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Abstract— We describe an algorithm for robot navigation using
a sensor network embedded in the environment. Sensor nodes
act as signposts for the robot to follow, thus obviating the need
for a map or localization on the part of the robot. Navigation
directions are computed within the network (not on the robot)
using value iteration. Using small low-power radios, the robot
communicates with nodes in the network locally, and makes
navigation decisions based on which node it is near. An algorithm
based on processing of radio signal strength data was developed
so the robot could successfully decide which node neighborhood
it belonged to. Extensive experiments with a robot and a sensor
network confirm the validity of the approach.

I. INTRODUCTION

Navigation is a fundamental problem in mobile robotics.
The local navigation problem deals with navigation on the
scale of a few meters, where the main problem is obstacle
avoidance. A well-known solution to this problem is presented
in [1], [2], where an occupancy grid map of the immediate
surroundings of the robot is created and used to determine
the navigation direction such that the robot is safely guided
towards a goal. Since the map is local, and resembles a ’sliding
window’, mapping of the whole environment does not occur.

The global navigation problem deals with navigation on a
larger scale in which the robot cannot observe the goal state
from its initial position. A number of solutions have been
proposed in the literature to address this problem. Most rely
either on navigating using a pre-specified map or constructing
a map on the fly. Most approaches also rely on some technique
of localization. Some work on robot navigation is landmark-
based relying on topological maps [3], which have a compact
representation of the environment and do not depend on
geometric accuracy. The downside of such approaches is that
they suffer from sensors being noisy and the problem of sensor
antialiasing (i.e. distinguishing between similar landmarks).
Metric approaches to localization based on Kalman filter-
ing [4] provide precision, however the representation itself
is unimodal and hence cannot recover from a lost situation
(misidentified features or states). Approaches developed in
recent years based on ’Markov localization’ [5] provide both
accuracy and multimodality to represent probabilistic distri-
butions of different kinds, but require significant processing
power for update and hence are impractical for large environ-
ments. One of the attempts to solve this problem is presented

in [6] where a sampling-based technique is used. Rather than
storing and updating a complex probability distribution, a
number of samples are drawn from it. The other approaches
utilize partially observable Markov decision process (POMDP)
models to approximate distance information given a topo-
logical map, sensor and actuator characteristics [7]. POMDP
models for robotic navigation provide reliable performance,
but fail in certain environments (e.g symmetric) or suffer from
large state spaces (i.e. state explosion).

These approaches have different advantages, but also disad-
vantages or fail cases. Note that all of the above approaches
assume that a map of the environment (topological and/or
metric) is given a priori. None of the above approaches
deal with highly dynamic environments in which topology
might change. Our approach, presented here, instruments the
environment with a sensor network.

An ant-like trail laying algorithm is presented in [8], where
’virtual’ trails are formed by a group of robots. Navigation
is accomplished through trail following. The shortcoming of
the algorithm is that it is dependent on perfect communication
between the members of the group. In addition, the ’virtual’
trails are shared between the robots, which means redundant
sharing of the state space in the group. Moreover, a common
localization space is assumed.

We are broadly interested in the mutually beneficial collab-
oration between mobile robots and a static sensor network.
The underlying principle in interaction between the network
and robots is: the network serves as the communication,
sensing and computation medium for the robots, whereas the
robots provide actuation, which is used among other things for
network management and updating the network state. In this
work we describe results from such a system which accurately
and reliably (100% correct navigation out of 50 experiments
totaling over 1km in distance) solves the problem of robot
navigation. Some properties of the approach are summarized
below:

1) The sensor network is predeployed into the environment
using the algorithm given in [9].

2) In addition to deploying the network nodes, the de-
ployment algorithm also computes the distributions of
transition probabilities P (s′|s, a) from network node s
to s′, when the robot executes action a [10].



3) The nodes of the sensor network are synchronized in
time (high precision is not required). For an example of
a time synchronization algorithm see [11].

4) The robot does not have a pre-decided environment map
or access to GPS, IMU or a compass.

5) The environment is not required to be static.
6) The robot does not perform localization or mapping.
7) The robot does not have to be sophisticated - the

primary computation is performed distributively in the
sensor network, the only sensor required is for obstacle
avoidance.

The environment used in the experiments is a regular
cubicle-like space, with changing topology, narrow corridors
(just over 1m) and full of obstacles (people, packaging boxes,
trash cans, etc). Note also that usually cubicles or other places
of interest in such environments are marked (with laser bar
codes, number codes, etc). Hence, existing markers can be
complimented with sensor network nodes that are used in our
algorithm.

II. PROBABILISTIC NAVIGATION

In order for the robot to be able to navigate through the
environment from point A to point B, assuming neither a map
nor GPS are available, the robot should be able to choose an
action that maximizes its chances of getting to its goal, to be
able to measure progress and recognize that it has arrived at the
goal (B). Our approach relies on a predeployed sensor network
with determined transition probabilities (see below) [10] and
consists of two stages.

