
Application of the Distributed Field Robot
Architecture to a Simulated Demining Task

Matt Long, Aaron Gage, Robin Murphy and Kimon Valavanis
Center for Robot-Assisted Search and Rescue

University of South Florida
Tampa, Florida

Abstract— As mobile robot teams become more complex, it
is necessary to develop a control architecture to manage the
resources present in the team. The Distributed Field Robot
Architecture (DFRA) is a distributed, object-oriented imple-
mentation of the SFX hybrid robot architecture that allows
for dynamic discovery and acquisition of robot resources and
the seamless integration of humans and artificial agents in
the robot team. This paper introduces the DFRA and details
its application to a high-fidelity demining scenario using a
heterogeneous team of ground and aerial robots.

Index Terms— distributed robot architectures, demining, het-
erogeneous agents, recruitment

I. INTRODUCTION

Mobile robots are being used for an increasing array of
tasks, from military reconnaissance to planetary exploration
to urban search and rescue. As robots are deployed in
increasingly complex domains, teams are called upon to
perform tasks that exceed the capabilities of any particular
robot. Effective management of robot teams requires a consis-
tent means of discovering, controlling, and monitoring robot
capabilities, both by human operators and artificial agents
within the system.

Existing robot architectures, such as those described in
[1] and [11] tend to be initially designed for single-robot
systems. Parker notes in [14] that while there have been
numerous advances in multi-agent robotics, these have been
primarily focused on providing a specific capability to a robot
team. Typically, this involves adding a distributed or multi-
agent capability to an existing architecture. For example,
Matarić used the subsumption architecture to examine social
rules in multi-robot systems[9], as have Matarić, Sukhatme
and Østergaard[10] for distributed task planning in real and
simulated “emergency handling.” In a similar vein, Parker
has also utilized the ALLIANCE architecture[13] to explore
distributed fault tolerance using a hazardous waste cleanup
scenario. Similarly, the DARPA Software-Enabled Control
(SEC) program is aimed at improving the control systems
for autonomous aerial vehicles, and several relevant works
for UAVs have come from this project, such as [6], [15],
[17]. While the work of the SEC community uses a standard
distributed middleware layer, little has been said about the

application to multiple UAVs — the implication being that
current systems are limited to a single UAV. By retrofitting
single-robot systems with distributed capabilities, existing
systems are limited in flexibility, extensibility, and robustness
to partial failures.

The Distributed Field Robot Architecture (DFRA) is an
implementation of the SFX managerial architecture [11]
that enables seamless interaction of software objects and
agents throughout a fully decentralized team of robots. Under
the DFRA, the capabilities of each robot (such as sensors,
effectors, and schemas) can be dynamically discovered and
used by the robots themselves or by human operators. The
DFRA has been applied to a simulated demining task on
a team of ground and aerial robots, yielding positive results.
We claim that the DFRA is a suitable distributed architecture
for a team of heterogeneous robots. This claim is supported
in the following ways: discussion of the implementation of a
single-agent reactive behavior, discussion of the implemen-
tation of a deliberative, distributed recruitment system, and
through the demonstration of a heterogeneous team of two
ground vehicles and one aerial vehicle performing an outdoor
simulated beach demining scenario.

The rest of this paper is organized as follows. Sec. II
describes the Distributed Field Robot Architecture in detail.
Sec. III presents a description of an application domain (a
simulated demining task), and details the robot team used in
field tests, along with the functionality implemented to meet
this task. Sec. IV describes examples of systems that have
leveraged the architecture to provide high-level control over
a team of robots. Sec. V provides detail on the demonstration
used to validate this work. Finally, Sec. VI provides a
summary and closing remarks.

