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ABSTRACT

We begin by considering current shortfalls with conventional surveillance systems and discuss the potential advantages
of distributed, collaborative surveillance systems. Distributed surveillance systems o�er the capability to monitor
activity from multiple locations over time thereby increasing the likelihood of obtaining discriminating data necessary
for interpretation of the activity. Yet the multiplicity of sensors magni�es the volumes of data that must be processed.
We present our vision of a system which generates timely interpretations of activities in the scene automatically
through the use of mechanisms for collaboration among sensing systems and e�cient perception methods which
complement the sensing paradigm. Then we review our recent e�orts toward achieving this goal and present initial
results.
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1. INTRODUCTION

The role of a surveillance system is to provide a timely, concise view of relevant activities within an environment.
Modern surveillance systems often employ a limited number of sophisticated sensors that can provide a wealth of
sensor data about a region of interest. Unfortunately with certain sensor modalities, it is di�cult to produce a
timely interpretation from the volumes of data using current approaches for automated interpretation. This has two
signi�cant implications. The user derives little information from the system which can impact decisionmaking in
time-critical scenarios, and is often unable to retask the system to resolve ambiguity in the original data as activity
is occurring.

Given that these sensing systems are often quite expensive, one may ask whether another system architecture
may o�er improved performance. We believe that a distributed surveillance system, which utilizes a larger number
of limited capability sensing systems, can o�er signi�cant advantages over conventional surveillance systems if one
reconsiders how the sensing and perception processes interact. For example consider the task of object classi�cation.
Often algorithm designers assume that a classi�er is provided with only one sample of data to assess the nature
of a particular object. Therefore they may attempt to obtain robustness to a variety of possible signal distortions
by utilizing elaborate processes which are computationally expensive. Yet such classi�cation processes are not well
matched to the sensing process.

A surveillance system is generally sensing the environment on a continuous basis. Therefore a classi�cation
decision need not be made after each sensor collection. If a particular collection yields a sample of data that is
ambiguous, there is no need to spend a signi�cant amount of computation attempting to compensate for distortions
which may have caused the ambiguity. Using a simple classi�er with an associated measure of classi�cation con�dence,
the system can delay making a classi�cation decision until enough samples have been collected to yield a classi�cation
with an appropriate level of con�dence. Such a classi�cation process is ideal for a distributed surveillance system
since multiple sensors can focus on an object in the environment from di�erent locations, thereby increasing the
likelihood of obtaining discriminating data during a particular collection. Using such a paradigm, our general goal
is to demonstrate that timely interpretations of the environment can be generated using feedback from perception
processes, and robust performance can be achieved over a wide range of operating conditions.
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In order to realize such a system, we must �rst de�ne a framework for coordinated sensing, processing and
communication among the sensing systems that compose the distributed surveillance system. The path that we have
chosen to follow toward this objective involves de�ning an agent-based software architecture for collaboration among
individual sensor systems. Ideally this architecture will allow the operator to provide the distributed surveillance
system with high level surveillance objectives which in turn are decomposed automatically into a collection of taskings
for individual sensor systems. As the sensor systems collect data about the environment, they will collaborate with
one another to assemble a common interpretation of the environment. This may involve collaborative processing for
detection, classi�cation and geolocation or collaborative control for geolocation and tracking. Once an interpretation
is formed, the taskings for individual sensor systems are then automatically updated in order to resolve remaining
ambiguity or improve the system's ability to assess general activity in the environment. This way the user achieves
maximum information gain with minimal input.

In this paper, we present our initial steps toward these long-term objectives. Our recent e�orts have been
focused on two fronts: de�nition of the agent-based architecture and development of e�cient perception algorithms
for detection and classi�cation. We begin by providing an overview of CyberARIES, the agent-based architecture
running on the CMU/ICES CyberScout distributed surveillance system. Then we focus on perception capabilities
that have been instantiated to date within the system and review initial results from experiments demonstrating
these capabilities.