A. Stage I - Planning

When the navigation goal is specified (either the robot
requests to be guided to a certain place, or a sensor node
requires the robot’s assistance), the node that is closest to
the goal triggers the navigation field computation. During
this computation every node probabilistically determines the
optimal direction in which the robot should move, when in
its vicinity. The computed optimal directions of all nodes
in conjunction compose the navigation field. The Navigation
Field provides the robot with the ’best possible’ direction
that has to be taken in order to reach the goal. Note that a
’kidnapped’ robot problem is solved by our system implicitly
and does not require re-computation (or re-planning).

It may be noted that a parallel approach for the construction
of a navigation field has been proposed in the sensor network
literature [12]. Instead of value iteration [12] uses potential
fields and the hop count to compute the magnitude of the
directional vectors.

1) Theoretical Framework - Value Iteration: Consider the
deployed sensor network as a graph, where the sensor nodes
are vertices. Assume a finite set of vertices S in the deployed
network graph and a finite set of actions A the robot can
take at each node. Given a subset of actions A(s) ⊆ A, for
every two vertices s, s′ ∈ S in the deployed network graph,
and action a ∈ A(s) the transition probabilities P (s′|s, a)
(probability of arriving at vertex s′ given that the robot started
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Fig. 1. An example of a discrete probability distribution of vertex (sensor
node) k for direction (action) ”East”(i.e. right).

at vertex s and commanded an action a) for all vertices are
determined [10]. Figure 1 shows a typical discrete probability
distribution for a vertex (sensor node) per action (direction).
Note that in practice the probability mass is distributed around
neighboring nodes and zero otherwise.

Our model for the proposed system is Markovian - the
state the robot transitions to depends only on the current state
and action. We model the navigation problem as a Markov
Decision Process [13]. To compute the best action at a given
vertex we use the Value Iteration [14] algorithm on the set of
vertices S − sg , where sg is the goal state. The general idea
behind Value Iteration is to compute the utilities for every state
and then pick the actions that yield a path towards the goal
with maximum expected utility. The utility is incrementally
computed:

Ut+1(s) = C(s, a) + max
a∈A(s)

∑

s′∈S−s

P (s′|s, a) × Ut(s
′) (1)

where C(s, a) is the cost associated with moving to the
next vertex. Usually the cost is chosen to be a negative number
which is smaller than −1/k where k is the number of vertices.
The rationale is that the robot should ’pay’ for taking an action
(otherwise any path that the robot might take would have the
same utility), however, the cost should not be to big (otherwise
the robot might prefer to stay at the same state). Initially the
utility of the goal state is set to 1 and of the other states to
0. Given the utilities, an action policy is computed for every
state s as follows:

π(s) = arg max
a∈A(s)

∑

s′∈S−s

P (s′|s, a) × U(s′) (2)

The robot maintains a probabilistic transition model for the
deployed network graph, and can compute the action policy at
each node for any destination point. In practice, however, this
is limiting, since it requires the robot to traverse the network
many times over to learn the transition model. Further, another



robot deployed into the same environment would need to first
traverse the deployed network before it can navigate between
any two points optimally.

One solution is for the robot to compute the action policy
as above, and while traversing the network record the optimal
action for the current node as it passes by. Each node can store
this action and can emit it as part of the message directed to a
robot. This would help other robots (which may not yet have
explored the entire space) use the information for navigation.
However, this solution is inefficient, since it is slow to adapt
if the navigation goal is changed.

2) Distributed Computation and In-network Processing:
A much more attractive solution is to compute the action
policy distributively in the deployed network. The idea is that
every node in the network updates its utility and computes
the optimal navigation action (for a robot in its vicinity) on
its own. When the navigation goal is determined (either a
robot requested to be guided to a certain node, or a node
requires robot’s assistance), the node that is closest to the
goal triggers the computation by injecting a Start Computation
packet into the network containing its id. Every node redirects
this packet to its neighbors using flooding. Nodes that receive
the Start Computation packet initialize utilities and the cost
values depending on whether the particular node is specified
as a goal or not. Every node updates the utilities according
to equation 1. Note that the utilities of neighboring nodes
are needed as well, hence, the node queries its neighbors for
corresponding utilities. Since computation of some nodes can
proceed faster than others, every node stores computed utilities
in a list, so that even if it is queried by its neighbors for a
utility several steps prior to the current one, the list is accessed
and the corresponding utility is sent.

After the utilities are computed, every node computes an
optimal policy for itself according to equation 2. Neighboring
nodes are queried once again for the final utility values. The
computed optimal action is stored at each node and is emitted
as part of a suggestion packet that the robot would receive if
in the vicinity of the node.

