
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002 493

operations on a resource as previously described, has good sta-
bility and performance properties [11].

4) When the current time approaches the Start Time of an operation,
the operation is released and its Start Time is fixed. When the
execution of an operation is completed, it is removed from the
resource’s list.

V. CONCLUSIONS

Object-Oriented Frameworks and Design Patterns have offered the
elements to transfer the idea of architecture from classical civil/indus-
trial engineering to emerging information engineering. It is interesting
to analyze how the emergence of the Internet has led to innovations in
the style of designing automation architectures.

In the era of Computer Integrated Manufacturing (CIM), an automa-
tion system was conceived as a strong and rigid hierarchy of control
layers: facility, shop, cell, workstation, and equipment. According to
the USA-NBS CIM reference model [8], each layer is populated with
a set of control modules (the device controller, the workcell controller,
the cell controller, etc.) with precise responsibilities and, in particular,
a higher layer control module coordinates the control modules below
it. The flexibility of such systems is limited to the possibility of recon-
figuring the production process offline by reprogramming each control
module. A local area network or a field bus represents the commu-
nication medium between the factories’ subsystems. The interfactory
communication is handled via telephone, fax, or email.

In the era of Internet, global automation systems are conceived
as flat interconnections of autonomous and decentralized decision
making/control modules dominated by the concepts of “heterarchy”
and “proactivity.” The first means that no hierarchy in decision
making is enforced, the second that each partner takes initiative
in reaching a decision (e.g., planning production) and the global
behavior of the system is an “emerging behavior.” Control modules
have decision-making capabilities and coordinate their activities by
exchanging data and events according to a peer architectural model
and common protocols.

REFERENCES

[1] A. Aarsten, D. Brugali, and G. Menga, “Designing concurrent and dis-
tributed control systems,”Commun. ACM, vol. 39, no. 10, pp. 50–58,
1996.

[2] C. Alexander, A Pattern Language: Towns Building, Construc-
tions. London, U.K.: Oxford Univ. Press, 1977.

[3] D. Brugali, G. Menga, and A. Aarsten, “The framework life span,”
Commun. ACM, vol. 40, no. 10, pp. 65–68, 1997.

[4] D. E. Estrinet al., “Embedding internet,”Commun. ACM, vol. 43, no.
5, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Villisides,Design Patterns:
Elements of Reusable Object Oriented Software. Reading, MA: Ad-
dison-Wesley, 1994.

[6] W. Hasselbring, “Information system integration,”Commun. ACM, vol.
43, no. 6, pp. 32–36, June 2000.

[7] D. B. Lange and M. Oshima,Programming and Deploying Mobile
Agents with Java and Aglets. Reading, MA: Addison-Wesley, 1998.

[8] C. McLeanet al., “A computer architecture for small-batch manufac-
turing,” IEEE Spectrum, vol. 20, no. 5, pp. 59–64, 1983.

[9] A. Mowshowitz, “Virtual organization,”Commun. ACM, vol. 40, no. 9,
pp. 30–37, 1997.

[10] M. Pinedo,Scheduling: Theory, Algorithms and Systems. Englewood
Cliffs, NJ: Prentice-Hall, 1995.

[11] V. V. Prabhu and N. A. Duffie, “Nonlinear dynamics in distributed ar-
rival time control of heterarchical manufacturing systems,”IEEE Trans.
Contr. Syst. Technol., vol. 7, pp. 45–50, June 1999.

[12] D. Tennenhouse, “Proactive computing,”Commun. ACM, vol. 43, no. 5,
pp. 43–50, May 2000.

