive
laser scans, transformed into the robot’s current frame of reference. Inconsistent scan data
(top right) are removed by the filter. The lower part of the scan shows a consistent object
that will not be removed after filtering. Figure 4(b) shows two separate laser scans taken
at time k (the most recent scan) and at time k-n (a previous scan), with α and l the
relative angular and linear offsets of the scans at time k and time k-n, respectively. For
experimental purposes, n has been set to 3, representing a trade off between accuracy
and response time for rotation measurements.

(a) (b)

Figure 4: (a) Consecutive laser scans collected during a robot run in the field. (b)
Diagram depicting laser scans taken at time k and at time k-n.

α

l

Current Laser Scan
at time k

Past Laser Scan
at time k-n

Object in
Environment

Current Position of
Robot

Past Position of
Robot

 11

Each laser scan is represented by:

⎥
⎦

⎤
⎢
⎣

⎡
=

y
x

L (1)

where x],...,,[21 Ixxx= , y],...,,[21 Iyyy= , 181=I is the number of elements per scan.
Each column of L represents a consecutive (x, y) coordinate pair moving from left to
right across the 180 degree sweep of the laser scan.

Each of the (previous) past },1{ Nn∈ scans is transformed into the reference
frame of the most recent scan L(k). In order to account for the fixed orientation of the
laser to the robot frame of reference in previous scans, coordinate pairs are shifted (left
or right) by a number of elements equal to the number of degrees of rotation between
the robot’s current position and its position associated with that previous scan (i.e., by α
from Figure 4b). Then, using a standard rotation and translation transformation T,
passed scans are transformed into the current scan’s frame of reference:

)(),()()(nkknknk −−=− rrT TLL (2)
T is given in terms of linear and rotational offsets and it is recalculated for each previous
scan as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=−

100
0)2/()2/(
0)2/()2/(

100
010

01

100
0)2/()2/(
0)2/()2/(

)(),(αα
αα

αα
αα

cs
scl

cs
sc

nkk rrT (3)

Each shifted and transformed L is then converted into a vector r in polar form with
elements ri, }181,1{∈i representing the Euclidian distance from the origin of the robot
body attached reference frame, with angles implicitly defined:

[]18121 rrr L=r , where 22
iii yxr += (4)

The matrix R shifted, transformed and converted to polar scans, represents the last n
laser scans with all range readings transformed into the current robot reference frame:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

)(

)1(
)(

nk

k
k

T

T

r

r
r

R
M

 (5)

Hence, objects detected in multiple current and past scans appear as range readings of
similar values in multiple rows of R.

A simple heuristic and statistical filter is employed using the variance, the mean
value and the maximum range readings of each of the columns of R. These are
calculated respectively as:

[]))(,),1(),(var())(,),1(),(var(
)var(

181181181111

var

nkrkrkrnkrkrkr −−−−=
=

LLL

Rr
 (6)

[]))(,),1(),(())(,),1(),((181181181111 nkrkrkrnkrkrkr −−−−= LLL µµµr (7)

[]))(,),1(),(max())(,),1(),(max(181181181111max nkrkrkrnkrkrkr −−−−= LLLr (8)

 12

Angles of all range readings are implicit in the order in which the readings
appear in the rows of R, being consistent for all rows of R due to initial shifting. The
final filtered laser vector is then given by:

[]18121 rrr L=Φr where
⎩
⎨
⎧ <

=
 otherwise

 if

max,

var,,

i

ii
i r

vrr
r µ (9)

where rΦ is the final filtered set of range readings spanning the forward field of the robot
in its current position, and ri,µ, ri,var and ri,max are the ith elements of rΦ, rvar and rmax,
respectively, and ν an appropriately defined threshold value.

The filter essentially takes the average of the ranges (in a particular direction) if
they agree over n previous scans. If there is significant disagreement, then the most
optimistic (or furthest) range is taken. The reason for this optimistic default is that the
laser range finders (unlike sonar and even IR) very rarely report a real object to be
further than it actually is (exceptions are glass and certain reflective surfaces) - this has
been experimentally observed. Data from scans prior to current time k outside the
robot’s current forward facing field of view (after shifting and transformation) are
discarded in the above calculations.