This technique allows the robot to navigate through the
environment between any two nodes of the deployed network.
Note that the action policy computation is done only once
and does not need to be recomputed unless the goal changes.
Also, note that the utility update equations have to be executed
until the desired accuracy is achieved. For practical reasons
the accuracy in our algorithm is set to 10−3, which requires a
reasonable number of executions of the utility update equation
per state and thus, the list of utilities that every node needs
to store is small. Since the computation and memory require-
ments are small it is possible to implement this approach on
the real node device that we are using (the Mote [15]).

Note that if neighbors of all nodes are known exactly (for
every direction each node has at most one neighbor), then
P (s′|s, a) = 1. Hence, equations 1 and 2 reduce to the
maximization of utilities of neighboring nodes only. In this
case the system converges after a single iteration.
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Fig. 2. Navigation - node-wise approach

B. Stage II - Navigation

Note that the deployed sensor network discretizes the envi-
ronment. Consider Figure 2. On the way from starting node 1
to goal node 5, the robot would first navigate from node 1 to
2, then from 2 to 3, and so on. Hence, the navigation is node-
wise. A node whose directional suggestion the robot follows at
the moment is called current node. Initially the current node is
set to the node closest to the robot. The bottom part of Figure 2
shows the three phases of navigation. Suppose initially current
node is set to node 1 (robot’s position at the bottom right
corner on the Figure 2). Node 1 suggests the robot to go ’UP’.
In the first phase the robot accepts this command and positions
itself in the correct direction. During the second phase, the
robot moves ’forward’ using the VFH [2] algorithm for local
navigation and obstacle avoidance. Note that throughout the
second phase the current node is set to node 1. Phase 3 is
triggered when the robot determines that it has entered the
neighborhood of the next node - say, node 2 (an oval M2

on Figure 2). During phase 3 the current node switches and
the navigation algorithm starts from phase 1 again, but with
the current node set to 2. But how to determine when the
robot is in the neighborhood of some node? A straightforward
approach is to use signal strength thresholding. In this case,
prior to the experiment an observation model can be built
which given a signal strength value would approximate the
distance from the node. Hence, ideally, while in phase 2, the
robot would simply collect signal strength values from the
packets of all nodes in the vicinity, feed the model with these
values and threshold an output picking the shortest distance.

The problem with such an approach is that raw signal
strength values are neither constant nor even proportional
from radio to radio, from one environmental topology to
another, etc. Experimental results show that such an approach
is not reliable or accurate. To reliably predict which node
neighborhood the robot is in, we developed an algorithm1

called Adaptive Delta Percent, based on processing signal
strength values in the following manner.

1A more general version of the algorithm is submitted for patenting which
is based on the idea that any kind of statistical approach can be used to
compare the rates of change in signal strength
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Fig. 3. Illustration of Delta Percent Algorithm. Arc R represents an ideal
signal strength space that the robot receives starting from node t, going
towards node x. Note that metric data is not involved in the figure and the
desired ’switching’ place is around areas M1 or M2

Consider that the robot’s current node is node t. The node
suggests to the robot to travel in a certain direction. Assume
that before reaching the next node the robot would receive n
samples of radio signal strength from each of the k nodes to
which the robot might switch to (i.e. candidate nodes). Then
for each of the k nodes:

1) Compute an initial maximum average Aim - an average
of the first i samples where i << n.

2) Compute a running average Ar which is an average of
j consecutive samples where j << i.

3) If R = Ar

Aim

< M , where M is the threshold value, then
return from the algorithm. Put R into list LR.

4) If y consecutive elements of LR are in nondecreasing
order, then return from the algorithm, else repeat 2
through 4.

In case several nodes returned from the algorithm, pick
the node with the smallest ratio and switch to it. In our
experimental setup n ≈ 15, i ≈ 5, j ≈ 10 and y ≈ 3.
Experimentally we determined threshold M = 0.65. Consider
Figure 3. An arc R represents ideal signal strength space that
the robot would be moving in on its way from node k to some
final node x. Note that in reality the signal strength space is not
uniform. The desired ’switching’ place in the neighborhood of
x is around areas M1 or M2. Steps 1-3 of the algorithm try to
estimate if the robot is in area M1. Step 4, on the other hand
is checking if the robot has passed area M1 and now is in
area M2. This scenario can happen if threshold M is difficult
or incorrectly determined or parameters i and j were chosen
inappropriately.