II. ARCHITECTURE

The approach taken in this work is to extend the Sensor
Fusion Effects (SFX) hybrid architecture to add a distributed
layer that takes inspiration from the concept of a persona
from psychology [7]. SFX serves as the base for the cognitive
model, with portions of each of the relevant components
extended to the distributed realm. These portions are a
representation of the capabilities, attributes and knowledge



Cartographer
Sensing 
Manager

Task Manager

Effector 
Manager

sensor

sensor

sensor

Sensor 
Library

tactical 
behavior

tactical 
behavior

tactical 
behavior

abstract 
behavior

abstract 
behavior

abstract 
behavior

abstract 
behavior

abstract 
behavior

Behavioral Library

effector

effector

effector

Effector 
Library

Sensor, 
PS Outputs

Paths and 
Virtual Sensing

Behavior 
Instantiation

Task 
Capabilities

Sensing 
Capabilities

Effector 
Capabilities

Information 
Capabilities

Resource 
Protection

Security 
Guard

Information 
Protection

SFX 
hybrid 
base

Distributed 
capability 

representation
(persona)

Distributed 
resource 

protection

Fig. 1. Extending the original architecture by adding a distributed persona.

of the robot as they appear to the distributed system— the
robot persona. The overall architecture is shown in Fig. 1.

The approach utilizes the Jini distributed architecture for
the underlying middleware layer and the Java programming
language and runtime environment for implementation and
execution. Seven key constraints influenced the design of this
system:

Behavior-based and deliberative support: The archi-
tecture must support common robotic paradigms. Behavior-
based control has historically worked well for low-level,
time-sensitive control, while the deliberative approach is
geared toward learning, artificial intelligence and processes
with weaker time constraints. This requirement is met by the
inclusion of the SFX hybrid deliberative-reactive architecture
as a base. SFX is discussed in more detail in Sec. II-A.

Open standards: Robot hardware and software platforms
do not typically have an immensely long life — several differ-
ent models of robots currently used have been discontinued
by the manufacturer or the manufacturer has gone out of
business. Because of this, it is important to build on a base
that is open, flexible and extensible. While specific robot
hardware is beyond the scope of this work, an important
working requirement is that the software be built on open
standards and on open source if possible. Java, Jini, XML and
other core technologies are common, with large user bases
and active development. Further discussion of Java and Jini
can be found in Sec. II-B and Sec. II-C.

Fault tolerant: Both the overall system and individual
modules should be reliable in the face of hardware faults,
software errors and network problems. The use of Jini as the

foundation aids in system-level fault-tolerance, while the use
of SFX incorporates prior work on robot fault recovery [8].

Adaptable: The system should be able to adapt to its
operating environment. Because the system is based on a Java
foundation, software portability is not an issue as long as all
services correctly implement specified interfaces. However,
modules need to adapt to allow the network environment as
a whole to function — to be good “network citizens”. This
may involve limiting communication and message passing to
maintain sufficient bandwidth for critical services (such as
live video) to function correctly.

Longevity: An ultimate goal of this system is longevity.
A robot should not have to be taken out of service for
the installation of changes and updates. To support this,
components need to be modified, administered, logged and
maintained at runtime. Dynamic class loading, a feature of
the Java language, addresses this.

Consistent programming model: The implementation
should abstract the locality of objects. The same method
should be able to access local or remote services without
sacrificing error handling or performance. While this con-
straint is primarily of concern for implementation, it does
impact the approach taken and the conceptual model of how
services are located, acquired, and used.

Dynamic system: The system should be dynamic rather
than static and should be able to flexibly accommodate new
sensors, effectors, or other components. This also implies that
clients will be able to discover the services that are needed
at runtime and adapt to the addition and removal of services
over time. For a client in a general distributed computing
environment, the salient characteristics of a service are the
capabilities and attributes of the service. This holds as well
for robotics. For example, if a robot has two identical cameras
providing color images (the capabilities of the sensors), then
a client will not have a preference between which camera
provides an image, all else being equal. However, if the two
cameras are mounted in different locations on the robot (the
attributes of the sensor) then there may be differences in the
client’s preference for service. Thus, a service should provide
a listing of its various capabilities and attributes to clients in
the distributed system, allowing a client to make intelligent
choices related to available services. Since the design con-
straints require adaptation to a changing environment, these
capabilities and attributes must be changeable as the system
evolves or services fail.

These constraints are addressed by the application of three
key technologies: the SFX architecture, Java, and Jini. Each
of these is discussed below.