Miro—Middleware for Mobile Robot Applications

Hans Utz, Stefan Sablatnög, Stefan Enderle, and
Gerhard Kraetzschmar

Abstract—Developing software for mobile robot applications is a te-
dious and error-prone task. Modern mobile robot systems are distributed
systems, and their designs exhibit large heterogeneity in terms of hard-
ware, operating systems, communications protocols, and programming
languages. Vendor-provided programming environments have not kept
pace with recent developments in software technology. Also, standard-
ized modules for certain robot functionalities are beginning to emerge.
Furthermore, the seamless integration of mobile robot applications into
enterprise information processing systems is mostly an open problem. We
suggest the construction and use of object-oriented robot middleware to
make the development of mobile robot applications easier and faster, and
to foster portability and maintainability of robot software. With Miro, we
present such a middleware, which meets the aforementioned requirements
and has been ported to three different mobile platforms with little effort.
Miro also provides generic abstract services like localization or behavior
engines, which can be applied on different robot platforms with virtually
no modifications.

Index Terms—CORBA, distributed systems, middleware, mobile robots,
multirobot applications, object orientation, robot control architectures.

I. INTRODUCTION

Developing software for mobile robot applications is a tedious
and error-prone task. Modern mobile robots are usually composed
of heterogeneous hardware components, which are connected using
different networking technologies and communication protocols
with widely differing bandwidths. A large number of different
methods for processing sensor information and controlling actua-
tors, for performing computational vision and cognitive tasks like
planning, navigation, and user interaction, must be integrated into a
well-engineered piece of software. All these issues contribute to the
enormous complexity of the mobile robot software development task.
Vendor-provided programming environments have not kept pace with
recent developments in software technology. Mobile robot software
are often custom made, closed systems, which makes it difficult
to integrate them in enterprise information processing frameworks.
Furthermore, standardized modules for certain robot functionalities
are beginning to emerge.

We suggest the construction and use of object-oriented robot mid-
dleware to make the development of mobile robot applications easier
and faster and to foster portability and maintainability of robot soft-
ware. High-quality robot software and an improved software develop-
ment process will be key factors in enhancing both the research state
of the art as well as the likelihood of deploying working applications
in industrial and consumer markets.

With Miro, we present such a middleware, which meets the afore-
mentioned requirements and has been been ported to three different
mobile platforms with little effort. Miro also provides generic abstract

Manuscript received December 11, 2001. This paper was recommended for
publication by Associate Editor G. Menga and Editor N. Viswanadham upon
evaluation of the reviewers’ comments. This paper was presented at Telematics
Applications and Automation in Robotics (IFAC), Weingarten, Germany, 2001,
and at the RoboCup Symposium, Seattle, WA, 2001.

H. Utz and G. Kraetzschmar are with the University of Ulm, Neuroinfor-
matics, 89069 Ulm, Germany (e-mail: hutz@neuro.informatik.uni-ulm.de;
gkk@neuro.informatik.uni-ulm.de).

S. Sablatnög is with Temic Sprachverarbeitung GmbH, 89077 Ulm, Germany
(e-mail: ssablatn@neuro.informatik.uni-ulm.de).

S. Enderle is with Advanced InfoData Systems GmbH, 89077 Ulm, Germany
(e-mail: steve@neuro.informatik.uni-ulm.de).

Digital Object Identifier 10.1109/TRA.2002.802930

1042-296X/02$17.00 © 2002 IEEE

494 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002

services like engines for mapping, localization, and behavior genera-
tion, which can be applied on different robot platforms with virtually
no modifications.

II. DESIGN GOALS FORROBOTICSMIDDLEWARE

In mainstream software development projects, middleware systems
are mainly applied in order to reduce development time and cost. This
is achieved by providing well-structured frameworks for often-needed
data structures, precoded and well-tested code for particular function-
alities, and standardized communication protocols and synchroniza-
tion mechanisms. Using these facilities leads to improved software
structures, less error-prone implementations, and better overall soft-
ware quality. By writing code based on middleware, it is easier for pro-
grammers to meet given standards and more likely for the code to be
reused later on. Furthermore, middleware that is available on a wide
range of hardware platforms and operating systems makes it easier to
scale up systems, to port them to another platform, and to maintain
large applications. If we would like to exploit all these advantages in
mobile robotics (and, maybe, factory automation), what design goals
and requirements does that imply for robotics middleware?

