
MOnarCH
Multi-Robot Cognitive Systems Operating in Hospitals
Grant FP7-ICT-2011-9-601033

Deliverable D2.1.1

(update)

MOnarCH Robots Hardware

Version: 2

Dissemination level: PU

Date of preparation: December 2014

Editor: Paulo Alvito (IDM)

Contributors: Paulo Alvito, Carlos Marques and Paulo Carriço (IDM)

Marco Barbosa, João Estilita and Daniel Antunes (ST)

David Gonçalves (YDR)

FP7-ICT-2011-9-601033 MOnarCH

Table of Contents
1. Introduction... 4

2. MOnarCH Robot Features and Components..6

2.1. MOnarCH Robots Main Features..6

2.2. MOnarCH Robot Devices..7

2.3. MOnarCH Sensors...11

2.3.1. Navigation Sensors ...11

2.3.2. Perception and Interaction Sensors ..13

2.3.3. Environmental Sensors..14

2.3.4. Low-level Safety Sensors..14

2.4. MOnarCH Actuators...14

2.4.1. Locomotion Actuators..14

2.4.2. Interaction Actuators ...15

3. MOnarCH Robot Design and Mechanics..18

3.1. The Storyboards..18

3.2. Early Stage Drawings of the platform Base...20

3.3. High-level Devices...21

3.3.1. Robot Appearance (1st Iteration)...22

3.4. Platform Base Production..23

3.5. Upper Body Development..25

3.5.1. Robot Appearance (2nd Iteration)..25

3.5.2. Conclusion of Shell Design..26

3.5.3. Upper Body Production..26

3.6. Outer Shell Production...28

3.7. The Final Result...32

4. MOnarCH Robot Architecture...33

4.1. MOnarCH Electronic Power Architecture...33

4.2. Low-level Communication Architecture..35

4.3. High-level Communication Architecture...37

5. MOnarCH Robot Electronics...38

5.1. Motor Controller Board...38

5.2. Sensor&Management Board..40

5.3. Sonar Board...43

5.3. Ground Sensors Board..43

5.4. IMU Board.. 44

5.5. Interaction Board...44

6. Charger Docking Station...47

7. Working with the Robot...48

7.1. Setting Up the Hardware ...48

7.2. Shutting Down the MOnarCH Robot..50

7.3. Charging the Batteries...50

8. Mbot_ROS.. 52

8.1. User Tasks... 52

D2.1.1 - MOnarCH Robots Hardware (update) Page 2 of 87

FP7-ICT-2011-9-601033 MOnarCH

8.1.1. Dependencies..52

8.1.2. Installation.. 52

8.1.3. Controlling startup and shutdown of mbot_ros...56

8.1.4. Automatic system shutdown..57

8.1.5. View log files..57

8.1.6. Visualizing robot information on rviz..57

8.1.7. Driving the robot manually...58

8.2. Reference documentation..59

8.2.1. Robot reference frames...59

8.2.2. Published topics...59

8.2.3. Subscribed topics..61

8.2.4. mbot Kinematics Transformations...61

8.3. Experimental Results...62

8.3.1. Hardware Communication Latencies...62

Annex A. Board Controllers Software Protocol...64

A.1. Sensor&Management Communication Protocol (board1)...64

A.2. Motor Board Communication Protocol (board2)..67

A.3. IMU Communication Protocol..71

A.4. Interaction Communication Protocol (board3)...72

A.4. Arms (board4)...75

Annex B. Robot Platform Base CAD Drawings...82

Annex C. Robot CAD Drawings..85

D2.1.1 - MOnarCH Robots Hardware (update) Page 3 of 87

FP7-ICT-2011-9-601033 MOnarCH

1. Introduction
This document is an update of deliverable D2.1.1, the description of MonarCH's robots hardware.

Deliverable D2.1.1 described the MOnarCH hardware platform that was created during the first year
of the project. The robots were developed and assembled in three phases. The first phase included
the development and assembly of the platform base with its mechanics and electronics. The second
phase was the development and assembly of a top structure with high-level devices, taking in
consideration the design expectations. The third phase was the conclusion of shell design, production
and assembly over robot platform. Fig. 1 depicts the different phases of the development of the
MOnarCH robots.

The MOnarCH project includes two types of robots mounted over a similar platform base: a more
sophisticated one targeting social interactions with kids/people (aka SO) and a simpler one that will be
used to increase the perception of the environment (aka PO). The two robot types are depicted in Fig.
2.

The SO and PO robots share the navigation hardware architecture and differ in the interaction
hardware architecture.

D2.1.1 - MOnarCH Robots Hardware (update) Page 4 of 87

Figure 1: MOnarCH Robot development process.

Figure 2: MOnarCH's robots. Left: SO robot. Right: PO robot.

FP7-ICT-2011-9-601033 MOnarCH

The structure of this document is as follows:

• MOnarCH Robot Features and Components - This chapter describes the main features of the
MOnarCH robots. It gives an overview of the different components that have been integrated,
their function and placement on the robot;

• MOnarCH Design and Mechanics – This chapter shows the inner MOnarCH robot mechanics
and gives an overview of the shell developmental and integration;

• MOnarCH Robot Architecture - The adopted power and communication architecture is
explained. The chapter begins with a description of how the robot components are powered.
A table with the component energy distribution shows the distribution of the battery power
consumption. The last two sub-chapters explain the low-level communication, showing the
way the developed electronics communicate with each sensor and actuator, and the high-
level communication between the onboard computers, interaction and navigation sensors and
actuators;

• MOnarCH Robot Electronics - All of the electronics that have been projected, designed,
produced and programmed within the project are explained;

• Charging Docking Station – Shows the developed charging docking station and the way the
MOnarCH robots can perform the docking;

• Working with the Robot – Explains how to operate the robot and how to charge the robots
batteries;

• Mbot_ROS – How to install and use the Mbot_ROS library, experiments and results;

• Additionally to the manual, three technical annexes have been updated:

◦ Board Controllers Software Protocol - This section explains the low-level control protocol
implemented between the onboard navigation computer with the Sensor&Management,
Motor Board and the IMU and Interaction computer with the Interaction board;

◦ Robot Platform CAD Drawings – This section shows the position of each part of the robot
with relation to the centre of the robot;

◦ Robot CAD Drawings – This section shows the position of each device to the centre of
the robot.

D2.1.1 - MOnarCH Robots Hardware (update) Page 5 of 87

FP7-ICT-2011-9-601033 MOnarCH

2. MOnarCH Robot Features and Components
The MonarCH robots are omnidirectional robots based on four Mecanum wheels actuated by four
independent motors. The use of this kind of kinematics substantially increases the manoeuvrability
and performance of the platform.

The development and assembly of the MOnarCH robots was executed in two main phases: one first
phase which included the platform base mechanics with the motors, batteries and low-level
electronics; a second phase which included high-level devices mounted over an upper structure and
the shell.

Deliverable D2.1.1 covered the first phase of the development of the robots. This update covers the
second phase of the process.

Two types of robots were developed. The PO robots will have as primary goal to act as active sensors
and the SO robots will target social interactions. As aforementioned, the SO and PO robots are built
over the same platform base, differing in the onboard equipment and external appearance. This
update gives a description of all the integrated components that are present in the SO robot, the more
sophisticated one. Nevertheless, the difference between the PO and SO robots will be described in
the first two sub-chapters.

The structure of this Section is as follows:

• MOnarCH Robots Main Features – Gives a quick look over the SO and PO main features;

• MOnarCH Robot Devices – Gives an overview of the computers present in the SO and PO
robots, devices connected to them and the way they connect to each other;

• MOnarcH Sensors - The robot is equipped with perception, navigation, interaction,
environment and low-level safety sensors. This section describes the sensors included on the
robots, there function and placement;

• MOnarCH Actuators - The robot will be equipped with locomotion and interaction actuators.
This section describes the actuators included in the robots, there function and placement.

2.1. MOnarCH Robots Main Features
The SO and PO robots main features are the following:

• Robot kinematics: omnidirectional with 4 Mecanum wheels

• SO Robots weight: 49 Kg

• PO Robots weight: 44 Kg

• Battery autonomy: >3 hours

• Maximum Velocity: 2.5 m/s

• Acceleration: 1 m/s2 (low-level programmed)

• Emergency Stop Acceleration: 3.3 m/s2 (low-level programmed)

• Size (H x W x L): 102 x 57 x 67 cm

D2.1.1 - MOnarCH Robots Hardware (update) Page 6 of 87

FP7-ICT-2011-9-601033 MOnarCH

2.2. MOnarCH Robot Devices
The SO robots have two onboard computers:

• The Navigation Computer (aka PC-Nav). This computer is running Linux OS (Ubuntu), and is
responsible for navigation, localization, system control and actuation of some low-level
interaction devices, like LEDs.

• The Human Robot Interaction Computer (aka PC-HRI). This computer is presently running
Windows 7 OS, and is responsible for the control of the interaction devices, like the Kinect
camera, projector and touch-screen.

The PO robot, being a simpler robot, has only one computer:

• The Navigation Computer (aka PC-Nav). This computer is running Linux OS (Ubuntu), and is
responsible for navigation, localization, system control and actuation of some low-level
interaction devices, like LEDs.

The PO robots will not have moving parts, like the head and the arms and also will not include the
Kinect Camera, Projector and the touch-screen monitor.

An interaction board is present in both types of robots, but the hardware to move the arms and head
is not included in the PO robot. This board will control the LEDs of the mouth, eyes, cheeks and the
ones installed in the base (facing the floor). Both robots will have capacitive sensors, but the PO will
have only on the head and shoulders. The RFID antenna will be present and powered by the
interaction board.

Table 1 describes the devices present in both robots and the computer to which they are connect.