A. SFX Base Architecture
SFX is a managerial architecture by Murphy[11] designed

to incorporate and enhance sensor fusion. As a managerial
architecture, SFX has both deliberative and reactive com-
ponents. The primary component of the reactive layer is



the behavior. A behavior maps from some sensing percept
generated by a perceptual schema to a template for motor
output, known as a motor schema. A perceptual schema
processes sensory data and other percepts to generate a
representation of what is sensed. For example, a perceptual
schema may process a camera image to generate a mine
percept representing the location of the closest mine in the
image.

Once a percept is generated, the behavior passes the infor-
mation to a motor schema. The motor schema incorporates
the control necessary to act on the percept. This may involve
actions ranging moving the robot to orienting a pan-tilt unit
to achieve a better view. Behaviors can act and react rapidly,
allowing the robot to operate in real time.

While reactive components operate rapidly, they do not
have the ability to plan or even to maintain past state.
Deliberative components executing at a slower pace do have
this ability, however, and many are incorporated in the SFX
architecture. One example is the recruitment agent described
in Sec. IV-B.

B. Java Implementation Language

The Java programming language and runtime environment
serve as the foundation for this distributed system. Java is a
strong choice as a base for an architecture that can control
multiple robot platforms for five reasons:

• Platform-independence Java is an interpreted language
that can be executed on any platform that runs the Java
Virtual Machine (JVM).

• Strong typing Java is a strongly typed language, so it
is possible to specify via interfaces certain actions that
a class must implement. With this contract it is possible
to interact with objects of the class in a known manner.
Strong typing aids in system development and with error
handling during system execution [16].

• Library support There are many software libraries
available for Java that provide various functionality.
Some of the most important for this work: 1) JDOM,
an XML parser, 2) Java3D, a vector math and 3D
visualization package, 3) a Java-MATLAB bridge and
4) a Java-CORBA library to communicate with robot
control software.

• Dynamic class loading Dynamic class loading is a
critical benefit of the Java platform, especially in a dis-
tributed scenario. Dynamic class loading allows a Java
program to load classes at runtime. This enables the use
of classes that may not even have been written when the
Java program was started. In a distributed environment
programs or services may run for extended periods of
time. Robots may move around their environment and
may wish to share information or code with programs
on other robots. The ability to do this dynamically is
vital.

• Performance Since Java is a byte-compiled language,
it has traditionally been considered slow. Java runs
through a virtual machine that interprets the bytecode
stream and generates the native machine instructions to
perform each operation. This interpretation step reduces
performance. However, modern virtual machines include
a just-in-time (JIT) compiler that compiles basic blocks
of Java code to machine code the first time the block
is executed. Subsequent executions will use the newly-
compiled code rather than re-interpret the bytecode.

C. Jini Distributed Layer

Middleware frameworks [3] are abstractions of a dis-
tributed computing environment. These frameworks allow
software developers to more easily extend system infras-
tructures into a distributed environment. This is because the
middleware is “in the middle”, between the operating system
or network services and the application layer, abstracting the
details of the system-specific networking and other low-level
code. Jini is an example of a middleware framework [2],
which has a goal of providing for spontaneous networking of
services — connecting any device to any other device in the
network. Jini consists of a set of specifications that describe
an operational model for a Jini network and how components
interact within the system. The use of a standard middleware
layer such as Jini has a benefit — systems built on top of
the middleware layer automatically inherit the attributes of a
distributed system.

There are four primary benefits to Jini that are heavily
used in this approach. First, Jini provides protocols that
enable services to dynamically adapt to the network and
computing environment. Second, Jini also provides a form
of naming service, called the lookup service, which allows
advertisement of services and availability to potential clients.
Third, Jini also provides a distributed event system. Using
this, a client can register interest in a service, and can be
notified when that service becomes available. Finally, Jini
uses a leasing mechanism to handle partial failures. This
mechanism enables a client can obtain a lease on a service;
when the lease expires, the client can either stop using the
service or attempt to renew the lease.

The DFRA uses modular services to implement all of the
capabilities of the robot, including sensors, effectors, and
behaviors. The architecture also supplies high-level service
managers for the coordination and functional integration
of low level modular services. Modules are exported to
a distributed run-time system as services with certain at-
tributes and types. Services can then be searched for (us-
ing a distributed-object lookup service) based on functional
attributes rather than details of actual implementation or
physical location. This architecture allows a decoupling of
client and server, providing an interface (proxy) to the re-
questing process in a modular fashion regardless of where the



requested service physically resides or how it is implemented
at the local level. More details on the implementation of these
services are provided in the next section.