Object-Oriented Design:The middleware should be designed using
the object-oriented paradigm thoroughly. Object-oriented concepts like
information hiding, name spaces to prevent naming ambiguities when
using multiple mutually independent libraries, exception handling to
separate normal program control flow from error recovery, abstraction,
type polymorphism, and inheritance can all significantly contribute to
improve design and implementation of mobile robot software when
applied deliberately and consistently.

Open Architecture Approach:Considering the immense spectrum of
different hardware and software components used in mobile robot sys-
tems, adopting an open architecture approach, including availability of
all source code, seems indispensable. Only if applications program-
mers can access, modify, and fine tune all components of the software
environment, the integration of a heterogeneous set of hardware and
software components can be successful. Also, integration of new hard-
ware developments as well as new computational methods developed
by ongoing research is usually much easier and faster, if all source code
is available for inspection, reuse, and debugging purposes.

Hardware and Operating System Abstraction:The object-oriented
paradigm permits a clean abstraction of sensor and actuator subsys-
tems, as well as low-level system services like communications, and
provides a uniform interface design. A suitable level of abstraction
from low-level system details, both in terms of hardware as well as
software, may be a key element in attaining a better understanding of
how to integrate a significant number of different hardware devices and
computational methods.

Multiplatform Support and Interoperability:The middleware should
be available on a wide range of hardware platforms and common op-
erating systems. The use of different programming languages for im-
plementing different modules should be supported without requiring
much extra overhead cost for integration.

Communication Support and Interoperability:The middleware
should provide a carefully designed set of interfaces for communi-
cation between objects and communications transparency, i.e., the
programmer should not need to worry much about where objects are
actually allocated and which communications protocol s/he needs to
apply. Single robot and multirobot applications should be equally well
supported, and integration into enterprise software frameworks should
be smooth.

Client/Server Systems Design:We suggest adopting a client/server
view, at least for larger modules of a robot control architecture. The
modules, implemented as objects, provide services to other modules
(objects) through a set of interfaces. Most modules of an application
fill both the client and the server role, albeit to different subsystems,
using the services of sensor objects as clients and providing services to
actuator objects as servers.

Fig. 1. Miro architecture. The ACE and Miro device layers provide abstract
interfaces for specific platforms. The TAO CORBA and Miro service layers
achieve platform-independence, network, and location transparency. The Miro
class framework provides classes for generic robot control functionality.

Flexible Integration of User Interfaces:A commonly underesti-
mated problem in mobile robot research is the development and use
of suitable user interfaces for various tasks. The task-oriented user
interface for end users interacting with the robot requires careful
design in order to avoid compromising the robot’s autonomy and
integrity. People operating and supervising the robots need interfaces
for monitoring its operational state, while programmers may need
even further internal state information for debugging purposes. These
user interfaces might be activated only occasionally or under special
circumstances. Nevertheless, their effect on the runtime performance
should be limited, and the middleware should support the programmer
in meeting this goal.

Software Design Patterns:The middleware should encourage the
use of design patterns by providing a class framework for common,
well-understood functionalities. Examples from the robotics domain
are patterns for mapping, self-localization, behavior generation, and
path planning.

III. M IRO—MIDDLEWARE FOR MOBILE ROBOTS

The desire for robotics middleware in our group grew after devel-
oping software for five different mobile robot platforms, with different
operating systems, different programming languages, different devel-
opment environments, and with a number of collaborators, for several
years. We realized that for ensuring further progress in mobile robot
research, it was time to blend the different existing software architec-
tures into a generalized framework of middleware for autonomous mo-
bile robots. With the Miro software framework, we consequently tried
to address the design challenges discussed above, and to lay the foun-
dation for implementing robust and reliable robot control architectures.