SO robots PO robots

PC-NAV PC-HRI PC-NAV

Navigation Computer

HRI Computer

Sensor&Management board:

 batteries 4 3

 4 batteries chargers

 1 Temperature and humidity sensor

 4 Bumpers

 4 ground sensors (analog IR sensors)

 1 Sonar board with 12 sonars

 Motors board:

 4 motors with encoders

 4 motor and driver temperature sensors

 7 cooling fans that can be controlled

 IMU sensor

D2.1.1 - MOnarCH Robots Hardware (update) Page 7 of 87

FP7-ICT-2011-9-601033 MOnarCH

 2 x Laser Range Finder (LRF), front and rear, 5m range

 2 x KIO UWB sensors (optional), front and rear

 ASUS Xtion PRO LIVE

 Buffalo N600 Gigabit dual band wireless router

 RFID Reader

 Audio amplifier and speakers

 Interaction Board:

 1 Mouth Led Matrix

 6 RGB controlled devices

 2 Eyes (left and right independent)

 1 Cheeks (left and right dependent)

 3 Under the base (left, front and right LED segments)

 Capacitive sensors

 2 Shoulders(left and right)

 1 Head

 2 Arms/hands(left and right)

 1 Rotating head

 4 Arms' limit switches

 Arms Herkulex Control

 Lilliput 10.1'' LED touch monitor

 Kinect Camera

 AAXA P300 Pico projector

 Stargazer (optional)

Table 1: device distribution in the SO and PO robots.

To ease the integration of the different devices with the Linux/Windows computers, each device was
connected to the same port in all MOnarCH robots. Fig. 3 depicts the use of the motherboard back
panel. Four extra USB ports can be used by connecting USB extensions directly to the motherboard.
Fig. 4 shows the position of the 4 extra USB channels. FUSB30 can be used to connect 2
USB3.0/USB2.0 and F_USB1 can be used to connect 2 USB2.0 devices.

D2.1.1 - MOnarCH Robots Hardware (update) Page 8 of 87

FP7-ICT-2011-9-601033 MOnarCH

The way the devices are connected to the ports of the motherboard is now listed.

SO robots

1. PC-NAV

• 1 - USB auxiliary extension to be connected to a USB HUB that connects the RFID, the
Arms (board4) and the Interaction Board (board3);

D2.1.1 - MOnarCH Robots Hardware (update) Page 9 of 87

Fig. 3: motherboard Back Panel Connectors

Figure 4: motherboard USB extra connections

FP7-ICT-2011-9-601033 MOnarCH

• 2 - ASUS Xtion PRO LIVE;

• 3 - IMU;

• 4 - Front LRF;

• 5 - StarGazer or USB auxiliary extension;

• 6 - Rear LRF;

• A - Ethernet connection to the Router;

• B - Not in use;

• C - audio amplifier;

• D - Not in use;

• E1 – Rear UWB (board6);

• E2 – Front UWB (board5);

• F1 - Sensor&Management Board (board1);

• F2 - Motors Board (board2).

2. PC-HRI

• 1 – not used;

• 2 – not used;

• 3 – not used;

• 4 – not used;

• 5 – Touch Screen;

• 6 - Kinect;

• A – Ethernet connection to the Router;

• B – Projector;

• C – Not used;

• D – Monitor;

• E – Not used;

• F – Not used;

PO robots

1. PC-NAV

• 1 – USB auxiliary extension to connect to a USB HUB that connects to the RFID reader
and the Interaction board (board3);

• 2 – ASUS Xtion PRO LIVE;

• 3 – IMU;

D2.1.1 - MOnarCH Robots Hardware (update) Page 10 of 87

FP7-ICT-2011-9-601033 MOnarCH

• 4 – Front LRF;

• 5 – StarGazer or Interaction board (board3);

• 6 – Rear LRF;

• A – Ethernet connection to the Router;

• B – Not in use;

• C – Audio amplifier;

• D – Not in use;

• E1 – Rear UWB (board6);

• E2 – Front UWB (board5);

• F1 – Sensor&Management Board (board1);

• F2 – Motors Board (board2).

2.3. MOnarCH Sensors
The robot is equipped with perception, navigation, interaction, environment and low-level safety
sensors. For navigation the robot uses encoders to control the velocity of the motors, an inertial
sensor to determine the orientation and lasers to detect obstacles and the geometry of the
environment. For perception and interaction, the robot will use a depth camera for people tracking,
face analysis and body gesture recognition, microphones and also a RFID reader to identify people
carrying a RFID ID card. For environmental sensing the robot will be equipped with temperature and
humidity sensors. Finally, the bumpers and sonar sensors will provide low-level safety sensing. To
increase the robustness of localization, some other sensors/solutions are also being evaluated, e.g.,
StarGazer and UWB.

The onboard sensors are now listed.

2.3.1. Navigation Sensors

The robot will navigate in the environment while making a fusion of measures provided by different
sensors. The robot will be able to use a depth camera, two laser range finders, encoders and an IMU
sensor to estimate its position and orientation. For obstacle avoidance, mapping and localization it
can use the lasers and sonar sensors.

• Inertial Sensor IMU: MPU6050

Function: Orientation estimation

Position on Robot Platform: robot’s centre of rotation

• Front and rear 2D laser range-finder: Hokuyo URG-04LX-UG01

Function: mapping, localization and obstacle avoidance

Position on Robot Platform: one in the front (see Fig. 5, left picture) and another in
the rear (see Fig. 5, right picture) of the robot platform base

• Sonar Sensors: Maxbotix EZ4

Function: obstacle detection (e.g.: glass wall or objects)

D2.1.1 - MOnarCH Robots Hardware (update) Page 11 of 87

FP7-ICT-2011-9-601033 MOnarCH

Position on Robot Platform: ring of 12 sonars around the robot. Fig. 6 shows the ring
of sonars around the robot body.

• Depth camera: Asus Xtion Pro Live

Function: obstacle detection and space geometry analysis

Position on Robot Platform: top of the robot pointing to the floor. Fig. 7 shows the
Asus Xtion mounted on the robot head.

• Stargazer (optional): Hagisonic Stargazer

Function: Robot Localization

Position on Robot Platform: Top of the robot, looking up. Fig. 8 shows the Stargazer
position on the robot head.

• UWB sensor (optional): Eliko KIO

Function: robot localization estimation

Position on Robot Platform: inside the robot, one sensor board in the front and
another in the rear of the platform base.

D2.1.1 - MOnarCH Robots Hardware (update) Page 12 of 87

Figure 6: MOnarCH robot ring of sonars

Figure 5: MOnarCH LRFs. Left picture: front LRF. Right picture: rear LRF

FP7-ICT-2011-9-601033 MOnarCH

2.3.2. Perception and Interaction Sensors

The robot will make use of a depth camera for people detection and sense visual user feedback for
natural user interaction. It can also be used to detect changes in the surrounding environment. The
perception sensors are the following.

• Depth camera: Microsoft Kinect

Function: interaction, people detection, gesture recognition

Position on Robot Platform: top and looking ahead (see Fig. 11).

• Microphone array: Microsoft Kinect

Function: user sound feedback for natural user interaction

Position on Robot Platform: turned to the users

• 10.1” Touchscreen: Lilliput FA1012-NP/C/T

Function: user feedback on specific contents

Position on Robot Platform: turned to the user

D2.1.1 - MOnarCH Robots Hardware (update) Page 13 of 87

Figure 8: MOnarCH front head devices

Figure 7: location of ASUS Xtion. Looking down (approx. 45 degs)

FP7-ICT-2011-9-601033 MOnarCH

• Capacitive sensors: Sparkfun MPR121

Function: user feedback on specific points

Position on Robot Platform: under the shell, one in each arm, one in each shoulder
and one in the head (see Fig. 9).

• RFID: RFID integrated reader

Function: People and objects detection

Position on Robot Platform: inside the robot head. Fig. 8 shows the RFID position on
the robot head

2.3.3. Environmental Sensors

The environmental sensors are used to detect environment variations that can affect the normal
operation of the robot. These sensors are: temperature sensor and humidity sensors.

2.3.4. Low-level Safety Sensors

The fundamental sensors for low-level safety are the sonar sensors, internal temperature sensors,
motor current sensing and the bumper ring switches.

2.4. MOnarCH Actuators
The robot will be equipped with locomotion and interaction actuators.

2.4.1. Locomotion Actuators

For locomotion, this omnidirectional platform uses four motors to drive the four Mecanum wheels.

D2.1.1 - MOnarCH Robots Hardware (update) Page 14 of 87

Figure 9 : MOnarCH robot capacitive sensors

FP7-ICT-2011-9-601033 MOnarCH

• Four Maxon RE 35 90W 15V motor with a Maxon GP 32 HP 14:1 Gearbox and encoder
HEDS 5540 with 500 pulses

Function: provide a omnidirectional locomotion system to the robot

Position on Robot Platform: Inside the platform base, connected to the drive system (see
Fig. 10)

2.4.2. Interaction Actuators

Here follows the list of interaction devices. The robot is able to display the contents on the interaction
monitor or project them over a surface.

• 10.1’’ Monitor with Touchscreen: Lilliput FA1012-NP/C/T

Function: interaction with displayed contents (e.g., AR contents)

Position on Robot Platform: front of the robot

• Video Projector: AAXA P300 pico projector

Function: projection of contents

Position on Robot Platform: projecting to the front of the robot. Fig. 11 shows the position
of the projector.

• Arms' motors: Herkulex motors

Function: Human robot interaction

Position on Robot Platform: attached to the robot shoulder. Fig. 12 shows the motor and
the gears where the arm is attached.

• Head motor: Motor with gearbox and encoder

Function: Human robot interaction

Position on Robot Platform: mounted on the robot neck to rotate the head (see Fig. 13)

• Body RGB LED lights

Function: show robot expressions and movement actions

Position on Robot Platform: two independent eyes, two cheeks, three LED strips on the
robot base (one in the front and one at each side). Figs. 14 and 15 show the RGB LEDs
mounted on the robot.

D2.1.1 - MOnarCH Robots Hardware (update) Page 15 of 87

Figure 10: MOnarCH four motors

FP7-ICT-2011-9-601033 MOnarCH

• Mouth LED Matrix

Function: show robot expressions

Position on Robot Platform: on the mouth of the robot. Fig. 14 depicts two possible mouth
expressions.

D2.1.1 - MOnarCH Robots Hardware (update) Page 16 of 87

Figure 12: robot shoulder. Left image: Herculex motor. Right image: coupling gear

Figure 11: MOnarCH front head devices

Figure 13: MOnarCH robot rotating head

FP7-ICT-2011-9-601033 MOnarCH

• Stereo Speakers

Function: sound exhibition of contents; robot communication

Position on Robot Platform: on the robots' head (see Fig. 16)

D2.1.1 - MOnarCH Robots Hardware (update) Page 17 of 87

Figure 15: MOnarCH RGB Base LEDs

Figure 14: MOnarCH RGB LED eyes and mouth dot-matrix LEDs

Figure 16: MOnarCH speakers' location

FP7-ICT-2011-9-601033 MOnarCH

3. MOnarCH Robot Design and Mechanics
At the beginning of the project there was no clear idea about the type of robot(s) to be used in the
project.