III. IMPLEMENTATION

The DFRA has been implemented in the Java programming
language using Jini to provide distributed functionality. This
implementation provides robustness to partial failures that
are characteristic of distributed systems and allows for the
seamless addition or removal of capabilities (represented as
services) from the robot team.

A. Domain and Task

A task domain for the DFRA was beach demining, where
a heterogeneous team of robots is needed and where current
architectures are insufficient. In this domain, a team of robots
explores a beach for mines, finding a clear path for other
vehicles or personnel to safely land and progress inland. The
domain is complex, requiring systematic distributed control
of a team of robots, but also requires the capability to
communicate within the team and with operators at a mission
control station.

An example of the cooperative mine detection task is
shown in Fig. 2. In this example, two ground robots and an
aerial robot perform a mission in an outdoor environment,
searching for mines in a region. One ground robot performs
a raster search of an area, while the other assists the VTOL
with identification of a potential target. The DFRA has been
successfully applied to this domain, and the hardware used
in this demonstration is listed in Sec. III-B. Results from the
demonstration are included in Sec. V.

B. Hardware

The DFRA has been successfully applied using a team
of mobile robots: two types of robots, unmanned ground
vehicles (UGVs) and unmanned aerial vehicles (UAVs), were
used together for the mine detection task. These robots can be
seen in Fig. 3. The UGVs were two identical iRobot ATRV
Jr. platforms, each with a sensor suite containing a color
camera, Sick planar laser rangefinder, Motorola M12 GPS
receiver, electronic compass, internal odometry, and software
to monitor wireless Ethernet connectivity.

The UAVs were a family of helicopters: Thunder Tiger’s
Raptor 30, 60, and 70 platforms were used, in addition to
a Rotomotion Bergen that is capable of semi-autonomous
flight. The Raptor 60 was alternately configured with two
payload sleds. The first payload carried a pan-tilt unit for
a camera, a wireless video transmitter, and batteries. This
payload enabled a human operator to control the pan-tilt
unit from the ground, allowing the UAV to be used for
aerial reconnaissance. The second payload, which could also
be equipped to the Bergen UAV, contained a camera on a
fixed mount, a GPS receiver, and an onboard computer that

Fig. 3. Partial robot team. A UAV is visible in the upper left, and a UGV is
visible to the lower right. A simulated mine, a large black sphere, is visible
on the ground.

provided realtime telemetry data back to the ground control
station via wireless Ethernet.

Sec. V discusses a demonstration that was performed
in this domain using two ground robots and two aerial
vehicles. The demonstration serves as an outdoor validation
of the software architecture in a less controlled environment.
Sec. III-C describes the services available on each ground
robot during the demonstration.

C. Services Implemented

The distributed software system is implemented using
version 1.4 of the Java programming language. The virtual
machine used is the J2SE Hotspot Virtual Machine (VM).
The core VM and classes (java.lang, java.io, etc.) are used
as a base. The eXtensible Markup Language (XML) is
used for configuration files and the architecture uses a free
Java XML parser to read and write these files. Java3D is
used to implement coordinate transforms and vector math,
while collection classes such as HashSet and HashMap are
used pervasively in the implementation. Jini is used for
the distributed system architecture, and it in turn relies on
Remote Method Invocation, Java Remote Method Protocol
and the Java Extensible Remote Invocation for remote proce-
dure calls. The use of pre-written, standard libraries reduced
development time and increased the reliability of the system.
The full list of services available is enumerated below:

1) The GPS sensor that generates latitude and longitude
readings in WGS-84 format. The GPS was used pri-
marily for navigation.

2) A compass sensor that provides heading readings in
degrees. Compass data is fused with GPS location and
odometry to provide pose data.

3) A laser rangefinder service provides range readings
in meters from the front of robot used for obstacle
avoidance.