2. CYBERARIES

2.1. Motivation

Before we review the fundamentals of the CyberARIES system, we need to begin by specifying our notion of col-
laboration in further detail in order to avoid ambiguity. Collaboration among agents in a distributed system can be
achieved using a centralized or decentralized architecture.1 A centralized architecture involves using a single control
agent to coordinate the actions of the remaining agents to accomplish a particular goal. A decentralized architecture
is either hierarchical or distributed in nature. A hierarchical architecture uses local control agents to coordinate the
actions of subsets of agents within the group. A distributed architecture on the other hand has no control agents.
Collaborative interactions between agents emerge from constraints placed on agent interactions with the environment
and other agents.

For surveillance applications, a distributed architecture appears to o�er two distinct advantages over centralized
and hierarchical architectures. When fault-tolerance is a primary concern, a distributed architecture is ideal since the
system o�ers a graceful degradation in capability as sensor systems fail. Given this capability to adapt to changes
in the architecture, a distributed architecture should in principle scale seamlessly to situations with potentially
hundreds or thousands of sensor systems as well. We believe that a distributed surveillance system with emergent

collaboration can allocate system resources in a more optimal fashion over a wide range of scenarios than a centralized

or hierarchical system. Therefore we plan to pursue a distributed architecture in order to hopefully demonstrate the
robustness of such a system.

2.2. Architecture Fundamentals

2.2.1. The agent

Let us begin our overview of the CyberARIES architecture by �rst de�ning the basic building block: the agent. We
de�ne an agent as software with the following properties:

� Accepts stimuli from other agents

� Has steady state behavior in the absence of stimuli

� Can provide stimuli to other agents

The general agent structure within CyberARIES is shown in �gure 1. The behavior of the agent is de�ned by
the agent run loop which is executed until either the operator terminates the agent or the agent terminates itself.
Communication between agents occurs through connections between stimulus sources and sinks. A stimulus sink

receives all incoming messages (stimuli) from other agents and stores them until the agent run loop requests a
stimulus. A stimulus source receives stimuli from the agent run loop and attempts to transmit them to the stimulus
sink of the speci�ed agent(s).



Figure 1. General agent structure within CyberARIES.

2.2.2. The distribution layer

Given that there will be no centralized or hierarchical control of the agents in the system, communication among
the agents will form the basis for allocation of processing and sensing resources across the distributed surveillance
system. Within CyberARIES, the distribution layer is the communications infrastructure that is responsible for
routing stimuli between agents and regulating the ow of stimuli within the system. � When an agent wishes to send
a stimulus to another agent, the distribution layer handles the details of establishing the necessary connections to
deliver the stimulus. During transmission, it also monitors the arrival rate of stimuli relative to the processing rate
of receiving agents to ensure that agents are not being overloaded. If the distribution layer detects a problem, it will
ask transmitting agents to reduce their rate of transmission.

Upon receiving such a request, an agent pursues one of two options. First it communicates with other agents
to determine if another agent has excess processing capacity to handle additional stimuli. If an agent accepts the
processing task, some stimuli bound for the original receiving agent are transmitted to the volunteer. Otherwise if
no agent can accept additional stimuli, the transmitting agent simply sleeps for a certain amount of time during each
cycle of the agent run loop in order to reduce its transmission rate. Using such simple interactions among agents, we
obtain a means for dynamic load balancing which utilizes emergent collaboration among the agents to achieve these
ends.

Similar constraint-based processes that utilize the distribution layer may also lead to emergent collaboration for

perception as well. In such tasks, one challenge is to automatically determine which agents should receive information
derived from sensory data by a given agent. By utilizing some utility measure, agents receiving such information
can provide feedback to the distribution layer which in turn can be used to allocate communication capacity to
those connections which provide the most signi�cant gains in perception performance. In this way, the distributed
surveillance system can learn to exchange information among the agents in a manner that most e�ectively reduces
uncertainty in the interpretation of activities in the environment.

2.3. Example Architecture: CyberScout Agent-Based Framework

In the CyberScout program, we will be utilizing two retro�tted Polaris all-terrain vehicles (ATVs) along with sta-
tionary sensors to perform tactical surveillance. On each ATV, processors will host a set of agents that perform
the following functions shown in �gure 2. To date our research group has focused primarily on de�ning agents for
vehicular control and perception. Vehicular control agents are responsible for low-level control activities such as
braking, steering, and throttle control. Perception agents are responsible for such tasks as moving object detection,

�In keeping with the spirit of our distributed architecture, the distribution layer is composed of a set of distribution agents with one

running on every processor in the distributed surveillance system.