The DoW mentioned the use of two types of robots: one robot targeting social interactions with
people/kids and another robot with a primary goal of acting as an active sensing unit.

On these basis it was asked to the different partners a list of equipment that should be
included/integrated in each kind of robot.

This chapter describes the process of development of the MOnarCH robot. Starting from a list of
equipment and storyboard scenarios, until the real functional robot with the required capabilities and
appearance.

The structure of this Chapter is as follows:

• The Storyboards → How they shaped the robots design;

• Early Stage Drawings of the Platform Base → Decision of the type of locomotion, power and
navigation equipment;

• High-level devices → The detection and interaction devices selected by the partners;

• The first and second input design of the shell → How the platform and devices shaped the
robot design;

• Final drawing of the inner platform base and its construction → From the scratch to the real
world. The robot platform bases are built and tested by the partners;

• Design of the upper body inner structure → Taking in account the detection and the
interaction high-level devices to be integrated, the upper body inner structure is designed;

• Final shell design → Having the complete inner structure defined and designed, it was
possible to finish the shell design;

• Preparation and production of the MOnarCH shell → Step-by-step preparation and building of
the robot shell;

• The final result → The shell is mounted on the robots and tested.

3.1. The Storyboards

The MOnarCH project focus is on social robotics using networked heterogeneous robots and
sensors to interact with children, staff, and visitors, engaging in edutainment activities in the pediatric
infirmary at the Portuguese Oncology Institute at Lisbon (IPOL). Fig. 17 shows the map of the IPOL
building.

The following general issues were pointed as critical for the development of the robots:

• The physical characteristics of the robots should be adequate to the envisioned operation;

• There should be a clear definition of interfaces in-between the different components, internal
and external;

• Dependability: availability, reliability, security, and safety;

• Ethics related with the operation scenario.

D2.1.1 - MOnarCH Robots Hardware (update) Page 18 of 87

FP7-ICT-2011-9-601033 MOnarCH

Meanwhile the partners were studying and refining the three storyboards included in the DoW. For
each storyboard subsets of operational areas have been selected:

• School teacher - One playroom, one corridor and one class room.

• Joyful warden – One playroom with a bicycle garage, one corridor, one room and one
forbidden area.

• Interactive game – One playroom and one corridor.

An interesting point of view as also given by the kids at IPOL. Fig. 18 depicts some drawings from a
survey on how children see generic robots.

The way each robot should address each storyboard allowed to define the constraints on the robot
design:

• The range of allowable linear and angular velocities

• The body volume of the full robot

• Aesthetics

• Weight of the platform

• Payload

• Power supply autonomy

• Self-safety features

• Human-oriented safety features

• Cost

D2.1.1 - MOnarCH Robots Hardware (update) Page 19 of 87

Figure 17: IPOL map and main spaces of operation

FP7-ICT-2011-9-601033 MOnarCH

During this initial phase of the project some conceptual robot appearances drawings were also
presented by YDR to the partners. Some examples are presented in Fig. 19.

3.2. Early Stage Drawings of the platform Base
In the early stages of the project, the consortium was still considering the use of a differential two-
wheeled robot platform. As the user case scenarios were being defined and the constraints posed by
the environment of operation were discussed by the Consortium, it became evident that the mobility
capability of the robots could be a critical issue to the achievement of project goals. Consequently,
IDM opted for developing and building an omnidirectional robot platform.

D2.1.1 - MOnarCH Robots Hardware (update) Page 20 of 87

Figure 19: robot appearance conceptual proposals

Figure 18: robots as seen by children.

FP7-ICT-2011-9-601033 MOnarCH

The early stage design of the inner platform considered the project specifications regarding autonomy,
navigation and kinematics:

• 4 x 12V 17-20Ah batteries (~1KWh)

• 4 x 12V 90W DC motors

• Schematics: Power board + Motor drivers board

• 4 x Omnidirectional Mecanum wheels (see Fig. 20)

• Front Laser

These specifications were used to start the design of the MOnarCH platform base inner structure. Fig.
21 depicts the first design of the MOnarCH robot inner platform base structure inside a conceptual
shell base, allowing to have an idea of volume and already the required cut on the shell for the laser
range finder beam.

3.3. High-level Devices
After the definition of the low-level platform components, the partners started to study the needed
devices to perform the storyboards. This produced a list of high-level devices to include in the robot
platform:

• Two depth cameras with microphone (Kinect type)

• Three servo motors to actuate two robot arms and a head

• One 10'' touch-screen

• One pico-projector

D2.1.1 - MOnarCH Robots Hardware (update) Page 21 of 87

Figure 20: Mecanum wheel

Figure 21: early stage drawings of the platform base

FP7-ICT-2011-9-601033 MOnarCH

• Audio amplifier with speakers

• LEDs on the robot body

• Capacitive cells on the robot body

• Optional devices: RFID reader, Stargazer and UWB

3.3.1. Robot Appearance (1st Iteration)

This definition of the high-level devices was followed by a first iteration on the design of the robot
external appearance. Figs. 22 to 25 show this first iteration on the design of the shell where different
external appearances were still being considered.

D2.1.1 - MOnarCH Robots Hardware (update) Page 22 of 87

Figure 23: head appearance proposals

Figure 22: body appearance proposals

FP7-ICT-2011-9-601033 MOnarCH

3.4. Platform Base Production

The design of the platform base was then concluded. Fig. 26 shows the platform base CAD rendering,
including the four 100mm Mecanum wheels, the motors, the battery distribution, the bumpers, the
sonars, the docking mechanics and the front laser ranger finder. This platform can accommodate up
to four standard 12V-20Ah lead-acid batteries (close to 1 KWh of power). In one of the sides of the
platform is possible to see the Motor Board and on the other side it is possible to see the
Sensor&Management board.

D2.1.1 - MOnarCH Robots Hardware (update) Page 23 of 87

Figure 25: defined robot appearance (1st iteration)

Figure 24: study of body appearance

FP7-ICT-2011-9-601033 MOnarCH

The platform base prototype was concluded in month 12. The main body of this platform is made of
polyoxymethylene (POM) and Rigid PVC, which are materials with high stiffness, low friction and
excellent dimensional stability. Fig. 27 depicts the assembled robot base.

The materials used on the construction of the platform base are:

• Body: Polyacetal - POM (PolyOxyMethylene) 10 mm thick plates; rigid PVC 4 and 6 mm; and
transparent polycarbonate 2mm

• Motor fixings: aluminium 4mm

• Main plate base: aluminium 3mm

• Transmission gears type/material: metric toothed aluminium pulley T5 with 32th

• Belt drive type/material: Endlose Polyurethan-Zahnriemen

All the materials, except the aluminium ones, were cutted in-house using IDM's CNC machine. The
parts were cleaned and assembled, then all the devices and cables were installed.

D2.1.1 - MOnarCH Robots Hardware (update) Page 24 of 87

Figure 27: assembled MOnarCH robot platform base

Figure 26: platform base CAD rendering

FP7-ICT-2011-9-601033 MOnarCH

3.5. Upper Body Development

3.5.1. Robot Appearance (2nd Iteration)

In parallel with the inner structure construction there was a second iteration on the design of the robot
external appearance (see Fig. 28).

This iteration was already considering the location of the different onboard devices specified by
partners as depicted in Figs. 29 and 30.

D2.1.1 - MOnarCH Robots Hardware (update) Page 25 of 87

Figure 28: robot appearance (2nd iteration)

Figure 29: location of onboard devices

FP7-ICT-2011-9-601033 MOnarCH

3.5.2. Conclusion of Shell Design

Fig. 31 shows the final design of the shell. This final design resulted from close collaboration between
IDM and YDR. The position of the inner structure and devices was tested against the outer shell
design, this allowed both partners to make the required corrections on the inner structure and the
shape of the shell.

3.5.3. Upper Body Production

Based on the final design of the shell and on specified location of the different devices, the design of
the upper body of the robot was then concluded. Fig. 32 shows the final mechanical design just before
starting the production of the entire structure.

D2.1.1 - MOnarCH Robots Hardware (update) Page 26 of 87

Figure 30: location of onboard devices (cont.)

Figure 31: robot inner body with outer shell

FP7-ICT-2011-9-601033 MOnarCH

The following materials were used on the construction of the upper body and arms transmissions:

• Upper Body: Rigid PVC 4 and 6 mm; and transparent polycarbonate 2mm;

• Arms: Polyacetal - POM (PolyOxyMethylene) 10 mm and 20mm thick plates.

All the upper structures were cutted in-house using IDM's CNC machine. Fig. 33 depicts the upper
body assembly and installation of devices.

To conclude the assembly process of the MOnarCH robots inner body, the upper structure with the
installed devices was mounted over the platform base. Fig. 34 shows MOnarCH robots already with
the full inner body structure with high-level devices already installed.

D2.1.1 - MOnarCH Robots Hardware (update) Page 27 of 87

Figure 32: MOnarCH robot upper body mechanical design

Figure 33: MOnarCH robot upper structure assembly and devices integration

FP7-ICT-2011-9-601033 MOnarCH

3.6. Outer Shell Production

The external design of the shell had to be prepared for production. This included the division of the
body shell into parts taking in consideration the envisioned production methods, the tools, the
materials and the maintenance and testing constraints. Figure 35 depicts this stage of the process.

The production of the different shell parts required the production of a mould. The production of the
mould was made in-house through the use of IDM's CNC machine to drill different blocks of roofmate
(see Fig. 36, left) that were later putted together to create an inner body 3D mould (see Fig.37). Some
smaller parts of the mould were also produced in-house through the use of a 3D printer (see Fig. 36,
right).

D2.1.1 - MOnarCH Robots Hardware (update) Page 28 of 87

Figure 35: design of the shell for production

Figure 34: MOnarCH robots platforms

FP7-ICT-2011-9-601033 MOnarCH

The same process was repeated to create the head mould (see Fig. 38).

D2.1.1 - MOnarCH Robots Hardware (update) Page 29 of 87

Figure 36: production of the mould. Left image: drilling machine. Right image: 3D printer

Figure 37: putting the drilled parts together for the body mould

Figure 38: head mould.