4) An odometry sensor which produces the robot position
in robot coordinates. Odometry is primarily used to



Fig. 2. The target mission scenario

filter and update GPS readings.
5) A color camera service that generates color images

from in front of the robot.
6) A FLIR sensor service that generates thermal images

from the front of the robot.
7) A communication connectivity sensor that detects

connectivity with a base station. The communication
services allow the robot to detect and recover from
communication failure.

8) A drive motor effector which processes movement
commands to drive the robot and provides the robot’s
motive force.

9) The self-pose perceptual schema which generates a
pose percept by sensor fusion of GPS, compass and
odometry data.

10) An angle-error perceptual schema, angle error per-
cepts generated from target and robot poses. The angle
error is fed into the motor schema’s fuzzy-logic-based
control scheme.

11) Filtered laser percepts processed by a sliding window
filter are returned from the filtered laser perceptual
schema. This schema removes noise and grass from
the laser scan.

12) A vision-based mine detector perceptual schema to
detect potential mines as required by the task domain.

13) The communication status perceptual schema mon-
itors connectivity over time to determine overall com-
munication state. If the state denotes failed communica-
tion for an extended period, recovery can be activated.

14) The guarded movement motor schema, a MATLAB-
based motor schema to generate motor commands, with
built-in obstacle avoidance. Internally, the MATLAB

control uses a fuzzy-logic based control detailed in
[12].

15) The move-to-goal behavior is the primary workhorse
of the system and is described in Sec. IV-A.

16) The raster search script generates and coordinates a
mine search in a raster pattern.

17) A spiral search script generates and coordinates a
mine search in a biologically-inspired spiral pattern [5].

18) A communication recovery script to return a robot to
base after communications loss. This script is an exam-
ple of failure recovery using the DFRA architecture.

19) For affective recruitment, each robot has a recruitment
agent that mediates recruitment requests.

Given this list of implemented functions, the next section
describes the two representative examples in greater detail:
the move-to-goal behavior and the recruitment agent. A
demonstration of these functions in a mine-detection task is
presented in Sec. V.

IV. EXAMPLES

This section describes two examples of DFRA services
in greater detail. An example of a reactive service is the
waypoint-following behavior described in Sec. IV-A. The
architecture also supports deliberative agents, such as the
recruitment agent in Sec. IV-B. These two examples serve
to show the interaction of the reactive, deliberative and
distributed layers of the architecture.

A. Implementing a Waypoint-Following Behavior

This subsection describes a behavior that moves the robot
to a goal location specified as a GPS coordinate. The im-
plementation of this service validates the behavior-based,



GoToWaypoint Behavior

GPS

Odometry

Laser

FindSelfPose

FilterLaser

FindAngleError GuardedMove
(MATLAB) Motor

Target WaypointCompass

Fig. 4. Design of a waypoint-following behavior

reactive portion of the SFX architecture and also illustrates
the dynamic lookup capabilities of the distributed layer.

A schematic of the behavior is shown in Fig. 4. The
behavior uses four sensors: a GPS that continually updates
and returns the current location of the robot in world coordi-
nates, a compass that continually reports heading, odometry
that provides the location of the robot in robot coordinates,
and a rangefinder that determines distance from the sensor
to obstacles over a 180◦ horizontal scan. Data from all
four sensors is subject to noise, so additional perceptual
schemas were implemented. The laser readings are filtered
via a sliding-window algorithm to reduce spot noise from
long grass. Current pose of the robot is generated by fusing
data from the GPS, compass and odometry. This fusion
generates pose information more rapidly than the 1 Hz
GPS update rate by providing intermediate results based on
odometry and compass readings. The pose is then compared
to the target pose to generate an angle error. This, along
with obstacle information, is passed to a MATLAB-based
motor schema, which in turn generates motor commands for
the drive system. The behavior operates at roughly 10 Hz,
generating a new movement command approximately every
100 milliseconds.

During service activation, the behavior uses the distributed
layer of the architecture by requesting each of the services
listed above. This lookup repeatedly scans the services avail-
able in the persona of all robots in communication range,
filtering the list of services based on the information and
location constraints. In the lookup of the GPS service, for
example, the filter removes all services that are not located
on the requesting robot and that do not provide GPS position
data. All other service requirements proceed in a similar
manner. If the discovered service is not active, the process
repeats recursively until all service requirements are met.
While this behavior does not use services on remote robots,
the mechanism to do so remains the same.