Miro is designed and implemented by rigorously applying object-
oriented design and implementation techniques. By adhering to the
common object request broker architecture (CORBA) standard, inter-
process and cross-platform interoperability for distributed robot control
architectures are achieved. All core Miro functionality, like routines for
processing sensor data and control actuators, is entirely implemented
in C++ and allows for high runtime efficiency. Miro builds itself upon
widely used, industrial-strength middleware packages, which are open
source and available on a wide range of hardware and operating system
platforms.

A. Miro Architecture

Miro is structured into three architectural layers, which are inter-
woven with two major layers of the CORBA middleware underlying
the Miro design (see Fig. 1).

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002 495

Fig. 2. Motion-interface inheritance for different mobile bases.

1) The Miro Device Layerprovides object-oriented interface ab-
stractions for all sensory and actuatory facilities of a robot. This
is the platform-dependent part of Miro.

2) TheMiro Service Layerprovides active service abstractions for
sensors and actuators via CORBA interface definition language
(IDL) descriptions and implements these services as network-
transparent objects in a platform-independent manner. The pro-
grammer uses standard CORBA object protocols to interface to
any device, either on a local or a remote robot. Also, event-based
communication services based on the CORBA notification ser-
vices are available.

3) The Miro Class Frameworkprovides a number of often-used
functional modules for mobile robot control, like modules for
mapping, self localization, behavior generation, path planning,
logging, and visualization facilities.

Miro Device Layer:It provides classes that wrap the message or
package-based communications links to the low-level controller boards
(serial link, can bus, etc.) into ordinary method calls, for invocation by
the service implementations.

Miro Service Layer:Sensors and actuators can be naturally mod-
eled as objects, which can be controlled and queried by their respective
methods. Thereby, mobile robot software can be viewed as aggrega-
tions of sensory, actuatory, and cognitive objects, which can trade in-
formation and services in an agent-like manner.

In the Miro Service Layer, object-oriented interfaces for all hard-
ware components are provided. Wrapper classes for all sensors and
actuators hide away all the peculiarities of sensor/actuator-specific in-
terface functions. The class hierarchy in this layer specifies useful ab-
stractions and generalizations for certain subsets of sensors and actu-
ators. An example is aRangeSensor class, defining interface func-
tionality common to sensors like infrareds (IR), sonars, and laser range
finders (LRF). Similar abstractions are available for the behavioral as-
pect. Classes likeSynchroMotion or DifferentialMotion define
generalized interfaces for the respective kind of kinematics and in-
herit this functionality to their specializations, e.g.,SparrowMotion,
PioneerMotion, or B21Motion, as illustrated in Fig. 2.

To overcome location and programming language dependencies, all
sensor and actuator services export their interfaces as network trans-
parent CORBA objects, which can be addressed from any language
and platform for which language bindings and CORBA implementa-
tions exist. This enables seamless integration of high-level robot con-
trol subsystems, like Lisp-based planners or Java-based user interfaces.

While a traditional-method call is the most convenient way of object
interaction, the classical synchronous query interface does not scale
well in large mobile robot applications. This is especially true for sen-
sory devices. Sensors usually produce measurements either on demand
(bumper) or at some fixed or maximum rate (LRF, IR). In order to avoid
missing a sensor reading, the consumer is required to either contin-

uously poll the sensor or to wait for the next reading. For example,
in a well-behaved mobile robot, a bump sensor should hardly ever be
pressed. Nevertheless, for safety reasons, no bump situation should be
missed. What we are interested in is not the actual sensor reading, but
a particular event, like the bumper being pressed. Therefore, the Miro
Service Layer provides an abstraction of sensors and actuators as active
services with event-based communication.

Basic support for multirobot control comes naturally with a dis-
tributed robot software development environment as provided by the
Miro Services Layer. Small groups of robots can address each other by
exchanging the object references if their respective sensor/actuator con-
figurations are known. This approach is facilitated by the availability
of naming service functionality, providing a separate namespace for
each robot. Also sharing of sensor data can be achieved, via filtered
event-processing frameworks based upon the notification service. We
are currently evaluating such a framework in our Sparrows robot team.