FP7-ICT-2011-9-601033 MOnarCH

The moulds were delivered to a fibreglass manufacturer that used them to create the different shell
parts. Fig. 39 shows the unpainted fibreglass shells during the production process and Fig. 40 shows
the first time that the first shell was tested on the robot structure.

After the validation of the shells on the robots, the produced fibreglass shells were sent for painting
(see Fig. 41).

D2.1.1 - MOnarCH Robots Hardware (update) Page 30 of 87

Figure 39: production of the shell

Figure 40: testing the shell with the inner body

Figure 41: painting the shell

FP7-ICT-2011-9-601033 MOnarCH

To finish the robot look a visor for the face was produced. For the visor IDM made use of a vacuum
forming process.

The process started by machining a visor mould in roofmate. Then a negative mould of the roofmate
visor was produced using soft plaster (see Fig. 42). After dry, this negative mould of soft plaster was
used to create a positive mould in hard plaster (see Fig. 43). Finally, this hard plaster mould was then
used as mould in the vacuum forming process. To give a final dark appearance, the inside of the
plastic visor was painted with a dark colour (see Fig. 44).

D2.1.1 - MOnarCH Robots Hardware (update) Page 31 of 87

Figure 42: making the mould for the visor (i)

Figure 43: making the mould for the visor (ii)

Figure 44: visor production

FP7-ICT-2011-9-601033 MOnarCH

3.7. The Final Result

The final result was the creation of two types of robots. Fig. 45 depicts a complete SO robot. The PO
robot is depicted in Fig. 46.

D2.1.1 - MOnarCH Robots Hardware (update) Page 32 of 87

Figure 45: fully assembled MOnarCH's SO robots.

Figure 46: fully assembled MOnarCH's PO robots.

FP7-ICT-2011-9-601033 MOnarCH

4. MOnarCH Robot Architecture
This section describes the power and communication architecture implemented in the MOnarCH
robot.

The MOnarCH robot will be an autonomous robot able to navigate in indoor environments, with no
human intervention. To power all the components, it will use up to 4 LiFePO4 with PCM 12V (17Ah)
batteries. The first subsection explains the power distribution inside the MOnarCH robot.

The second subsection shows the low-level communication architecture. The electronics that control
the motors, read the sensors and actuate the motors are considered to be low-level electronics.

Finally the third subsection presents the high-level communication architecture. Each computer will
connect to different devices, such as monitors, cameras, projectors and electronic boards, through the
use of different technologies such as USB, HDMI or Ethernet connections.

4.1. MOnarCH Electronic Power Architecture
The robot can be powered by several 12V 17-20AH batteries. It uses one 12V battery to deliver power
to the motor drivers. And up to 3 other batteries to provide energy to all the other computers and
electronic components, each of these batteries will contribute to a pool of energy where the electronic
devices can be powered from. An individual charging unit is used inside the robot to charge each
battery. The batteries and the power in the robot will be managed by the Sensor&Management Board
that measures the battery levels, battery charge, and also controls the units (motors, sensors and
actuators) powered by the batteries.

All onboard electronic systems can be powered by the battery system. The ATX computer power
supply will provide regulated voltages (from 5V to 12V). Fig. 47 depicts the onboard power
architecture. One additional 12V DC-DC converter will also be used to provide the necessary
regulated power for Stargazer, touch-screen monitor and the projector.

D2.1.1 - MOnarCH Robots Hardware (update) Page 33 of 87

FP7-ICT-2011-9-601033 MOnarCH

Table 2 shows the equipment that is connected to the pool of energy and their predicted maximum
current and power consumption.

For the SO robot the maximum power consumption is 210W and 110W for the PO robot. Each battery
will be able to power up to 240W. This means that the minimum expected working time of a SO robot
with the 3 full charged batteries is around 3 hours and for the PO robot with 2 full charged batteries is
around 3,5 hours. Tests performed with the robot showed that the robot is able to drive continuously
with a full motor battery for more that 5 hours.

In charging mode all the batteries will be put on charge and some of the devices will be powered by
18V from the charging station. The motor drivers will not be connected to the 18V of the power
station.

D2.1.1 - MOnarCH Robots Hardware (update) Page 34 of 87

Figure 47: MOnarCH Robot Power Architecture

Batteries

Docking
Station

Motor Board

Mouth Led
 Matrix

Sonar Board
IR Ground
Sensors

Bumpers

Temperature &
Humidity
Sensors

Energy
Level

Sensor

Sonars Motors

Body RGB
Leds

PC-NAV

Interaction
 Board

Laser
Front

Arms
Motors

PC-HRI

Laser
Rear

Asus
Xtion

Wireless
Router

KIO
Front

KIO
Rear

Audio
Amplifier

RFID reader

Head Motor

Kinect

DC-DC 12V
Converter

TouchScreen
Monitor

Stargazer

Projector

Capacitive
Sensors

Sensor & Management
Board

FP7-ICT-2011-9-601033 MOnarCH

Battery Name Powered item Nominal Current (Ah) Power (Wh)

Motor (4Ah) 12V Motor Driver Power 4.00 48.00

Electronics
PC1 and PC2
energy pool
(SO 17.3Ah)
(PO 9.2Ah)

Navigation Computer 3.50 42.00

Human Robot Interaction Computer 3.50 42.00

Buffalo Wireless Router 1.75 21

Sensor&Management board 0,45 5.4

Motors board 0,3 3.6

Interaction Board 0,4 4.8

Frontal Horizontal Hokuyo 0.21 2.5

Rear Horizontal Hokuyo 0.21 2.50

Kinect Camera 0.40 4.80

Asus Xtion Camera 0.5 2.5

KIO Front 0.05 0.25

KIO Rear 0.05 0.25

Sonar ring 0.10 1.20

Body Led lights 0.40 4.80

Mouth Led Matrix 1.5 7.5

Audio Amplifier 0.5 6

RFID Reader 0.3 2.7

Stargazer 0.07 0.84

Arms Motors 1 12

Head Motor 0.4 4.8

Inertial sensor (by the Computer USB port) 0.10 1.20

TouchScreen Monitor 0.83 10

Pico-projector 2.00 25.00

Table 2: MOnarCH batteries and maximum power usage.
Note: items in gray are not included in the PO robot

4.2. Low-level Communication Architecture

The onboard PC-NAV computer communicates with the Sensor&Management Board and the Motor
Board using 2 USB ports. The onboard PC-HRI computer communicates with the Interaction Board
using 2 USB, one that communicates with only with the arms Herkulex motors and the other with rest
of the interaction components that are implemented in the interaction board.

In each board there are USB-to-RS232 converters that convert the USB data packages to serial
RS232 packages for the boards’ controllers.

The Sensor&Management board and the Motors board controller communicate with each other
allowing the exchange of information between them. This communication channel can be used to the
execution of low-level behaviours, for example, react against an imminent collision, enter into
charging mode with motors shut down, reduce the motors’ velocity when the batteries are low, or

D2.1.1 - MOnarCH Robots Hardware (update) Page 35 of 87

FP7-ICT-2011-9-601033 MOnarCH

react to changes that can affect the robot’s operation, which is fundamental to the improvement of the
overall system dependability.

The main controller from the Sensor&Management Board will communicate with other
microcontrollers using Inter-Integrated Circuit (I2C) communication ports. The main controller will act
as the master and the other microcontrollers will behave like slaves. The Sensor&Management Board
will control the battery management and charge, sensor acquisition, devices actuators and the sonar
acquisition board. The Motor Controller Board will connect to the PI Motor controllers and also to
temperature sensors.

Each controller will have a low-level fault diagnosis that will check the operation state of each
microcontroller and also monitor all the communication between the devices. The low-level
communication architecture is depicted in Figure 48.

The PC-NAV will communicate with the Interaction Board using two different USB-TO-RS232
converters. Fig. 49 depicts the connection between the PC-NAV, the Interaction Board and the
devices controlled by it. The control of the arms uses only an USB-To-RS232 converter and there is
no need to add additional micro-controllers to control the motors. The other interaction components
need processing. The interaction uses a micro-controller able to receive information from the PC-NAV
and process it to be able to generate the expected effects. To control the different devices this micro-
controller will use I2C and SPI communication protocols with them.

D2.1.1 - MOnarCH Robots Hardware (update) Page 36 of 87

Figure 48: low-level PC-NAV communication architecture

Navigation
Computer

Sensor&Management
Board

Motor
Board

USB USB

RS232

PI motor
Controller 1

PI motor
Controller 2

i2c

Sensor Acquisition

Actuators

Sonar Acquisition

L
ow

-L
ev

el
 fa

u
lt

 d
ia

gn
o

si
s

L
ow

-L
ev

el
 fa

u
lt

 d
ia

gn
o

si
s

i2c

Diagnosis data Diagnosis data

PI motor
Controller 3

PI motor
Controller 4

FP7-ICT-2011-9-601033 MOnarCH

4.3. High-level Communication Architecture
The MOnarCH robot will connect to a local wireless network through an onboard wireless bridge.
Each onboard computer, with its own IP, is connected by cable to a LAN port on the wireless bridge.

The PC-NAV is connected to the navigation sensors and to the platform board controllers using USB
ports. The PC-HRI is connect to the projector using a HDMI output, to the monitor using a DVI output,
to the Sound System using the audio line out, and will use USB connections to connect to the Kinect
camera ant to the touch-screen.

The high-level communication architecture is depicted in Fig. 50.

D2.1.1 - MOnarCH Robots Hardware (update) Page 37 of 87

Figure 50: High-level Communication Architecture

Figure 49: low-level PC-NAV communication with Interaction Board

PC-NAV

Interaction
 Board

USB USB

Left
Herkulex

Motor

Right
Herkulex

Motor

Head
Control

RGB Led
Controllers

Interaction
 Board

Interaction
 Board

In
te

ra
ct

io
n

C
o

m
p

o
ne

n
ts

In
te

rf
ac

e
 &

M
ou

th
 C

o
nt

ro
l

A
rm

s
In

te
rf

ac
e

R
S

23
2

Capacitive
Sensors

I2C

SPI

IMU

Navigation
Computer

Wireless
 Bridge

Asus Xtion

LRF Front

Touch-screen

Interaction
Computer

Sound System

Kinect Camera

S&M Board

Motor Board

USB

Line Out

USB

Ethernet

Projector

Interaction Board

HDMI

LRF Rear

RFID reader

StarGazer

Arms

Kio Front Kio Rear

Monitor
DVI

FP7-ICT-2011-9-601033 MOnarCH

5. MOnarCH Robot Electronics
Several electronic boards have been designed and added to the MOnarCH hardware. The following
subsections show and describe the boards created for the project.