B. Position Detection

 Pose (position) detection has been based on current and passed GPS readings.
Pose is represented by a triplet, (x, y, θ). The location of the robot (x, y) is taken directly
from the current GPS latitude and longitude readings (filtered using a proprietary filter
supplied with the Motorola unit). Heading θ is calculated by determining the angle
made between a line passing through the current robot position and a previous position,
and due east. In this work, the offset between points for heading calculation are set to 10
points, corresponding to a distance of approximately 2 meters when the robot was
traveling at an average speed of 0.5 m/s. This simple method has provided adequate
positioning data and the average GPS error measured during all experiments has been
found to be less than 1 meter when the robots traveled over a 10 meter path with known
absolute ground position.
 This coarse pose detection method is in no way state of the art; it is used to
demonstrate how the overall DFRA-MATLAB framework may be used with components
of varying degrees of refinement. Although this is the case, as shown in Section 5, results
have been satisfactory in terms of waypoint, pattern following and goal point
navigation.

4. FUZZY LOGIC CONTROLLER

The overall structure of the multi sensor control system is shown in Figure 5. It
consists of four modules: the laser range filter, position detection, heading error
calculation and the actual fuzzy logic robot controller. An additional module logs all
sensor data, controller outputs, control loop delay and various other system data, time
stamped and synchronized so that experiments performed with the robots can be
reconstructed and analyzed at a fine level of detail.

 13

The control system receives as inputs laser, odometer and GPS data, as well as a
control reference input (next waypoint or goal point). It outputs actuator commands in
terms of robot rotational and translational velocities.

Laser Range Filter
(uses current and past laser

scans and odometry) Filtered Laser
Range

Motorola
Proprietary
GPS Filler

Filtered
GPS

GPS
(lat, lon)

(Fuzzy Controller
Inputs)

Robot Motor
Drive System

Robot Position
Detection

(uses current and past GPS
readings and odometry)

Heading Error
Calculation

Current Target Waypoint
(lat, lon)

Odometer
(iRobot Mobility Virtual

Encoder output)

Laser scan

Conversion to
Fuzzy input
variables:

 Left Range
 Center Range
 Right Range

Fuzzy
Controller
Rule Base

Position
(lat, lon, angle)

Heading Angle
Error (θe)

Left

Center

Right

(Fuzzy Control Outputs:
Motor Commands)

Translational
Velocity

(v)

Rotational
Velocity
(θ’)

(Feedback via Environment)

Controller

Plant

S
e

n
so

r
In

p
u

ts
C

o
n

tr
o

l R
e

fe
re

n
ce

(n
e

xt
 W

a
yp

o
in

t)

System Inputs

Laser Prefilter

Figure 5: Control system shown as a collection of interrelated modules

The fuzzy logic controller is implemented as a Mamdani-type controller similar
to previous work [5], [7]. The fuzzy logic controller rule base includes the fuzzy rules
responsible for vehicle control. The inference engine activates and applies relevant rules
to control the vehicle. The fuzzification module converts controller inputs into
information used by the inference engine. The defuzzification module converts the
output of the inference engine into actual outputs for the vehicle drive system.

For formulation of the filtered laser data into fuzzy linguistic variables to be used
as input into the fuzzy controllers, the laser scan area is divided in three radial sectors
labeled as Left Area, Center Area, Right Area, denoted by W i i=1, 2, 3, each one including
further division in Close, Medium and Far regions as shown in Figure 6. Laser effective
range is experimentally verified to be about 8 meters (25 feet). The left and right areas
have a width of 70 0 each and the center area of 40 0 .

 14

8 m 8 m

Left Area

Center Area

Right Area

o7 0 o7 0
o4 0

Far

Medium

Close

Figure 6: Laser scan area radial sectors divided into close, medium and far areas

The fuzzy controller input from the filtered laser range block consists of a three

value vector with components related to the distance of the closest object in the left
sector of the scan, in the center sector and in the right sector, respectively. This
information is used to calculate three collision possibilities left, center, right reflecting
potential static / dynamic obstacles in the robot field of view, similar to the approach
followed in [5], [7], but for outdoor environments. The fourth input to the fuzzy logic
controller is the robot’s heading error calculated from the robot’s current heading and
the desired heading.