Figure 2. ATV functions de�ned within CyberARIES.

classi�cation, geolocation and tracking, obstacle avoidance and landmark detection. In the next section, we will focus
on our e�orts to develop simple, e�cient and robust methods for moving object detection and classi�cation in video.

3. PERCEPTION FOR SURVEILLANCE

3.1. Motion Detection

Traditional approaches to motion detection compute optical ow which is computationally expensive and requires
special purpose hardware to run in real-time. Only a few real-time procedures presented in the literature are suitable
for standard PCs.2{5 Such techniques generally focus on modelling the background and detecting signi�cant changes
between the background model and the current frame. Lipton et al.4 and Haritaoglu et al.3 employ temporal
di�erencing strategies which involve di�erencing video frames with a background model, thresholding the result and
extracting connected components. Such techniques are sensitive to noise and illumination changes but can quickly
acquire a background model. Wren et al. and Grimson et al. avoid the sensitivities of the temporal di�erencing
approaches by utilizing Gaussian5 and Gaussian mixture models2 of the background. Yet the added model complexity
requires signi�cant additional data to estimate the model parameters.

Given that the electro-optical cameras in the CyberScout system will be panning and tilting to track targets in a
scene, it is important for our motion detection procedure to have the capability to quickly acquire a backgroundmodel.
Therefore we need to pursue a strategy similar to temporal di�erencing. At the same time, the motion detection
algorithm should be insensitive to mild camera jitter caused by vibration on the ATV. Obviously improving the
robustness to jitter negatively impacts background acquisition time. Therefore we must identify a proper balance of
capabilities.

Our motion detection algorithm is very similar to that of Lipton et al. We construct a continuously adapting
background model and subtract it from each frame to obtain the foreground image. Targets are then segmented
using a thresholded foreground image. The background model is constructed using an autoregressive (AR) �lter
applied to the current frame and a time-lagged frame. This results in two foreground image hypotheses which are
linearly combined to form a raw foreground image. The threshold for the subsequent frame is simply the background
model obtained by applying the same AR �lter to the raw foreground image. Applying systematic erosion scaled by
the threshold at each pixel results in a binary image that is used for region growing. Using such an approach, we
have managed to e�ectively eliminate most jitter and noise without a signi�cant impact on detection performance.
We anticipate further improvements by utilizing feedback from the classi�er to adjust the sensitivity of the detector
in order to control the false alarm rate.

3.2. Classi�cation of Moving Objects

Once the motion detector has nominated a region of the image as a moving object, our next objective is to attempt
to classify the selected image chip. We will label nominated chips as either people, vehicles or unknown objects. The
people class includes individuals as well as multiple people. We will attempt to classify moving objects based on the
di�erence image chips. The di�erence image was chosen because it provides a stable representation of the shape of



Figure 3. Motion detection and classi�cation example: (top) original image, (middle) di�erence image, (bottom)
thresholded di�erence image



Figure 4. Di�erence image examples of detected people and vehicles

the object, as compared to the thresholded di�erence image, and minimizes the inuence of the background on the
classi�cation decision.

Figure 4 displays a series of di�erence images of moving people and vehicles. These examples highlight various
types of pattern variations that the classi�er will be presented with. We will attempt to compensate for the scale
variation by resizing all chips so that they �t within a 20x20 window. No other normalizations are performed prior
to passing the chips to the classi�er.

In keeping with our philosophy introduced earlier, our objective is to design a simple classi�er with a measure of
classi�cation con�dence that allows us to capitalize on the surveillance system's ability to collect multiple images of a
moving object over time and space. Given that the class-conditional densities associated with people and vehicles are
poorly represented by classic parametric densities, we have chosen to pursue a nonparametric approach to classi�er
design whereby we select the functional form of the classi�er and learn the appropriate parameters from a set of
examples.