The following electronic systems have been included on the MOnarCH robot:

• Motor Controller Board - this board is responsible for the locomotion. By the use of one
microcontroller that communicates with the PC-NAV and sends commands to four PI
controllers that control four high power H-Bridges, it is possible to control the motors installed
on the platform.

• Sensor&Management Board - communicates with the PC-NAV, controls the battery
management. It connects, disconnects, measures and charges the onboard batteries, reads
the environmental sensors and bumpers and connects to the ground and sonar sensors
boards.

• Sonar Board - allows the use of sonars in the robot. By sending sonic pulses and by
capturing the obstacles’ echoes it is possible to detect and measure the distance between the
robot and near obstacles.

• Ground Sensors Board – allows the use of IR ground sensors to detect changes on the
ground colour or detect stairs/holes.

• IMU Board – allows the connection of the popular MPU-6050 that combines a MEMS 3-axis
gyroscope and a 3-axis accelerometer in the same chip to create a inertial sensor.

• Interaction Board - allows the PC-HRI to control the head, arms of the MOnarCH robot,
control the body LED lights and also read the capacitive sensors.

• Charger Docking station - this is an external device that facilitates the autonomous docking
of the robot and the charge of the batteries without human intervention.

5.1. Motor Controller Board
The Motor Controller Board manages the robot locomotion. The Master Motor Controller uses a
PIC18F6527 microcontroller to control and manage all the communication between the high-level
robot Navigation Computer and the Slave PI Motor Controllers. The Slave PI Motor Controller uses a
PIC18F2431 microcontroller to provide all of the necessary control signals to the motor drivers. The
overall architecture of the Motor Controller Board is depicted in Fig. 51.

The Master Motor Controller will:

• run low-level control loops to check for critical changes in the motor system that can affect the
robot operation;

• provide a I2C bus Observer that checks the information received from the I2C Slave devices
to understand faults in the communication or on the devices;

• check the good function of each Slave PI Motor Controller by changing status information
between them;

• control the motor and drivers’ temperature and control the power of fan devices to cool them;

• monitor the electronics, motors and the drivers’ power supply.

D2.1.1 - MOnarCH Robots Hardware (update) Page 38 of 87

FP7-ICT-2011-9-601033 MOnarCH

The Slaves PI Motor Controllers will:

• receive velocity references from the Master Motor Controller;

• periodically read the encoder pulses;

• send the read encoder pulses to the Master Motor Controller;

• calculate the error between the reference velocity and the read velocity;

• implement a PI controller to calculate the motor actuation;

• implement an anti-windup error limit;

• implement a reference velocity acceleration/deceleration profile;

• remove the dead zone of the motor;

• limit the maximum velocity of the motors.

The Master Motor Controller receives velocity commands from the computer and returns the encoder
pulses. The Controller connects to four PI microcontrollers that generate the control actuations to
follow velocity references. Each microcontroller connects to the motor using a power H-bridge, and
provides the pulses measured by the encoder.

Each microcontroller is optically isolated from the motor driver using a high-speed optocoupler for the
control actuation signals and an optical amplifier for the current measurements. It is also optically
isolated from the computer communication port, again using a high-speed bidirectional optocoupler.

D2.1.1 - MOnarCH Robots Hardware (update) Page 39 of 87

Figure 51: Motor Controller Board Architecture

M
ot

or
 P

ow
er

S
up

pl
y

Electronic Power
Supply

Motor controller
Master

PI controller 1

PI controller 2

Lo
w

-L
ev

e
l f

au
lt

 d
ia

gn
o

si
s

I2C bus observer

i2c

Motor Temp. observer

Motor current observer

Power supply observer

Motor 1

Motor 2

Sensor & Management
Board RS232

Navigation Computer

USB / RS232

Motor Board

PI controller 3

PI controller 4

Motor 3

Motor 4

FP7-ICT-2011-9-601033 MOnarCH

Several low-level fault diagnostics have been implemented to detect problems in the normal working
of each component or lack of communication.

Fig. 52 shows the assembled Motor Controller Board. The board has several information LED lights
allowing a visual check of the state of each component previously described.

The Motor Board communicates with the Sensor&Management Board exchanging information about
the system status, diagnostics and environment condition, allowing low-level robot reactions to
changes that can affect its operation.

It is able to communicate with the computer using a USB-to-RS232 converter and with the
Sensor&Management Board through a bidirectional RS232 communication.

5.2. Sensor&Management Board
The Sensor&Management Board is responsible for the power management and also the sensor
acquisition. It receives orders from the onboard robot PC-NAV and returns information about the
batteries, sensors and actuators. The Sensor&Management Board architecture is depicted in Fig. 53.

The Sensor&Management Controller uses a PIC18F6527 microcontroller to control and manage all
the communication between the high-level robot PC-NAV and to control all the actuators and sensors
devices connected to the Sensor&Management Board. Fig. 54 shows an assembled
Sensor&Management Board.

The Sensor&Management Board is responsible for managing all the power system by:

• measuring the energy level in each battery;

• connecting/disconnecting the power of the devices;

• managing the connection to the Charge Docking station;

• controlling the charge of each battery.

This board is also responsible for connecting a set of sensors and actuators that will be used in the
project. Several low-level fault diagnostics have been implemented to detect problems in the normal
work of each component and communication. The Sensor&Management Controller will analyse the
information gathered from the sensors and will run low-level control loops that will check for critical
changes in the environment or system that can affect the robot operation.

D2.1.1 - MOnarCH Robots Hardware (update) Page 40 of 87

Figure 52: Motor Controller Board

FP7-ICT-2011-9-601033 MOnarCH

D2.1.1 - MOnarCH Robots Hardware (update) Page 41 of 87

Figure 53: Sensor&Management Board architecture.

Figure 54: Sensor&Management Board

Electronic
Battery

 manager/Charge

Motor
Battery

 manager/Charge

Lo
w

-L
ev

el
 f

au
lt

 d
ia

gn
os

is

Navigation
 Computer

USB / RS232

Motor
Board

Sensor & Management BoardSensor & Management Board

I2C bus observer

Power supply
 observer

Sensor
 Acquisition

Low-Level
controller

Sensor
Acquisition

Actuators

Sonar
Acquisition

i2c

Sonar observer

Bumpers observer

Environment sensors
observer

Docking
station

DC-DC converters
observer

Computers Power
Supply Control

Motor board Power
 &

 Communication

Motor
Battery

Motor Battery

Electronic Batteries

PC1
Battery

PC2
 Battery

RS232

Electronic
Battery

FP7-ICT-2011-9-601033 MOnarCH

The Controller has one dedicated channel to communicate with the Motor Controller, allowing it to
send direct (and fast) commands to the motors and also to get information from them.

The Sensor&Management Board is able to charge up to 4 batteries independently. Each charging
circuit uses a 3-phase lead acid battery charger.

The charger uses the following phases:

1. Bulk Phase. In this charging phase the charger will supply a constant 2A current to the
battery that is charging. This will allow the battery to charge to about 70% of its capability.

2. Absorption Phase. After leaving the Bulk Phase the charger will enter the Absorption
Phase where the charger will supply a constant voltage to the battery until it reaches about
100 to 120% of its capability.

3. Maintaining Phase. When the battery is fully charged the charger will leave the absorption
phase and enter the Maintenance Phase where a 13.4V supply is supplied to the battery until
the battery is disconnected from the charger.

The charging process for the 12V 17-20Ah batteries used in the MOnarCH robot is the following. If the
battery is dried (9.5V - 0%) the battery will start to charge in Bulk Phase for about 7 hours at 2A. At
the end of the 7 hours the level of the battery is about 70%, that means that the charge level will raise
about 10% each hour. After +/- 7 hours the charger will enter into the Absorption Phase where there
will be an increase of about 5% of level of battery each hour. After 5 to 6 hours the battery level will
reach 100%-120% (depending on the type of battery, number of cycles and correct maintenance).
After this period the system will enter into the Maintaining Phase, and the battery will maintain the
charge level.

Fig. 55 shows the battery charge process using the developed charger. Only the Bulk and Absorption
Phases are displayed. The Maintaining Phase start can be set to any point of the Absorption Phase by
changing the value of one resistor component.

The chargers were designed to charge Lead Acid batteries, but at this moment there is the possibility
of changing the Lead Acid to LiFePO4 batteries with PCM protection circuits. These batteries have the
same size and capabilities but they weigh ⅓ of the weight of the Lead Acid batteries.

D2.1.1 - MOnarCH Robots Hardware (update) Page 42 of 87

Figure 55: battery charge process

FP7-ICT-2011-9-601033 MOnarCH

5.3. Sonar Board
The Sonar Board, depicted in Fig. 56, will be used to control the firing of up to 16 sonars. This board
is connected to the Sensor&Management Board through an I2C connection. The information provided
from this board can be used to create low-level behaviours, for example reducing the velocity of the
robot in the presence of an obstacle.

The system uses the Maxbotix EZ4 sonar transducers that are able to detect an obstacle at a
distance of up to 4 m.

The board design allows the users to configure the sonar sampling and also to connect or disconnect
the sonar readings or power. It can be used to allow the individual fire and reading of all or some of
the sonars or the fire of all the sonars at the same time and the individual reading making a radar-like
sensor.

The MOnarCH robot uses a ring of 12 sonar. Three groups of 4 sonars were created:

• Group A – includes sonars 1, 4, 7 and 10 (0º, 90º,180º and 270º)

• Group B – includes sonars 2, 5, 8 and 11 (30º, 120º, 210º and 300º)

• Group C – includes sonars 3, 6, 9 and 12 (60º,150º 240º and 330º)

The sonars in the same group are fired at the same time and the distance from the obstacles to each
of the sonars is measured. To reduce the crosstalk effect, all the sonars in each group are disposed in
90º multiples.

Each group takes about 100ms to fire and process the echo. The processing of a new group is only
started after the end of the processing of the last group (A->B->C->A->B->...).