Implementation wise, each of the three aggregate range inputs includes three
trapezoidal membership functions namely, close, medium and far. The input linguistic
variables are denoted as left distance, right distance and center distance corresponding to
the left area, right area and center area sectors. The heading error input uses four
trapezoidal membership functions and one triangular membership function. Chosen
membership functions for the input variables are shown in Figure 7. They are
empirically derived based on extensive tests and experiments.

 15

a) Heading Error

b) Distance

Figure 7: Membership functions for the input variables

The value of each distance input variable d i (corresponding to left area, center

area, right area) is fuzzified and expressed by the fuzzy sets C i , MD i , A i referring to
close, medium, and far as shown in Figure 6. The range of the membership functions for
each d i is between 0-8 meters. The value of the input variable heading error, he, is
fuzzified and expressed by the fuzzy sets FL, L, AH, R, FR, referring to far left, left, ahead,
right, and far right, respectively. The range of the membership functions for the heading
error is between -180 and 180 degrees.

The fuzzy logic controller has two output variables, translational velocity (tr)
implemented with two trapezoidal and one triangular membership functions, and
rotational velocity (rv) implemented with four trapezoidal membership functions and one
triangular membership function.

The value of the output variable tr is expressed by the fuzzy sets ST, SL, F
referring to stop, slow, and fast. The value of the output variable rv is expressed by the
fuzzy sets HRR, RR, AHR, LR, HLR referring to hard right, right, ahead, left, hard left.

The output commands are normalized in a scale from 0 to 1 for the translational
velocity, where 0 corresponds to complete stop and 1 to maximum speed. Rotational
velocity output commands are normalized from -1 to 1, where -1 corresponds to a right
turn with maximum angular velocity and 1 to a left turn with maximum angular
velocity. The output variables membership functions are presented in Figure 8.

Each fuzzy rule j is expressed as:

IF d 1 is D 1j AND d 2 is D 2j AND d 3 is D 3j AND he is HE j THEN tr is TR j AND rv is

RV j ; for j=1,…, number of rules.

D ji , is the fuzzy set for d i in the jth rule which takes the linguistic value of C i , MD i , Ai.

HE j is the fuzzy set for the he which takes the linguistic values FL, L, AH, R, FR.

TR j and RV j are the fuzzy sets for tr and rv respectively. A sample of the rule base is
presented in Table I.

0 1 2 3 4 5 6 7 8 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

Distance (m)

close medium far

-150 -100 -50 0 50 100 150
0

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9

1

Degrees

far left left ahea
d right Far Right

 16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Stop Slow Fast

a) Translation Velocity

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Hard Right Right Ahead Left Hard Left

b) Rotational Velocity

Figure 8: Output variables membership functions

Left
distance

from
obstacle

Center
distance

from
obstacle

Right
distance

from
obstacle

Heading
Error

Translational
Velocity

Rotational
Velocity

far far far far left stop hard left
far medium far Left slow hard left
far far far far right stop hard right

close close close far right stop hard right

Table I: Sample rule base

The generic mathematical expression of the jth navigation rule is given by:

)](),(),(),(min[),,,()()()()(rvtrhedrtrhed jjji
i

j RVTRHEiDiR
µµµµµ = (15)

The overall navigation output is given by the max-min composition and in

particular :
)],,,(),,([minmax),(

,
rvtrhedhedvrtr iRiANDhedN

i

µµµ ∗∗ = (16)

where U
J

j
iRiR rvtrhedrvtrhed i

1

),,,(),,,()(

=

= µµ . The navigation action dictates change in

robot speed and/or steering correction and it results from the deffuzification formula,
which calculates the center of the area covered by the membership function computed
from (16).
 Timing issues play a role in real time systems and controllers must be designed
to accommodate an acceptable variation in control delay. The system used in this
research produces a variable delay depending on application and system load. For the
results presented in this paper, the system controller loop delay averaged about 0.2

 17

seconds or 5 Hz. To accommodate this, the fuzzy rule set has been designed to function
in a control loop window of between 10 Hz to 1Hz.