The implementation of this service highlights two key
aspects of the system: services are discovered and requested
dynamically and the system supports reactive behaviors.

B. Distributed Agents for Affective Recruitment

Gage[4] has used the DFRA to demonstrate affective
recruitment within a team of heterogeneous robots. Affective
recruitment operates at the deliberative layer of the architec-
ture, and the recruitment algorithm leverages the distributed
layer for communication.

Affective recruitment uses an emotional model to delineate
when a robot will respond to a request for help sent by an-
other agent. The recruitment model uses an affective variable
to model the increasing SHAME associated with ignoring a
help request. The recruitment protocol has been implemented
in DFRA as modules representing agents in the distributed
layer that utilize the distributed aspects of the system in the
following ways:

• Each agent and a simulation GUI locate recruitment
agents using the Jini lookup service. As new agents are
found, the lookup service notifies each client agent about
the newly discovered agent.

• Message passing is accomplished through the remote
event mechanism.

• The recruitment agent determines the location of the
robot by accessing the robot’s GPS service and retriev-
ing the GPS coordinates. In contrast to the behavior
above, this does share sensor data between different
robots.

• The Java and Jini exception mechanisms and recruitment
protocol logic are used to handle partial failure.

The recruitment agent described above demonstrates the
utility of both the distributed and deliberative layers of the
architecture. The deliberative layer can monitor information
from the distributed layer.

V. DEMONSTRATION

The Distributed Field Robot Architecture (DFRA) was
tested in two field trials at the NAVSEA Coastal Systems
Station (CSS) on July 1 and September 9, 2004. The purpose
of these tests was to demonstrate the successful integration of
a MATLAB-based motor controller, affective recruitment [4],
and scripts [11] for performing a multi-robot mine detection
task using the DFRA.

The demonstration used software operating both on the
robots and in a mission control tent. Human operators inter-
acted with the system through two types of user interfaces.
The first interface was available through Operator Control
Units (OCUs), laptop computers that each provided detailed
information about a particular platform. The OCUs for the
UGVs provided controls for teleoperation, live video from
the robot’s camera (at a rate of 10Hz when the teleopera-
tion controls were used, and 1Hz otherwise), latitude and
longitude, heading, communications status, output from the
robot’s mine-detection perceptual schema, and the robot’s
index into its active script, as shown in Fig. 5. The OCU was
intended to provide a robot operator with enough information



Fig. 5. Operator Control Unit user interface, providing robot-specific
information.

to effectively monitor the robot’s status and to intervene
manually if required. However, the OCU was not intended
to perform mission- or team-related functions: this role was
reserved for the Mission Control Unit (MCU), described
below. The MCU and OCUs operated concurrently, each
securing services from the robots to suit the role of the user
interface.

The MCU was a single user interface that provided a
high-level overview of the robot team, including the UGVs
and a UAV carrying a telemetry payload, and the overall
mission. Each robot that had communications contact with
the MCU was displayed as an icon on an a priori satellite
map, including its current goal waypoints and a trace of
its recent positions. The MCU provided the human mission
planner with the following five functions. First, the operator
could select the corners of an area to search on the satellite
map, and each selected robot would generate a series of
waypoints to perform a raster scan over the area while using a
perceptual schema to detect mines. Next, the operator could
provide a single waypoint as a new home position for the
robot, and if idle, the robot would attempt to reach that
point. Third, the operator could pre-empt a robot from its
search task. The remaining functions were related to robot
recruitment: the operator could force the selected robot or
robots to request assistance at their location, or to disregard
their recruitment status and return to nominal operation. The
MCU is shown in Fig. 6.

The experimental scenario for the robot team was as
follows. A UAV with a telemetry payload would fly over
a minefield, using an onboard camera and offboard image
processing to identify possible mines. When an object was
detected that resembled a landmine, an agent representing
the UAV initiated an affective recruitment request to call
an idle UGV to the UAV’s position. The recruited UGV
would compute a series of waypoints in the shape of a spiral,

Fig. 6. Mission Control Unit user interface, providing a high-level overview
of the robots in the demining scenario.

starting at the UAV’s position and circling outward. In this
manner, it was possible to bring the UGV near the UAV using
coarse GPS data, and for the UGV to perform a search to
acquire the suspected mine. When the UGV found the mine,
the human operator was alerted, such that they could then
investigate more closely using teleoperation from the OCU.
This scenario was carried out twice in the field with an aerial
vehicle successfully recruiting an idle UGV.