The approach we employ for training the classi�er is di�erential learning.6 In contrast to probabilistic learning

which attempts to approximate the a posteriori class probabilities using the available functional complexity, the
objective of di�erential learning is simply to learn the most likely class label for each example. Using such an
approach, the data requirements for certain levels of generalization performance are orders of magnitude less than
those for probabilistically generated classi�ers.

Di�erentially generated classi�ers are obtained by maximizing a classi�cation �gure-of-merit objective function
which is a monotonic function of the di�erence between the classi�er outputs associated with the correct class and the
largest other class. This quantity is referred to as the discriminant di�erential. In the spirit of di�erential learning,
we utilize the di�erence between largest and next largest classi�er outputs as a measure of classi�cation con�dence.

3.3. Experimental Results

For our initial experiment, we trained a logistic linear classi�er on a collection of di�erence image chips using
di�erential learning with weight decay and early stopping. We then evaluated the generalization performance of the
classi�er using a disjoint test set. Rejection thresholds were chosen using the test set and the false alarm set. The
false alarm set constructed consists of false alarm examples due to changing illumination. Table 1 lists the number
of examples used in the training and test sets.

Table 2 displays the generalization performance of the logistic linear classi�er. The results clearly indicate that
these classes are for the most part linearly separable. Unfortunately a signi�cant fraction of the false alarms are



classi�ed as vehicles. After examining the weights of the classi�er, it becomes evident why this is occurring. Due to
variations in object position within the image chips, no obvious details of people and vehicles appear to be used in
the classi�cation. Instead only gross dimensions of the objects appear to play a signi�cant role in classi�cation.

In order to compensate for variations in position, we have developed a locally translation invariant logistic linear

classi�er that classi�es a series of horizontal translations of a given image chip and selects the class label corresponding
to the translation which yields the largest di�erential above the rejection threshold. Table 3 shows the generalization
performance of this classi�er. Although the probability of correct classi�cation has fallen slightly due primarily to
more errors on examples of people, we have obtained a large increase in false alarm rejection. This appears to be
attributable to a more structured weight layer. Comparing these results with those in table 4 for the classi�cation
scheme proposed by Lipton et al., we see that our detection and classi�cation scheme provides a signi�cant increase
in performance with a similar detection method and a lower complexity classi�er. Using this classi�cation procedure
in concert with a method for corresponding objects over time and space, we will achieve additional improvements in
classi�cation and rejection performance.

4. CONCLUSION

In this paper we have attempted to motivate an alternate approach to the problem of automated surveillance.
Speci�cally we have advocated using a distributed surveillance system containing a large number of limited capability
sensors that provide increased coverage and fault tolerance at a reduced cost. In order to interpret the volumes of
data generated by this type of system in a timely fashion, we are pursuing strategies to induce collaboration among
software agents responsible for processing sensor data on individual sensing systems. Using simple, constrained
interactions among agents along with e�cient, low complexity algorithms for perception and control, we hope to
show that robust, adaptive systems for distributed surveillance can emerge. We believe the initial results we have
presented here highlight the promise in such a system, and we intend to demonstrate expanded capabilities for
collaborative perception in the near future.
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Class Training Testing

People 1100 1094
Vehicle 1035 1027
False Alarm 134

Table 1. Number of examples of each class used for training and testing

PCorrectClassification = 0:980

Class Correctly Classi�ed Misclassi�ed Rejected

People 0.926 0.027 0.047
Vehicle 0.941 0.011 0.048
False Alarm 0.299 0.701

Table 2. Generalization performance of the logistic linear classi�er

PCorrectClassification = 0:946

Class Correctly Classi�ed Misclassi�ed Rejected

People 0.910 0.080 0.010
Vehicle 0.952 0.023 0.025
False Alarm 0.067 0.933

Table 3. Generalization performance of the locally translation invariant logistic linear classi�er

PCorrectClassification = 0:952

Class Correctly Classi�ed Misclassi�ed Rejected

People 0.828 0.062 0.110
Vehicle 0.868 0.025 0.107

Table 4. Generalization performance of the classi�er proposed by Lipton et al.