5. EXPERIMENTAL RESULTS

 Experiments have been performed in outdoor environments using two ATRV-Jr
mobile robot platforms that have been modified as stated in Section 1. There is access to
all Mobility functions (which may be called if needed), but Mobility itself is not used as a
support software environment. Reported results include both odometer and GPS error
quantification, as well as fuzzy logic based navigation and collision avoidance.

A. Odometer and GPS Error Quantification

The robot vehicles followed three predetermined test patterns: forward and
backward motion along a 15 meter straight line; tracing a 10 meter square; tracing a
circle with a radius of 25 meters. Paths traveled by the robots (as judged by GPS and
odometer position measurement methods) are shown as sequences of points. The origin
was the starting point of the robot. A total of 6 tests per pattern over a 3 day period have
been conducted to quantify raw GPS, filtered GPS (using the Motorola supplied filter
within the GPS unit) and odometer errors.

Recorded data included GPS readings, actuator commands, odometer generated
position, time stamps, laser range values. Since a full control loop cycle required about
0.2 seconds, data were collected at a rate of approximately 5 Hz.

During the tests, positions calculated from odometer and positions measured
from GPS deviate from one another, as expected. In the rectangular and circular tests,
odometer and GPS positions deviate by approximately 2.0 meters and 6.0 meters on
average, respectively. This is to be expected because odometer errors are cumulative and
influenced by the size and duration of the test patterns. Figure 9 shows collected GPS and
wheel odometer position data; each panel shows data collected over a single example run
of each test pattern.

Considering all tests for the forward and backward robot movement, the
cumulative odometer error has been found to be 0.4% per meter traveled, while the
average GPS position error has been found to be 0.91 meters with an error standard
deviation of 0.52 meters. This has been feasible because intermediate points along the
path have been specified, verifying the robot’s true real world position (that may be
compared to the GPS position if needed).

However, no real conclusion can be made for the other two test patterns because
of incremental odometer errors and uncertainty in the robot’s true real world position.

The path generation for the square pattern has been generated by a timed
sequence of forward commands followed by a rotation command calibrated to produce
a 90 degree turn. Slight variations in turning times and loop delays resulted in
progressively incrementing position error, even as measured by odometry. The circle
tests, on the other hand have been generated by applying the same actuator arc
command repeatedly. This produces the same curvature, regardless of duration, so the
pattern is invariant with respect to controller loop delay.

 18

-1 0 -5 0 5 10 1 5 20
-2 0

-1 5

-1 0

-5

0

5

 S ta rt

W es t --- E as t (m)

S
ou

th
 -

--
 N

or
th

 (m
)

O d om et ry
F ilte re d G P S
U n filte re d G P S

Lin ea r Te s t P a t te rn

-18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4
-12

-10

-8

-6

-4

-2

0

2

4

6

8

 S ta rt

W es t --- E as t (m)

S
ou

th
 -

--
 N

or
th

 (m
)

R ec tangu la r Tes t P a t te rn

O dom e try
F ilte red G P S
U nfilte red G P S

(a) (b)

-30 -25 -20 -15 -10 -5 0 5 10 15 20
-30

-25

-20

-15

-10

-5

0

5

10

 S ta rt

W es t --- E as t (m)

S
ou

th
 -

--
 N

or
th

 (m
)

C irc u la r Tes t P a t te rn

O dom etry
F ilte red G P S
U nfilte red G P S

 (c)

Figure 9: Odometer, unfiltered and filtered GPS data comparison

B. Dynamic Fuzzy Logic Based Control in Outdoor Environments

Testing and validation of the designed fuzzy logic controller within the overall

DFRA as presented in Section 2, has been performed using single and multiple robots.
Experiments have been performed in an outdoor (somewhat uneven terrain)
environment with dirt, grass, trees and some vegetation. The first set of experiments
required that the robots travel through predefined waypoints while avoiding static and
dynamic obstacles. The second set required that robots follow sets of waypoints that can
be changed dynamically by a human operator while the robots are moving. Additional
experiments include raster scans with two robots starting from different initial positions,
avoiding each other as well as other obstacles found in their path.