For larger multirobot systems, additional middleware support for
robot interaction has to be provided, for example, in order to enable
spontaneous cooperation between robots that initially do not know of
each other. Frameworks for the flexible description of system proper-
ties of an individual robot are not yet part of Miro, but will be subject
to further research.

Miro Class Framework.An essential step toward easier and faster
development of mobile robot software is reuse of code for commonly
used tasks. As mobile robots research has seen a constant flow of new
methods and research results in the past, this has seemed to make
little sense so far. However, a number of recently developed methods
and techniques seem to emerge asde factostandard solutions, e.g.,
grid-based probabilistic egocentric and allocentric mapping, self
localization based on segment matching [1] or particle filters (a.k.a.
Monte Carlo localization, [2]), behavior-based robot control [3],
[4], or various path planning methods. The Miro Class Framework
provides classes that implement commonly used techniques for mobile
robot control, such that they can be applied uniformly on the different
platforms supported. Available functionality includes a behavior
engine, which permits dynamic activation, enabling and disabling of
sets of behaviors and arbitrators, and sample-based pose estimation
based on particle filters. Providing generic mapping and path-planning
functionality is a work in progress.

Aside from functionality used for applications, the Miro Class
Framework includes functionality useful for development and experi-
mental evaluation. A good example is Miro’s generic logging facility
for experimental data acquisition. It exploits the event-triggered
communications model, much like a specialized CORBA Telecom
Log Service [5]. Its main focus is on efficiency and the ability to
replay logged data streams. It logs the notification messages using the
methods provided by CORBA for the marshalling of data for remote
method calls. That way, every data package that can be passed via
the event channel can be logged for later use. A log player reads the
logged data from a file and sends it back through the event channel
in a timely manner. The receiver cannot distinguish between logged
data and data generated in real time by sensors and actuators. The
visualization tool for the RoboCup soccer team exploits this Miro
feature, and can visualize both live data streams during games as well
as game logs during postgame analysis without any modifications. The
only difference is that the logplayer permits slow motion. Likewise, it
is easily possible to perform offline testing, evaluation, or learning by
intercepting and logging an arbitrary online event stream and feeding
the logged data back to the module under evaluation or learning
offline.

B. Implementation of Miro

Miro makes extensive use of multiplatform libraries for easy porta-
bility. The adaptive communications environment (ACE) provides ob-
ject-oriented abstraction layers for many operating systems and com-
munications primitives. The ACE Orb (TAO) package is an implemen-

496 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002

Fig. 3. B21 and Sparrow-99 robots.

tation of the CORBA based on ACE [6]. The Miro implementation
exploits the CORBA Notification Service [7] for providing the event-
based communication functionality. For the construction of graphical
user interfaces (GUIs), like monitoring and visualization tools, we use
Qt, a GUI application framework, which is available for various Unix
derivates including Linux, as well as Windows.

Presently, Miro is implemented for three mobile robot platforms,
which are equipped with different sensors, actuators, and computa-
tional equipment. They are used in different scenarios, ranging from
an office delivery to highly dynamic soccer games [8]. These platforms
are as follows.

1) A B21 robot (see Fig. 3, left picture), which is equipped with
bumpers, IRs, sonars, a laser range finder, and a vision system.
It features a synchro drive mobile base and is controlled by two
onboard PCs.

2) Pioneer-1 robots, which are differential-drive robots equipped
with sonar sensors only, and are controlled either via a laptop
mounted on top of a robot or by a host PC via a serial radio link.

3) Sparrow-99 robots [9], which are custom-built robots developed
in our lab at the University of Ulm (see Fig. 3, right picture).
Sensors include sonars, IRs, and a camera. The mobile base is a
differential drive system. The robot also has a pan-tilt unit and,
for its special purpose, a kicker. It is controlled via an onboard
embedded PC.

The Miro implementation includes a number of clients, which are
provided for testing and evaluating the Miro service functionalities. For
each service, the following clients are provided.