5.3. Ground Sensors Board

The Ground Sensors board, depicted in Fig. 57, allows the connection of up to 4 IR ground sensors
that can be used to detect changes on the floor colour or the beginning of descend stairs. This board
is connected to the Sensor&Management Board through an I2C connection. The information provided
from this board can be used to create low-level behaviours, for example avoiding the robot from falling
down in the stairs.

The MOnarCH robot uses 4 ground sensors: two on the front and one in each side of the robot (see
Fig. 58)

D2.1.1 - MOnarCH Robots Hardware (update) Page 43 of 87

Figure 56: Sonar Processor Board

FP7-ICT-2011-9-601033 MOnarCH

5.4. IMU Board

The IMU Board, depicted in Fig. 59, uses the MPU6050 that combines a MEMS 3-axis gyroscope and
a 3-axis accelerometer on the same silicon die together with an onboard Digital Motion Processor™
(DMP™) capable of processing complex 9-axis MotionFusion algorithms. This chip communicates
with a microcontroller using I2C communication. This microcontroller will be able to communicate with
the navigation computer by emulating a USB to COM serial port.

5.5. Interaction Board

The Interaction Board is depicted in Fig. 60. This board allows the PC-NAV to control the arms and
the head of the robot, the body LED lights, the mouth LED dot matrix, the enable/disable of the

D2.1.1 - MOnarCH Robots Hardware (update) Page 44 of 87

Figure 58: positions of the IR ground sensors

Figure 59: IMU Board

Figure 57: Ground Sensors Board

FP7-ICT-2011-9-601033 MOnarCH

projector and the body capacitive sensors. The Master Interaction Controller uses a PIC18F6527
microcontroller to control and manage all the communication between the high-level robot PC-NAV
and the interaction devices. A Slave PI Motor Controller uses a PIC18F2431 microcontroller to control
the robot's head pan motor.

The overall architecture of the Interaction Board is depicted in Fig. 61.

The interaction board communicates with the PC-NAV using two USB-to-RS232 converters. One of
the converters will connect directly to the Herkulex arm motors, no processing is needed by the board.
The board will supply a 9V power supply to power these motors. The other converter will connect to
the Master Interaction Controller.

The Master Interaction Controller will:

• provide the needed power supply voltages for the different interaction devices;

• receive commands from the PC-NAV and send back sensor Data;

• implement the needed communication (I2C, SPI and Serial) to control the different interaction
devices;

• control the fade in and fade out for the RGB LEDs;

• read the information from the capacitive sensors;

• read the arms' limit switches.

The Slaves PI Motor Controllers will:

• receive velocity and position references from the Master Interaction Controller;

• periodically read the encoder pulses and potentiometer position;

• send the estimated position of the head and send it to the Master Interaction Controller.

D2.1.1 - MOnarCH Robots Hardware (update) Page 45 of 87

Figure 60: MOnarCH robot Interaction Board

FP7-ICT-2011-9-601033 MOnarCH

D2.1.1 - MOnarCH Robots Hardware (update) Page 46 of 87

Figure 61: MOnarCH Interaction Board Architecture

Arms Control

PC-HRI

Interaction BoardInteraction Board

Left Herkulex
Arm Motor

RGB Led
Lights

Projector
ON/OFF

Energy
Pool

Electronic,
PC1 and PC2

 Batteries

Power
Converter

2

Power
Converter

1 5V

12V

12V

9V

USB-RS232
Converter

Right Herkulex
Arm Motor

RS232

Interaction Devices Control

USB-RS232
Converter

Master
Controller

Capacitive
 Sensors

RFID
Reader

Head
Slave

 Controller
SPI

Mouth Led
Dot Matrix

Digital

I2C

Arms
Switchs

Digital

Serial

FP7-ICT-2011-9-601033 MOnarCH

6. Charger Docking Station
One important capability of the robot is the possibility to work without human intervention. To achieve
this point the robot must be able to manage the onboard power and autonomously charge itself. One
charger docking station was developed to be installed in a service area, where the robot can enter
and plug itself in. This docking station will provide the necessary power that the onboard battery
charger needs to charge the batteries. The Docking Station is a passive power station: control of the
charging process is managed by the onboard Sensor&Management Board. The Docking Station will
be equipped with a 320W1 switch mode power supply able to power all the onboard equipment and at
the same time provide about 2,5A of current for each of the 4 battery chargers. Fig. 62 (left image)
presents the docking station and the 320W power supply. Fig. 62 (right image) shows the robot
charging mechanism that will attach to the docking station. Fig. 63 depicts the MOnarCH robot during
the charging process.

1 The power supply can be adjusted to charge multiple robots.

D2.1.1 - MOnarCH Robots Hardware (update) Page 47 of 87

Figure 62: MOnarCH Docking Station (left image) and robot docking mechanism

Figure 63: MonarCH robot charging at the docking station

FP7-ICT-2011-9-601033 MOnarCH

7. Working with the Robot
The following subsections explain the steps to set up the robot for normal operation.

7.1. Setting Up the Hardware
To be able to control the MOnarCH robot the user must perform the following steps:

1. Remove the rear button cover from the back of the robot (Fig. 64).

2. Press the Electronics' Robot Power button. By turning on the Electronics power button all the
auxiliary batteries will be enabled, providing power to all onboard components. This means
that the internal power sources of the PC-NAV and PC-HRI computers are powered (Fig. 65).

3. If the PC-NAV power button is OFF then the user must turn it ON to power this computer. If
the switch was already ON the computer will boot once the Robot Power button is powered
on (Fig. 66)

D2.1.1 - MOnarCH Robots Hardware (update) Page 48 of 87

Figure 64: MOnarCH rear cover access

Figure 65: Robot Power button

FP7-ICT-2011-9-601033 MOnarCH

4. (For the SO robot only) If the PC-HRI power button is OFF then the user must turn it ON to
power this computer. If the switch was already ON the computer will boot once the Robot
Power button is powered on (Fig. 67).

5. To use the motors, press the Motor/E-Stop button (Fig. 68).

6. Finally, put back the rear cover on the robot. The motor power button will be available,
allowing the user to quickly enable or disable the power of the motors, and also, put and
remove the robot from charge as explained in section 7.3 (Fig. 69).

D2.1.1 - MOnarCH Robots Hardware (update) Page 49 of 87

Figure 66 : PC-NAV button ON

Figure 67 : PC-HRI button ON

Figure 68 : Motor/E-Stop Button ON

FP7-ICT-2011-9-601033 MOnarCH

At this moment the robot platform can be controlled by the PC-NAV.

7.2. Shutting Down the MOnarCH Robot
To shut down the MOnarCH robot the first thing to do is to disable the motors by removing the power
from the motor drivers. To do that the user should:

1. push the Motor/E-Stop button on the back of the robot;

2. If the computers are switch ON, then the user should send a shut down command to all the
computers and wait until they are all OFF or switch OFF the computers by turning off the PC-
NAV and PC-HRI buttons OFF.

3. When the fans of both computers stop moving, then the user can disconnect the Robot
Power button.

7.3. Charging the Batteries
The quick way to charge the batteries is to place the robot in the charging Docking Station or to plug
the charger connector directly to robot power plug on the back. The Docking Station/Charger should
be powered and all the batteries and power buttons (Robot Power and Motors) should be ON.

The Docking Station/charger will power the electronics and all the computers.

If the Motor/E-Stop button on the back of the robot is ON the robot will start to charge all the
batteries. If the Motor/E-Stop button is OFF, then the user should press the Motor/E-Stop button to
its ON position. Then the robot will start to charge all the batteries.

The charging procedure is fully automatic. When the batteries are fully charged the charger will stop
the charge. To prevent any damage it was introduced a charging limit of 14.6V for each battery. If the
charge voltage reaches this value the Sensor&Management board will remove the battery from
charge.

To return from the charge mode two approaches can be used:

D2.1.1 - MOnarCH Robots Hardware (update) Page 50 of 87

Figure 69 : Motor button ON

FP7-ICT-2011-9-601033 MOnarCH

• Switch OFF the Motor/E-Stop button and remove the robot from the charger by hand. By
using this procedure the Sensor&Management Board will disconnect all the batteries from the
charger and put them all in enable mode.

• Use the PC-NAV to switch back all the batteries from charge mode to enable/disable mode.
With this procedure the user can avoid current peaks that can reset the computers and also
allow the platform to autonomously enter and leave the Docking Station.

D2.1.1 - MOnarCH Robots Hardware (update) Page 51 of 87

FP7-ICT-2011-9-601033 MOnarCH

8. Mbot_ROS

8.1. User Tasks

8.1.1. Dependencies

mbot_ros uses custom-defined ROS messages that belong to the monarch_msgs package. In order
to be able to use ROS tools to manipulate these custom message types, the monarch_msgs package
should be available in your ROS system (for instance, you should be able to roscd into the
monarch_msgs package).

8.1.2. Installation

This section describes the installation of software provided by SELFTECH that makes all of the
robots' hardware available for usage within a ROS environment.

Obtaining installation package

The mbot-ros software is distributed as a ready-to-install debian package. You may download it from
https://selftech.com/monarch/. Username is monarch and password is hominibus.

Installing software

Once you download the package you may install it with the command dpkg -i mbot_ros-

<version number>-Linux.deb.

Uninstalling is just as simple with the command dpkg -r mbot_ros.

Edit namespace in launch file in order to match the robot name (e.g. “mbot04”): “rosed mbot_ros

mbot.launch”

Finally, add the following to all users’ .bashrc file:

• source /opt/ros/hydro/setup.bash

• source /opt/monarch_msgs/setup.bash

• source /opt/mbot_ros/setup.bash

• export ROS_MASTER_URI=http://mbotXX:11311 (where XX is the mbot number, 01, 02, 03,
etc...)

• export MBOT_NAME=mbotXX (where XX is the mbot number, 01, 02, 03, etc...)

After doing this change either log out and log back in again or run in every terminal source

~/.bashrc.

Since mbot_ros installs udev configuration files, udev should be restarted prior to using the

software. Either reboot the system or issue the command sudo service udev restart.