To facilitate further robot deployment, a GUI has been designed that allows
human operators to monitor robot movement, modify dynamically their waypoints or
current goal positions, or define areas to perform a raster search (select a desired area to
scan specifying a lane spacing parameter). A screen capture of the GUI is presented in

 19

Figure 10. Although robots receive final goal positions and waypoint sets from the GUI,
all control processing is done locally on the robots. Robot controllers may revert to
locally stored goal locations or waypoint lists if the GUI is not in operation, if it is not
required for a particular experiment or if communication between the remote GUI and
the robots is cut off.

Figure 10: Graphical User Interface

Experiment 1
The first experiment demonstrates goal point following in an environment with many
unknown obstacles (trees). The robot is given an initial position on one side of a large
group of trees and a final goal point location on the other side of the group of trees.
Figure 11 shows photos of a robot in the tree covered area. Archived videos may be
viewed at http://www.csee.usf.edu/~aanelson/Robot_Movies.html.

Figure 11: Robot navigating in an area with trees

 20

Figure 12 shows one full path traveled through the tree covered area from the
initial point to the final point; periodic laser scans are shown over the course of the
robot’s path. This experiment has been repeated several times, and Figure 13 shows the
different paths followed by the robot for three repetitions of the same experiment. Path
differences are caused by variations in the input readings produced by differences in
GPS reception, and by subtle and cumulative differences in laser reading and odometer
readings. The outdoor environment is effectively continuous; hence a small change in
movement or initial conditions may result in a different path followed upon a repetition
of the same goal following experiment. However, in all cases, the robot moves toward
its final goal GPS point. In each of the experiments, robots were able to ultimately find
the distant goal positions without colliding with any of the trees. Figure 14 presents a
sequence of photos while the robot navigates among the trees (sequence from upper left
to lower right).

-82 .4172 -82.4171 -82.417 -82 .4169 -82 .4168 -82.4167

28 .0581

28 .0582

28 .0582

28 .0583

28 .0583

Long itude

La
tit

ud
e

G P S P o in ts
Tree Loc a t ions
R obo t P ath

Figure 12: Robot path – laser scans are shown

 21

Figure 13: Three different paths for the same scenario.

Figure 14: A sequence of images showing the robot consecutively avoiding two trees

-82.4168 -82.4168 -82.4167 -82.4167 -82.4166

28.0582

28.0582

28.0582

28.0583

28.0583

28.0583

28.0583

Longitude

La
tit

ud
e

Goal Point
Location Tree locations
Robot Path run 1
Robot Path run 2
Robot Path run 3

 22

Experiment 2
Experiments have been performed with two robots operating simultaneously.

Robots travel through a set of goal points delineating a box shape. The robots start from
different initial positions and travel to each of the goal points defining the box. One
robot moves clockwise, the other counterclockwise. The paths followed are shown in
Figure 15; similar results have been obtained repeating the same experiment. The robots
negotiate a static object (a tree) and a dynamic object (the other robot) as they traverse
the set of goal GPS points. While the robots were moving they crossed each other’s path
and avoided one another as shown in Figure 16 and visualized with a sequence of
images in Figure 17.

-82 .4174-82 .4173-82 .4173-82 .4172-82 .4172-82 .4171-82 .4171 -82 .417

28 .0584

28 .0585

28 .0585

28 .0585

28 .0586

Long itude

La
tit

ud
e

W ay po in t Loc a t ions
Tree Loc a t ions
R obo t 1 P a th
R obo t 2 P a th

Figure 15: Path followed by the two robots in the second experiment

-82.4174 -82.4173 -82.4173 -82.4172

28.0583

28.0583

28.0584

28.0584

28.0584

28.0584

28.0584

28.0585

28.0585

Longitude

La
tit

ud
e

Robot 1 Path

Robot 1 Laser Scans

Robot 2 Laser Scans

Robot 2 Path

Figure 16: Robots avoiding each other

 23

Figure 17: Images of two robots moving towards each other and avoiding one another

Experiment 3

A raster search is performed using two robots. Robots start from different
positions in the field and move in opposite directions while performing the raster search.
The trajectories followed by the two robots are presented in Figure 18. The experiment
has been repeated several times with similar results.