1) Sample client.This client is held as simple as possible in order
to show the user how the respective service functionality is used.

2) Test client.This client is used for debugging. It calls each service
method provided and checks the results.

3) Monitoring client.This client implements a visual interface to
one or more services. It is useful during normal robot execution
for monitoring data.

IV. EXPERIENCES ANDEVALUATION OF MIRO

Miro is successfully used in several projects striving for autonomous
mobile robot control, where the robots are required to perform tasks
like neurosymbolic mapping of indoor environments [10], hybrid mul-
tirepresentation world modeling [11], [12], autonomous self localiza-
tion based on the Monte Carlo Localization method (two variants, one
based on distance sensor data and one based on visual features [13]),
hierarchical path planning [14], and reactive execution. Below, we sum-
marize our experiences and discuss how well (or not) Miro achieves the
design goals, how it compares to other mobile robot software frame-
works, and provide some performance results.

Achievement of Design GoalsSome of the design goals formulated
in Section II are obtained for free by using CORBA as communica-
tions middleware. Type safe and network-transparent interfaces come
with the strongly typed IDL of CORBA. Programming language inde-
pendence is ensured by the CORBA standard, and therefore a solved
problem in the context of Miro development. We have validated this

by developing a Java-based browser frontend for teleoperating our B21
robot over the Internet.

The consistent and generalized service interfaces allow for mul-
tirobot platform development. This is demonstrated by the sample
wander, avoid, andwallfollow behaviors included in the exam-
ples collection of the Miro source tree. The abstractRangeSensor

interface permits for a generic avoid behavior, based on the selected
sensor(s) for all three platforms. The programmer may want to tune
the safety distance and maximum speed due to the different sensor
characteristics.

Operating system independence is currently not an active topic
within Miro development, since all our robots and work stations run
under Linux. However, as a proof of concept, we ported the client side
to Solaris within one day.

Related WorkBut how does Miro perform in comparison to other
robot control architectures? Currently, there are mostly manufacturer-
provided packages available.

Saphira [15], [16] is the software development environment deliv-
ered with the Pioneer mobile robot family. Its core is a C library for
accessing the controller board. By using the Saphira library, the pro-
grammer implicitly imports elements of a particular robot-control ar-
chitecture, including mechanisms like state reflection (a kind of im-
plicit communication between client programs and server), data struc-
tures like a local perceptual space (LPS) and a global perceptual space
(GPS), a fuzzy control-based behavior specification language, and Col-
bert, a language for reactive control [16]. Saphira lacks location trans-
parency, and when integrating hardware (vision systems, manipulators)
from other manufacturers, the programmer must carefully synchronize
the communication of client programs with add-on hardware with the
basic Saphira control loop.

Mobility is a distributed, object-oriented software development
framework for the B21r/B14r family of robots by RWI, Jaffrey, NH
[17]. It scales well with respect to user interaction, client libraries
for visualization, and remote access of sensory information. Client
libraries are available in C++ as well as in Java. On the other hand,
Mobility lacks conceptual support for robot control. As a manufac-
turer-provided package, it only is available for their mobile platforms.
Since even our old B21 robot is not supported by Mobility, it could
only be evaluated by investigating its documentation and header files.

Miro provides network-transparent interfaces, and also offers a
framework for behavior-based robot control. However, it does not
enforce the usage of a singular arbitration paradigm, and therefore
does not provide higher-level idioms for robot control but concentrates
on the flexibility and configurability of the control infrastructure.

In [18], Alami et al. document the task of integrating a demonstra-
tion from scratch on a newly obtained mobile platform within 40 days
(not including porting their tools from Solaris to Linux). They utilize
their Laboratory of Analysis and Architecture of Systems (LAAS) ar-
chitecture [19] for an office-navigation scenario. Even though most of
the tools’ functionalities are located on a higher control level as cur-
rently provided within Miro, this work documents nicely the potential
of generalization and code reuse within the mobile-robotics domain.