VI. CONCLUSIONS

This paper has presented the Distributed Field Robot
Architecture and its application to a simulated demining
task. DFRA is a distributed, decentralized implementation
of the SFX architecture that provides consistent access to the
capabilities of a team of robots in the form of Jini services.
The DFRA is a flexible and extensible framework, into which
MATLAB motor controllers and affective recruitment, a form
of task allocation, have been integrated. The DFRA has been
successfully demonstrated in a simulated demining task using
real robots, in which an unmanned aerial vehicle observed a
possible mine and recruited an idle unmanned ground vehicle
to investigate more closely. The DFRA has been shown to
be suitable for distributed teams of heterogeneous robots,
including both ground and air vehicles, in a high-fidelity, real-
world task. It is expected that the DFRA will be extended
to support underwater vehicles, additional sensors, and new
behaviors without any loss of flexibility or performance.

ACKNOWLEDGMENTS

This work was supported by ONR Grant N00014-03-1-
0786 and DOE Grant DE-FG02-01ER45904. The authors
would like to thank NAVSEA Panama City for hosting
the demonstration scenario and Colleen Cleveland for her
assistance in preparing media for this paper.



REFERENCES

[1] Ronald C. Arkin. Behavior-Based Robotics. The MIT Press, May
1998.

[2] Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, Ann
Wollrath, and Bryan O’Sullivan. The Jini Specification. Addison-
Wesley Pub Co, 1999.

[3] Philip A. Bernstein. Middleware: a model for distributed system
services. Communications of the ACM, 1996.

[4] Aaron Gage and Robin R. Murphy. Affective recruitment of distributed
heterogeneous agents. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence, pages 14–19, July 2004.

[5] A.T. Hayes, A. Martinoli, and R.M. Goodman. Distributed odor source
localization. IEEE Sensors Journal, 2(3):260–271, 2002.

[6] Bonnie S. Heck, Linda M. Wills, and George J. Vachtsevanos. Software
enabled control: Background and motivation. In Proceedings of the
American Control Conference, 2001.

[7] C. G. Jung. The relations between the ego and the unconscious, 1928.
[8] M. T. Long, R. R. Murphy, and L. E. Parker. Distributed multi-agent

diagnosis and recovery from sensor failures. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003.

[9] Maja Matarić. Minimizing complexity in controlling a mobile robot
population. In Proceedings of the IEEE Conference on Robotics and
Automation, 1992.

[10] Maja J. Matarić, Gaurav S. Sukhatme, and Esben Østergaard. Multi-
robot task allocation in uncertain environments. Autonomous Robots,
14(2–3):255–263, 2003.

[11] Robin R. Murphy. Intro to AI Robotics. MIT Press, 2000.
[12] A. L. Nelson, L. Doitsidis, M. T. Long, K. P. Valavanis, and R. R.

Murphy. Incorporation of MATLAB into a distributed behavioral
robotics architecture. In to appear in Proceedings of the IEEE / RSJ
Conference on Intelligent Robots and Systems (IROS-2004), 2004.

[13] L. Parker. Alliance: An architecture for fault-tolerant multi-robot co-
operation. IEEE Transactions on Robotics and Automation, 14(2):220–
240, 1998.

[14] L. E. Parker. Distributed Automous Robotic Systems 4, chapter 1, pages
3–12. Springer-Verlag Tokyo, 2000.

[15] James L. Paunicka, David E. Corman, and Brian R. Mendel. A
CORBA-based middleware solution for UAVs, 2001.

[16] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley
Publishing Company, 1994.

[17] L. Wills, S. Kannan, B. Heck, G.Vachtsevanos, C. Restrepo, S. Sander,
D. Schrage, and J. V. R. Prasad. An open software infrastructure for
reconfigurable control systems. In Proceedings of the 2000 American
Control Conference, pages 2799–2803, 2000.