-82 .4175-82 .417 5-82 .4174-82 .4174-82 .417 3-82 .4173-82 .4172-82 .417 2-82 .4171-82 .4171-82 .417

28 .0584

28 .0585

28 .0585

28 .0586

28 .0586

28 .0587

Long itu de

La
tit

ud
e

W ay po in t Lo c a t ions
Tree L oc a t ions
R ob o t 1 P a th
R ob o t 2 P a th

R o bo t 1 S ta rt

R obo t 2 S ta rt

R ob o t 2 F in is h R obo t 1 F in is h

Figure 18: Raster search performed by the two robots

 24

6. CONCLUSIONS AND DISCUSSION

This paper has presented a DFRA and its integration with MATLAB that is
capable to support simple and complex functionality of heterogeneous teams of robot
systems. This architecture has been used to demonstrate multi sensor mobile robot fuzzy
logic based navigation in outdoor environments.

The main contribution of the paper is the overall architecture that serves as the
backbone for any module design and implementation. A second contribution is the
fuzzy logic controllers that are extensions of previously reported ones in [5] to [[7]. The
deviation from the previous design is in using a totally different sensor suite (lasers,
odometers and GPS) for outdoor navigation (versus sonar sensor based indoor
navigation), different area division for scanning and simplicity of implementation.

On going research includes controller enhancement involving additional sensors
like IMU, FLIR and standard video; derivation of remote supervisory controllers for
coordinated movement and variable robot autonomy; inter robot communication and
multi robot distributed control.

Further, research is conducted on coordinated control of aerial unmanned VTOL
vehicles and ground robots (like the RAPTOR 90 and the Rotomotion Bergen Observer and
Twin, and the ATRVs) where goal points for the ground vehicles, specific locations to be
reached and areas to be searched will be dictated by the helicopter through its on board
vision system, or with the aid of a human operator interpreting such information and
commanding robots accordingly (see Figure 19).

Figure 19: Robots autonomously executing a pattern search while being observed by a
helicopter with camera (remotely controlled).

 25

REFERENCES

1. Saffiotti, A., “Handling uncertainty in control of autonomous robots,” in

Uncertainty in Information Systems, edited by A. Hunter and S. Parsons,
Springer, LNAI 1455, pp: 198-224, 1998.

2. Murphy, R. R., Introduction to AI Robotics, MIT Press, 2000.
3. Arkin, R. C., Behavior-Based Robotics, MIT Press, 1998.
4. Balch, T., Parker L. E., (Editors), Robot Teams, from Diversity to Polymorphism,

A. K. Press, 2002.
5. Doitsidis, L., Valavanis, K. P., Tsourveloudis, N. C., “Fuzzy Logic Based

Autonomous Skid Steering Vehicle Navigation”, In Proceedings of the ΙΕΕΕ
International Conference on Robotics and Automation, pp: 2171-2177, Washington
DC, 2002.

6. Valavanis, K. P., Hebert, T., Kolluru, R., Tsourveloudis, N. C., “Mobile Robot
Navigation in 2-Dynamic Environments Using Electrostatic Potential Fields,” IEEE
Transactions on Systems, Man and Cybernetics, Vol. 30, No. 2, Part A, pp: 187-196,
2000.

7. Tsourveloudis, N. C., Valavanis, K. P., Hebert, T., “Autonomous Vehicle
Navigation Utilizing Electrostatic Potential Fields and Fuzzy Logic,” IEEE
Transactions on Robotics and Automation, Vol. 17, No. 4, pp: 490-497, 2001.

8. Abdessemed, F., Benmahammed, K., Monacelli, E., “A fuzzy-based reactive
controller for a non-holonomic mobile robot,” In Robotics and Autonomous
Systems, article in press.

9. Lee, T. L., Wu, C. J., “Fuzzy Motion Planning of Mobile Robots in Unknown
Environments,” Journal of Intelligent Robotic Systems, Vol. 37, pp: 177-191, 2003.