Experiments:A question often raised within the robotics domain is
the overhead introduced by features such as location transparency and
event triggered communication. High performance and real-time con-
formance are not really an issue for many commercially available mo-
bile robot platforms, due to the limited capabilities of their hardware.
The Pioneer-1 controller board, as well as the B21 (pre-rFlex) motor
controller are both attached to a PC via a slow serial link (9600 resp.
38 400 Baud). Furthermore, they can report their status to the PC only
in 100–ms intervals. The odometry resolution is in each case about 1
cm. Therefore, a basic response test, the time between issuing a motor
command and the reflection of the robots movement within an odom-
etry reading, is heavily dominated by the latencies of the low-level con-
troller and can hardly reflect the performance of the actual software
architectures. Nevertheless, with ever-growing hardware capabilities,

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 4, AUGUST 2002 497

TABLE I
RESULTS OFBASIC RESPONSETEST

data throughput and predictable response times will become an impor-
tant issue also in the field of autonomous mobile robots.

Of the robots in our lab, the Sparrow-99 controller board seemed
most suited for performance measurements. It is attached to the PC
via a 1 MHz CAN-Bus and, with currently used firmware, capable of
reporting odometry updates at 100 Hz.

The basic response test was designed as follows. A motion com-
mand was issued on a still standing robot and the time was measured
till the first odometry reading was received, which indicated that the
robot had moved. Afterward the robot was halted for about one second,
before the next iteration of the test. We used three implementations of a
basic response test. The first was calling the Miro device layer directly.
The second was invoking the methods via the CORBA method inter-
face, actively waiting for the next odometry measurement. The third
one was setting the velocity via a CORBA method call and evaluating
the odometry messages pushed to it via the event-triggered communi-
cations interface. The CORBA-enabled tests were run on the same ma-
chine as the MotionService as separate tasks. Table I shows two runs of
each test with 100 iterations. The runs of the different implementations
were interleaved to compensate for the decreasing battery voltage.

Looking at the performance stats of the CORBA implementation
used within Miro [20], one has to expect that even on this platform
the basic response time is still heavily dominated by the 100–Hz up-
date cycle of the odometry reports. Doing a random wait before issuing
the motor command, this latency becomes randomized to half an up-
date cycle and should therefore contribute 5 ms to the averaged latency.
Nevertheless, the remaining jitter, mostly coming from the nondeter-
ministic latencies of the motors themselves, is much too high to make
the existing latency of the CORBA overhead measurable. Only an in-
crease of the variance could be measured, but note that the variance
itself is also heavily biased by the 10–ms cycle of the odometry events.

V. CONCLUSIONS

We propose the adoption of object-oriented middleware for robots
to improve the software development process. We designed and imple-
mented Miro, which meets many of the requirements identified during
problem analysis. Miro builds upon standard and widely used middle-
ware packages like ACE, TAO CORBA, and Qt, which significantly
eases integration into enterprise information-processing frameworks.
The Miro implementation is stable and robust and has been applied in
several development projects. Our overall experiences so far are very
encouraging, supporting our view that the development of object-ori-
ented middleware for robots is a necessary and beneficial step to im-
prove our software development practices.

Miro is available as open source at http://smart.informatik.uni-ulm.
de/Miro/.

REFERENCES

[1] J.-S. Gutmann and C. Schlegel, “Amos: Comparison of scan matching
approaches for self-localization in indoor environments,” inProc. 1st
Eurornicro Workshop Advanced Mobile Robots, Kaiserslautern, Ger-
many, 1996, pp. 61–67.

[2] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo localiza-
tion: Efficient position estimation for mobile robots,” inProc. Nat. Conf.
Artificial Intelligence (AAAI), Orlando, FL, 1999, pp. 343–349.

[3] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE J. Robot. Automat., vol. RA-2, pp. 14–23, Mar. 1986.

[4] A. Saffiotti, K. Konolige, and E. H. Ruspini, “A multivalued logic ap-
proach to integrating planning and control,”Artif. Intell., pp. 481–526,
Feb. 1995.