 <frequency>45</frequency>

 </idmind_imu>

D2.1.1 - MOnarCH Robots Hardware (update) Page 52 of 87

https://selftech.com/monarch/

FP7-ICT-2011-9-601033 MOnarCH

 <idmind_motor_board>

 <enabled>true</enabled>

 <device_path>/dev/mbot-motorboard</device_path>

 <clicks_per_turn>2000</clicks_per_turn>

 <gear_ratio>13.795918367</gear_ratio>

 <hardstop_time>2</hardstop_time>

 <frequency>45</frequency>

 <vel_timeout_ms>200</vel_timeout_ms>

 </idmind_motor_board>

 <idmind_sensor_board>

 <enabled>true</enabled>

 <device_path>/dev/mbot-sensorboard</device_path>

 <frequency>10</frequency>

 <num_sonars>12</num_sonars>

 <sonars_fov>0.785398163</sonars_fov>

 <sonars_max_range>6.4516</sonars_max_range>

 <sonars_min_range>0.15240</sonars_min_range>

 </idmind_sensor_board>

 <joystick>

 <enabled>true</enabled>

 <device_path>/dev/input/js0</device_path>

 <angular_gain>3.14</angular_gain>

 <linear_gain>1.0</linear_gain>

 </joystick>

 </devices>

</mbot_ros>

Item path Description Values Default Value Added in
version

config_version Indicates the version
number of the configuration
file structure

Integer
greater than 0

0 1

autostart Section that contains
configurations for mbot-ros
automated startup

1

D2.1.1 - MOnarCH Robots Hardware (update) Page 53 of 87

FP7-ICT-2011-9-601033 MOnarCH

autostart / enabled Controls whether mbotrosd
will run at startup

true or
false

false 1

platform Section that defines which
physical platform is the
software running on

2

platform / type Type of the platform mbot_po or
mbot_so
depending on
whether the
platform is a
PO or SO
robot.

mbot_so 2

four_wheel_mecanum Four wheel mecanum
kinematic configurations.

2

four_wheel_mecanum
/ l1

L1 double 0.14429 2

four_wheel_mecanum
/ l2

L2 double 0.175 2

four_wheel_mecanum
/ r

Wheel radius double 0.05 2

devices Section that contains
configurations for the
devices that mbotrosd
interfaces directly

2

devices /
idmind_imu

Configuration for IdMind’s
IMU board

2

devices /
idmind_imu /
enabled

Enables mbot_ros to
connect to this board

true or
false

true 2

devices /
idmind_imu /
device_path

Filesystem path to the
device

string /dev/mbot-
imu

2

devices /
idmind_imu /
frequency

Frequency at which data is
published, in Hz

double 45 2

devices /
idmind_motor_board

Configuration for IdMind’s
motor board

2

devices /
idmind_motor_board

Enables mbot_ros to
connect to this board

true or
false

true 2

D2.1.1 - MOnarCH Robots Hardware (update) Page 54 of 87

FP7-ICT-2011-9-601033 MOnarCH

/ enabled

devices /
idmind_motor_board
/ device_path

Filesystem path to the
device

string /dev/mbot-
motorboard

2

devices /
idmind_motor_board
/ clicks_per_turn

Number of encoder clicks
per motor rotation

integer 2000 2

devices /
idmind_motor_board
/ gear_ratio

Gear ratio, from motor to
wheels (number of rotation
of the motor per wheel
rotation)

double 13.795918367 2

devices /
idmind_motor_board
/ hardstop_time

Time duration, in seconds,
while a hardware hardstop
will be active in case of the
bumpers being activated

integer 2 2

devices /
idmind_motor_board
/ frequency

Frequency at which data is
published, in Hz

double 45 2

devices /
idmind_motor_board
/ vel_timeout_ms

Maximum time to continue
sending the same speed
value to the electronics, in
ms

unsigned int 200 2

devices /
idmind_sensor_board

Configuration for IdMind’s
sensor board

2

devices /
idmind_sensor_board
/ enabled

Enables mbot_ros to
connect to this board

true or
false

true 2

devices /
idmind_sensor_board
/ device_path

Filesystem path to the
device

string /dev/mbot-
sensorboard

2

devices /
idmind_sensor_board
/ frequency

Frequency at which data is
published, in Hz

double 10 2

devices /
idmind_sensor_board
/ num_sonars

Number of sonars installed
on the robot

integer 12 2

devices /
idmind_sensor_board
/ num_sonars

Number of sonars installed
on the robot

integer 12 2

D2.1.1 - MOnarCH Robots Hardware (update) Page 55 of 87

FP7-ICT-2011-9-601033 MOnarCH

devices /
idmind_sensor_board
/ shutdown_voltage

Voltage under which the PC
is automatically shutdown
by mbot_ros in order to
prevent a hard shutdown

11.5 2

devices /
idmind_sensor_board
/ sonars_fov

Field-of-view of the sonars,
in radians

integer 0.785398163 2

devices /
idmind_sensor_board
/ sonars_max_range

Maximum range detected by
sonars

double 6.4516 2

devices /
idmind_sensor_board
/ sonars_min_range

Minimum range detected by
sonars

double 0.1524 2

devices / joystick Configuration for joystick
capabilities

2 devices
/

joystick

devices /
joystick / enabled

Enables mbot_ros to
connect to the joystick

2

devices /
joystick /
enabled /
device_path

Filesystem path to the
device

string /
dev/input/j
s0

2

devices /
joystick /
enabled /
angular_gain

Gain of the angular joystick
commands. Value will equal
the maximum angular speed
in rad/s

double 3.14 2

devices /
joystick /
enabled /
linear_gain

Gain of the linear joystick
commands. Value will equal
the maximum angular speed
in rad/s

double 1.0 2

Table 3: mbot-ros configuration XML description.

8.1.3. Controlling startup and shutdown of mbot_ros

The software package mbot_ros contains a daemon named mbotrosd which is able to execute
mbot_ros and roscore at system startup. This daemon is configured by default to start

automatically at system startup. The daemon’s status can be checked with the command sudo

service mbotrosd status. Likewise it can be manually started using sudo service

mbotrosd start and manually stopped using sudo service mbotrosd stop. As long as

mbotrosd is running, all sensors and actuators of the robot should be available from ROS topics.

Since a ROS master is needed to have the software running, mbotrosd checks if a ROS master is

available and, if not, will start a roscore instance itself.

D2.1.1 - MOnarCH Robots Hardware (update) Page 56 of 87

FP7-ICT-2011-9-601033 MOnarCH

If the user wants to prevent mbotrosd from starting automatically at startup it is just a matter of setting
the autostart / enabled field in the configuration file to “false”.

If mbotrosd autostart is disabled, it is still possible to run mbot_ros with the command rosrun

mbot_ros mbotros. Please note that a roscore instance should be available prior to running

mbot_ros.

8.1.4. Automatic system shutdown

In order to prevent the system from suffering a hard shutdown, an automatic shutdown feature was
added. Once the PC voltage goes below a pre-defined limit (defined in the config.xml file in

section devices / idmind_sensor_board / shutdown_voltage), mbot_ros issues a

shutdown command. A 2 minute notice is given to all logged in users with the following message

appearing on all open consoles:

The system is going down for power off in 2 minutes!

PC voltage too low!

8.1.5. View log files

The mbotrosd daemon logs to the standard system log file /var/log/syslog. An example of log

entries produced by mbotrosd follows:

Nov 11 12:09:42 st-desk01 mbotrosd[4237]: starting

Nov 11 12:09:42 st-desk01 mbotrosd[4237]: daemonization complete without effort

Nov 11 12:09:42 st-desk01 mbotrosd[4238]: startup finished

Nov 11 12:09:42 st-desk01 mbotrosd[4238]: loading configuration

Nov 11 12:09:42 st-desk01 mbotrosd[4238]: configuration loaded

Nov 11 12:09:42 st-desk01 mbotrosd[4238]: time has passed

Nov 11 12:09:46 mbotrosd[4238]: last message repeated 4 times

Nov 11 12:09:46 st-desk01 mbotrosd[4238]: received signal 15 (Terminated)

Nov 11 12:09:46 st-desk01 mbotrosd[4238]: terminated

A user may view this information in real time using the command tail -f /var/log/syslog |

grep mbotros. This will show only messages originating from the mbotrosd daemon.

8.1.6. Visualizing robot information on rviz

D2.1.1 - MOnarCH Robots Hardware (update) Page 57 of 87

FP7-ICT-2011-9-601033 MOnarCH

Be sure that your computer is in the same network as the robot and set the environment variable
ROS_MASTER_URI to point to the ROS master instance running onboard the robot, for instance:

export ROS_MASTER_URI=http://mbot01:11311/.

Then run rviz using rosrun rviz rviz. Once rviz is running, add visualizations for the

available topics to see whatever you need.

A ready-to-use configuration for rviz is available in the mbot_ros directory with the name

mbot.rviz.

8.1.7. Driving the robot manually

mbotrosd automatically uses USB joysticks that are connected to the robot. Once a joystick is
connected, mbotrosd will publish target velocities to the /cmd_vel_manual topic and this will

make the robot move according to the joystick input.

Joystick functionality was tested with a Logitech RumblePad 2 joystick that has keys as indicated in
Fig. 70.

The key mappings of the joystick are defined in Table 4.

Key Mapped to

Axis 0 Robot Linear Y-axis speed

Axis 1 Robot Linear X-axis speed

Axis 2 Robot Angular speed

Axis 4 Increase variable gain multiplier

Axis 5 Decrease variable gain multiplier

Table 4: Joystick key mappings.

Please note that if other software is also publishing data to the /cmd_vel topic, the robot will only

follow the /cmd_vel_manual, thus manual control overrides automatic control.

D2.1.1 - MOnarCH Robots Hardware (update) Page 58 of 87

Fig. 70: Joystick used for testing.

FP7-ICT-2011-9-601033 MOnarCH

8.2. Reference documentation

8.2.1. Robot reference frames

ROS provides a framework for registering relationships between coordinate frames over time named
tf. Each of the robots’ sensors measure features in its own coordinate frame. In order to successfully

be able to relate information gathered from different sensors, the frame transformation data must be
regularly published. This is done using a static_transform_publisher.

The base frame of all sensor frames is named “base_link”. For the mbots this frame is defined as

being in the 2D geometrical center of the robots’ wheels, at the ground level. Therefore, if the robot is
on a perfectly horizontal plane, the point (0,0,0) in the “base_link” is the point on the floor that is at

the same distance from all of the wheels’ centers.