10. Aguire, E., Gonzalez, A., “Fuzzy Behaviors for Mobile Robot Navigation: Design,
Coordination and Fusion,” International Journal of Approximate reasoning, 25: 225-
289, 2000.

11. Goodridge, S. C., Luo, R. C., “Fuzzy Behavior Fusion for Reactive Control of an
Autonomous Mobile Robot: MARGE,” In Proceedings of the IEEE International
Conference on Robotics and Automation, pp: 1622-1627, San Diego, CA, 1997.

12. Ishikawa, S., “A Method of Indoor Mobile Robot Navigation by Using Fuzzy
Control,” In Proceeding of the IEEE/RSJ International Workshop on Intelligent Robots
and Systems IROS, pp: 1013-1018, Osaka, Japan, 1991.

13. Li, W., “Fuzzy Logic-based ‘Perception-Action’ Behavior Control of a Mobile
Robot in Uncertain Environment,” In Proceedings of the 3rd IEEE Conference on
Fuzzy Systems, Vol. 3, pp: 1626-1631, 1994.

14. Pin, F. G., Watanabe, Y., “Navigation of Mobile Robots Using Fuzzy Logic
Behaviorist Approach and Custom Design Fuzzy Inference Boards,” Robotica,
Vol. 12, 1994.

15. Saffiotti, A., “Fuzzy Logic in Autonomous Robotics: Behavior Coordination,” In
Proceedings of the IEEE International Conference on Fuzzy Systems, pp: 573-578, 1997.

16. Saffiotti, A., Konolige, K., Ruspini, H. E., “A Multivariable Logic Approach to
Integrating and Planning and Control,” Artificial Intelligence, 76: 481-526, 1995.

17. Tunstel, E., “Mobile Robots Autonomy Via Hierarchical Fuzzy Behavior,” In
Proceedings of the 6th International Symposium on Robotics and Manufacturing, pp:
837-842, 1996.

 26

18. Seraji, H., Howard, A., “Behavior-Based Robot Navigation on Challenging
Terrain: A Fuzzy Logic Approach,” IEEE Transactions on Robotics and Automation,
Vol. 18, No. 3, pp: 308-321, 2002.

19. Hagras, H., Callaghan, V., Colley, M., “Outdoor Mobile Robot Learning and
Adaptation,” IEEE Robotics and Automation Magazine, pp: 53-69, 2001.

20. Mali, A. D., “On the Behavior-Based Architectures of Autonomous Agency,”
IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews, Vol. 32, No. 3, pp: 231-242, August 2002.

21. Borenstein, J. and Feng. L., “Measurement and Correction of Systematic
Odometry Errors in Mobile Robots,” IEEE Journal of Robotics and Automation, Vol.
12, No. 6, , pp: 869-880, December 1996

22. Ojeda, L. and Borenstein, J., 2003, "Reduction of Odometry Errors in Over-
constrained Mobile Robots," In Proceedings of the UGV Technology Conference at the
2003 SPIE AeroSense Symposium, Orlando, FL, April 21-25, 2003.

23. Panzieri, S., Pascucci, F., Ulivi, G.,“An Outdoor Navigation System Using GPS
and Inertial Platform,” IEEE Transactions on Mechatronics, Vol. 7, No. 2, pp:134-
142, June 2002.

24. Ohno, K., Tsubouchi, T., Shigematsu, B., “Outdoor Navigation of a Mobile Robot
between Buildings based on DGPS and Odometry Data Fusion”, In Proceedings of
International Conference in Robotics and Automation, pp: 1978-1984, Taipei, 2003.

25. Thrapp, R., Westbrook, C., Subramanian, D., “Robust Localization algorithms for
an autonomous campus tour guide,” In Proceedings of the IEEE International
Conference on Robotics and Automation, Vol. 2, pp: 2065-2071, 2001.

26. Vaneck, T.W., "Fuzzy Guidance Controller for an Autonomous Boat," IEEE
Control Systems Magazine, pp: 43-51, April, 1997

27. Bruch, M.H., Gilbreath, G.A., Muelhauser, J.W.,and J.Q. Lum, "Accurate
Waypoint Navigation Using Non-differential GPS," AUVSI Unmanned Systems
2002, Lake Buena Vista, FL, July 9-11, 2002.