[5] “Telecom Log Service Specification,” Object Management Group, Doc.
formal/00–01–04, 2000.

[6] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar, “A high-per-
formance endsystem architecture for realtime CORBA,”IEEE Commun.
Mag., vol. 14, Feb. 1997.

[7] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The design and per-
formance of a real-time CORBA event service,” inProc. OOPSLA’97,
Atlanta, GA, Oct. 1997, pp. 184–200.

[8] S. Enderle, H. Utz, S. Sablatnög, S. Simon, G. Kraetzschmar, and G.
Palm, “Miro: Middleware for autonomous mobile robots,” inProc.
1st IFAC Conf. Telematics Applications in Automation and Robotics
(TA200I), Weingarten, Germany, July 2001.

[9] S. Sablatnög, S. Enderle, M. Dettinger, T. Boß, M. Livani, M. Dietz,
J. Giebel, U. Meis, H. Folkerts, A. Neubeck, P. Schaeffer, M. Rittar,
H. Hraxmeier, D. Maschke, G. Kraetzschmar, J. Kaiser, and G. Palm,
“The Ulm Sparrows 99,” inProc. RoboCup-99: Robot Soccer World
Cup 111, Lecture Notes in Computer Science, Berlin, Germany, 1999,
pp. 211–216.

[10] S. Enderle, “Probabilistic spatial representations for mapping and self-
localization in autonomous mobile robots,” Ph.D. dissertation, Comput.
Sci. Dept., Univ. Ulm , Ulm, Germany, 2000.

[11] G. K. Kraetzschmar, S. Sablatnög, S. Enderle, and G. Palm, “Ap-
plication of neurosymbolic integration for environment modeling in
mobile robots,” inHybrid Neural Systems, S. Wermter and R. Sun,
Eds. Berlin, Germany: Springer-Verlag, 2000, vol. 1778, Lecture
Notes in Computer Science.

[12] G. K. Kraetzschmar, S. Sablatnög, S. Enderle, H. Utz, S. Simon, and G.
Palm, “Integration of multiple representations and navigation concepts
on autonomous mobile robots,” inProc. SOAVE 2000, Ilmenau, Ger-
many, Oct. 2000, pp. 1–13.

[13] S. Enderle, H. Folkerts, M. Ritter, S. Sablatnög, G. Kraetzschmar, and
G. Palm, “Vision-based robot localization using sporadic features,” in
Workshop Robot Vision 2001, Auckland, New Zealand, Feb. 2001, p.
35.

[14] H. Utz, “Quo Vadis? Robuste Hierarchische Navigation für Autonome
Mobile Roboter,” Diplomarbeit (in German), Univ. Ulm, Ulm, Germany,
2000.

[15] Pioneer I Software Manual, RWI, Jaffrey, NH, 1996.
[16] K. Konolige, “Colbert: A language for reactive control in saphira,” in

Proc. German Conf. Artificial Intellgence, Freiburg, Germany, 1997, pp.
31–52.

[17] Mobility 1.1, Robot Integmtion Software, User’s Guide, Real World In-
terface, Jaffrey, NH, 1999.

[18] R. Alami, R. Chatila, S. Fleury, M. Herrb, F. Lngrand, M. Khatib, B.
Morisset, P. Moutarlier, and T. Simeon, “Around the lab in 40 days,”
in Proc. 2000 IEEE Int. Conf. Robotics Automation (ICRA ’2000), San
Francisco, CA, Apr. 24–28, 2000, pp. 88–94.

[19] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An archi-
tecture for autonomy,”Int. J. Robot. Res., vol. 17, no. 4, pp. 315–337,
Apr. 1988.

[20] C. O’Ryan, F. Kuhns, D. C. Schmidt, and J. Parsons, “Applying patterns
us to develop a pluggable protocols framework for orb middleware,” in
Design Patterns in Communications, L. Rising, Ed. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