III. EXPERIMENTS AND DISCUSSION

We conducted experiments at Intel Research facilities in
Hillsboro, Oregon. We used a Pioneer 2DX mobile robot,
with 180o laser range finder used for obstacle avoidance, and
a base station (Mica 2 mote) for communicating with the
sensor network. Mica 2 motes were used as nodes of the

Fig. 4. Map of the experimental environment. Nodes were manually
predeployed (nodes marked 1 - 9)

Fig. 5. Mobile robot and a Mote in experimental setting.

sensor network. The sensor network of 9 nodes was prede-
ployed into the environment. Every node is preprogrammed
with information about its neighbors. We assume that the
sensor network is deployed and transition probabilities set as
described in [10]. The map of the experimental environment
and deployed sensor network of 9 sensor nodes is shown in
Figure 4. The environment itself resembles a regular cubicle-
office-like environment with narrow corridors (about 1 m),
changing topology, crowded with people and obstacles. Fig-
ure 5 shows the mobile robot and one of the deployed nodes
in the experimental environment. The experimental scenario
that we consider for navigation is alarm handling. An Alarm



(a) Goal 3 (b) Goal 5 (c) Goal 6

(d) Goal 8 (e) Goal 9

Fig. 6. Trajectories of robot navigating to five different goals. The start location in each case is near node 1.

occurs when a certain node detects an event. The algorithm
proceeds as discussed in previous sections. The task of the
robot is to navigate from the ’home base’ (around node 1)
towards the triggered alarm. The requirements that we impose
for the experiment to be successful are that the navigation field
should yield shortest paths from any point towards the goal
node, the robot should follow the shortest path, and the robot
should stop within 3 meters of the goal node.

Since the robot does not have an IMU or a compass (in the
experimental environment these devices proved to be useless),
the direction in which the robot is initially facing is explicitly
set. During the experiments the robot maintains the notion of
virtual direction, that is, given initially set direction the robot
switches virtual direction only when nodes tell robot to switch
direction. We conducted 10 experiments for five different goal
nodes (we set off an alarm at five different nodes) - 3, 5,
6, 8 and 9 (50 experiments altogether). Table I shows the
final distances from the robot to the goal nodes after the robot
has signaled that it had completed navigation. The length of
navigation paths that the robot traveled combined is over 1
km. The robot was able to navigate to the correct goal node

TABLE I

EXPERIMENTAL DATA (DISTANCE TO GOAL AT FINISH, IN METERS). FIVE

GOALS, TEN EXPERIMENTS PER GOAL.

Trial Goal 3 Goal 5 Goal 6 Goal 8 Goal 9
1 0.7 1.4 0.78 2.9 0.96
2 0.82 1.26 0.86 1.6 0.96
3 0.94 1.45 0.72 1.62 1.35
4 0.91 1.41 0.91 2.4 1.26
5 0.85 1.4 0.87 1.4 1.21
6 0.97 1.39 1.3 2.1 1.24
7 0.85 1.01 0.85 1.7 0.95
8 0.98 1.55 0.88 2.8 1.51
9 0.89 1.5 0.55 1.79 1.4
10 0.66 1.04 1.02 2.1 0.92

Average 0.86 1.34 0.87 2.04 1.17

in all cases. Representative trajectories that the robot took on
its route from the start (node 1) to five goal nodes are depicted
in Figure 6.

As the results suggest, our algorithm provides precise and
reliable navigation. Neither a map, nor localization was used
in the process and GPS, IMU and compass were not available.



The proposed algorithm requires a sensor network to be
deployed and moreover, every node of the network should
probabilistically know its neighbors. Note also that usually
environments resembling our experimental space has every
cubicle and intersection marked with either laser bar code or
RFID tag. Imagine marking every cubicle or ’interest point’
with markers like nodes used in our experiment. In this case
the deployment problem is no longer an issue. At the same
time, we showed in our earlier work [10] how to deploy
a sensor network with a mobile robot and in the process
determine transition probabilities for every node.

IV. CONCLUSION

We have presented an algorithm that allows the robot
to navigate precisely and reliably using a deployed sensor
network. Our approach differs from systems described in the
literature by assuming that a map, localization, GPS, IMU
or compass are not available. The navigation occurs through
node-wise motion from node to node on the path from starting
node to the goal node. We conducted 50 experiments for
5 different goals, totaling over 1 km of traveled distance.
In each of the 50 cases the robot successfully navigated to
the goal node. Note that we considered an experiment to be
successful if the robot approached the goal node to within
3m. This distance was experimentally set as ’good enough’,
since goal nodes represent a ’local neighborhood’ requiring
robot’s presence. Hence, when the robot arrives at such a ’local
neighborhood’, local navigation algorithms, like VFH [2], can
be used to drive the robot exactly to where the robot’s presence
is required. Furthermore, in practice, sensor network nodes
would be mounted on top of the cubicles (in places where
current markers are), which makes the 3m range reasonable.

As can be noted, proposed system contains multiple pa-
rameters. In the future work we plan to investigate how
accurately can the switching stage be. In addition, we plan
to augment the Adaptive Delta Percent algorithm to be able to
tune its parameters on-the-fly as the robot proceeds and detects
statistical dependence in gathered signal strength values.
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