28. Long, M. T., Murphy, R. R., Parker, L. E., “Distributed multi-agent diagnosis and
recovery from sensor failures,” in Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vol. 3, pp: 2506-2513, 2003.

29. Nelson, A. L., Doitsidis, L., Long, M. T., Valavanis, K. P., Murphy, R. R.,
“Incorporation of Matlab into a Distributed Behavioral Robotics Architecture”, to
be presented in IROS 2004.

30. S. Müller, H. Waller, “Efficient Integration of Real-Time Hardware and Web
Based Services Into MATLAB,” ESS'99 11th European Simulation Symposium and
Exhibition, Erlangen-Nuremberg, 1999, ESS'99, Oct. 26-28, 1999. JMatLink
download site: http://www.held-mueller.de/JMatLink/

31. L. E. Parker, “ALLIANCE: An Architecture for Fault Tolerant Multi-Robot
Cooperation,” IEEE Transactions on Robotics and Automation, Vol. 14, No. 2, pp:
220-240, 1998.

32. A. L. Nelson, E. Grant, T.C. Henderson, “Evolution of neural controllers for
competitive game playing with teams of mobile robots,” Journal of Robotics and
Autonomous Systems, Vol. 46, No. 3, pp: 135-150, Mar 2004.

33. G. J. Barlow, T. C. Henderson, A L. Nelson, E. Grant, “Dynamic Leadership
Protocol for S-nets,” Proceedings, 2004 IEEE International Conference on Robotics and
Automation (ICRA), New Orleans, LA, April 2004.

 27

34. R. R. Murphy, R. C. Arkin, “Sfx: An Architecture For Action-oriented Sensor
Fusion”, Proceedings of IEEE/RSJ Intelligent Robots and Systems, Vol. 2, July 7-10,
pp: 079-1086, 1992.

35. N. N. Okello, D. Tang, D. W. McMichael, “TRACKER: a sensor fusion simulator
for generalized tracking,” Proceedings of Information, Decision and Control, IDC, pp:
359-364, February 1999.

36. R. Willgoss, V. Rosenfeld, J. Billingsley, “High precision GPS guidance of mobile
robots,” Proceedings of the Australasian Conference in Robotics and Automation, 2003.

37. K. Ohno, T. Tsubouchi, B. Shigematsu, S. Maeyama, S. Yuta, “Outdoor
Navigation of a Mobile Robot Between Buildings based on DGPS and Odometry
Data Fusion,”, Proceedings of the IEEE International Conference on Robotics and
Automation, Vol. 2, pp: 1978-1984, Taipei, TW, 2003.

38. K. P. Valavanis, G. N. Saridis, Intelligent Robotic Systems: Theory, Design and
Applications, Kluwer 1992.

39. M. T. Long, Creating A Distributed Field Robot Architecture for Multiple Robots,
M.Sc. Thesis, USF, Summer 2004.

40. J. Contreras, A. Losi, M. Russo, “JAVA/MATLAB simulator for power exchange
markets”, Power Industry Computer Applications, PICA 2001. Innovative
Computing for Power - Electric Energy Meets the Market. 22nd International
Conference on IEEE Power Engineering Society, pp: 106-111. May 20-24, 2001.

41. Sukkarieh, S.; Nebot, E.M.; Durrant-Whyte, H.F.; “A high integrity IMU/GPS
navigation loop for autonomous land vehicle applications,” IEEE Transactions on
Robotics and Automation, vol. 15, no.3, pp. 572-578, June 1999.

42. Brock, O.; Khatib, O., “High-speed navigation using the global dynamic window
approach,” Proceedings of the 1999 IEEE International Conference on Robotics
and Automation, vol. 1, 10-15 May 1999, pp. 341-346.

43. P. A. Bernstein, “A Model for Distributed System Services,” Communications of
the Association for Computing Machinery, vol. 39, no. 2, Feb. 1996.

44. K. Arnold, B. O'Sullivan, R. W. Scheifler, J. Waldo, A. Wollrath, The Jini
Specification, Addison-Wesley, 1999.