All sensor frames follow the naming pattern “<sensor_name><sensor_number>” . Table 5 lists all

the publicized frames and their posture relative to the “base_link” frame.

Besides the sensors positions, the robot’s odometry position is published in tf as well, with the

base_link’s posture being published within an odom frame.

Frame name Description Translation (x,y,z) Rotation (pitch, roll,
yaw)

imu01 First inertial
measurement unit.

(0, 0, 0) (0, 0, 0)

lrf01 First laser range findes. (0.3, 0, 0.1365) (0, 0, 0)

rgbd01 First RGB-D camera. (0.3, 0, 1.0) (0, 0, 0)

rgbd02 Second RGB-D
camera.

(0, 0, 0) (0, 0, 0)

sonarN, n=01…12 Nth sonar. (0.15cos(angle) ,

0.15sin(angle) ,0)

(0, 0, angle), angle =

2π (N−1)
12

Table 5: Sensor frames.

8.2.2. Published topics

Data collected from onboard sensors is published in ROS topics. An effort was made to use as much
as possible standard message types and topic names in order to make it easier to use existing ROS
software with the mbots. Table 6 lists the publicized topics and which sensor data they contain. Some
topics have custom data types that belong to the monarch_msgs package.

Topic name Data type Description

auxiliary_batteries_volt
age

AuxiliaryBatteriesVoltag
e

Readings from auxiliary
batteries voltage sensors.

D2.1.1 - MOnarCH Robots Hardware (update) Page 59 of 87

FP7-ICT-2011-9-601033 MOnarCH

batteries_voltage BatteriesVoltage Readings from main batteries
voltage sensors.

bumpers BumpersReadings Readings obtained from the
robots bumpers.

charger_status ChargerStatus Readings from charger lines
voltage sensors.

ground_sensors GroundSensorsReadings Readings from ground sensors.

hardstop_status HardstopStatus Status of the low level hardstop.

hokuyo_node/parameter_de
scriptions

TBD TBD

hokuyo_node/parameter_up
dates

TBD TBD

joy sensor_msgs::Joy Readings from USB Joystick.

motor_board_communicatio
n_status

MotorBoardCommunicationS
tatusReadings

Not yet implemented.

motor_board_cooling_fans MotorsCoolingFans Motor board cooling fans status.

motor_board_temperatures MotorBoardTemperatures Motor board temperature
readings.

motor_board_voltages MotorBoardVoltages Motor board voltage readings.

odom nav_msgs::Odometry Odometry measurements
calculated from measured wheel
rotation. Note: the robot’s
posture (the base_link frame)

is also published using tf

within the odom frame.

relativeHumidity sensor_msgs::RelativeHum
idity

Range measurements collected
from the onboard sonars.

sensor_board_communicati
on_status

SensorBoardCommunication
StatusReadings

Not yet implemented.

sonars sensor_msgs::Range Range measurements collected
from the onboard sonars.

temperature sensor_msgs::Temperature Ambient temperature measured
by the robot.

Table 6: Published sensor topics.

D2.1.1 - MOnarCH Robots Hardware (update) Page 60 of 87

FP7-ICT-2011-9-601033 MOnarCH

8.2.3. Subscribed topics

mbot_ros expects to receive information from other software in a set of specific topics. These are
mainly related to control signals to be sent to the robot’s actuators. Table 7 lists the expected topics
and what is done with the information they contain.

Topic name Data type Description

cmd_vel geometry_msgs::Twist Target speeds of the robot in the
robot frame (“base_link”),

published by an automatic
control source.

cmd_vel_manual geometry_msgs::Twist Target speeds of the robot in the
robot frame (“base_link”),

published by a manual control
source.

set_state_imu SetStateImu Set the Inertial Measurement
Unit state.

set_motor_board_cooling_
fans

SetStateMotorBoardCoolin
gFans

Allow automatic or manual
control of the fans to cool the
motors and drivers.

set_state_aux_batt1_powe
r

SetStateAuxiliaryPowerBa
ttery

Enable/Disable/Charge auxiliary
power battery 1.

set_state_aux_batt2_powe
r

SetStateAuxiliaryPowerBa
ttery

Enable/Disable/Charge auxiliary
power battery 2.

set_state_electronics_po
wer

SetStateElectronicPower Enable/Charge electronic power
battery.

set_state_motors_power SetStateMotorsPower Enable/Disable/Charge motors
power battery.

set_state_sonars SetStateSonars Enable/Disable sonars.

Table 7: Subscribed topics

8.2.4. mbot Kinematics Transformations

The mbot’s kinematic model was adapted from Doroftei's et al paper titled "Omnidirectional Mobile
Robot--Design and Implementation". Adjustments were made in order to account for different wheel
rotation direction and wheel numbering.

Considering that:

● l1 and l2 are the x-axis and y-axis distances of the wheel center to the robot frame’s origin.

● r is the wheel radius.

D2.1.1 - MOnarCH Robots Hardware (update) Page 61 of 87

FP7-ICT-2011-9-601033 MOnarCH

● the robot’s wheels are number from 1 to 4 in counter-clockwise direction starting from the
wheel that is in the robot’s front left corner.

● ωk represents the angular speed of wheel k

● vx, vy and represent the robot’s instantaneous speeds

 (2.1)

Inverse Kinematics

 (2.2)

Forward Kinematics

 (2.3)

8.3. Experimental Results

8.3.1. Hardware Communication Latencies

In order to assess the appropriate update rates for data acquired from the mbots hardware, we
conducted an experiment in which we measured the latency of each of three types of interactions with
the robots’ hardware. We consider an interaction to be the actions needed to acquire (or set) an
individual piece of data. In this study, we focused on the three interactions that have higher update
rates:

GetEncoders

Get encoder information in order to calculate odometry.
SetVelocity

Set wheel velocities.
GetImu

Get IMU information.

We consider that the interaction starts in the instant the software running on the main computer is
ready to send data to the hardware and it stops when the complete response has been received and
correctly parsed by the software. The experiment duration was of roughly 1 hour.

D2.1.1 - MOnarCH Robots Hardware (update) Page 62 of 87

FP7-ICT-2011-9-601033 MOnarCH

The results obtained are showed in Fig. 71 and statistics on this data is showed in Table 8. The
GetEncoders and SetVelocity interactions belong to the same hardware board, so they must

not occur simultaneously. By adding their 99.9% percentile time we obtain a total time of 0.0202150s,
which would result in a maximum frequency of about 49.46Hz. As for the IMU, with a value of
0.0209570s this would result in a maximum frequency of about 47.7Hz. In order to give a bit of slack
to have a “round” number, it was decided that these devices should work at a frequency of 45Hz.

GetEncoders SetVelocity GetImu

min 0.0099510 0.0016790 0.0000400

max 0.0196990 0.0188820 0.0282170

avg 0.0108120 0.0078534 0.0199712

stddev 0.0002853 0.0007979 0.0003140

median 0.0108410 0.0079650 0.0199600

99.9% percentile 0.0113580 0.0088570 0.0209570

Table 8: Interactions latency statistics per data type.

D2.1.1 - MOnarCH Robots Hardware (update) Page 63 of 87

Figure 71: Interactions latencies per data type.

FP7-ICT-2011-9-601033 MOnarCH

Annex A. Board Controllers Software Protocol
The Onboard Navigation Computer is able to communicate with the Motors and Sensor&Management
boards using two independent USB Ports. In each board a FTDI USB to RS232 converter converts
the USB data connection to a TTL Serial PORT data connection for the microcontrollers on the
Boards.

All the USB board connectors can be connected using the following UART settings:

Baud rate: 115200bps

Data bits: 8

Stop bits: 1

Parity bit: No parity

HW Flow Control: Disable

To communicate with the robot boards the following protocol is used:

Write -> [Command][First Byte][Second Byte][....]

Read -> [Command][First Byte][Second Byte] [....][Send Number][CheckSum_H][CheckSum_L]

Where:

[Command] is the set or get command;

[Send Number] is an incremental number that counts all the sends that each microcontroller
has already performed;

[CheckSum_H:CheckSum_L] is the checksum of the [Command]+[First Byte]+[Second
Byte]+ [....]+[Send Number].

A.1. Sensor&Management Communication Protocol (board1)

Enable/Disable/Charge Motors Power:

[Command] = 0x45

Write -> [0x45][Control]

Read -> [0x45] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Control] = 0 : Motor power Disabled;

[Control] =1 : Charge motor power enable Mode;

[Control] = 2 : Motor power Enable.

Enable/Disable/Charge Auxiliary Power battery 1 to 2:

[Command] = 0x40 to 0x41

Write -> [0x40 to 0x41][Control]

Read -> [0x40 to 0x41] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Control] = 0 : Auxiliary power battery (1 to 2) Disabled;

D2.1.1 - MOnarCH Robots Hardware (update) Page 64 of 87

FP7-ICT-2011-9-601033 MOnarCH

[Control] = 1 : Charge auxiliary power battery (1 to 2) enable Mode;

[Control] = 2 : Auxiliary power battery (1 to 2) Enable.

Enable/Charge Electronic Power battery:

[Command] = 0x46

Write -> [0x46][Control]

Read -> [0x46] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Control] =1 : Charge electronic battery enable Mode;

[Control] =2 : Electronic power battery Enable.

Get Batteries Voltage command:

[Command] = 0x51

Write -> [0x51]

Read -> [0x51] [Motor Battery] [Electronics Battery] [Charger] [Send Number] [CheckSum_H]
[CheckSum_L]

Where:

[Motor Battery] is the Motor battery voltage. When in charging mode the value is +/- 0V.

To obtain the real measured voltage of this battery the following formula must be used:

Motor battery voltage = (double)((double)[Motor Battery] / 10.0);

[Electronics Battery] is the battery that powers all the electronics and the onboard
Navigation Computer.

To obtain the real measured voltage of this battery the following formula must be used:

Electronics battery voltage = (double)((double)[Electronics Battery] / 10.0);

[Charger] is the power from the docking station.

To obtain the real measured voltage of this battery the following formula must be used:

Charger voltage = (double)((double)[Charger] / 10.0);

Get Auxiliary Batteries Voltage command:

[Command] = 0x52

Write -> [0x52]

Read -> [0x52] [PC1 Battery] [PC2 Battery] [Send Number] [CheckSum_H] [CheckSum_L]

Where:

[PC1-PC2 Battery] are auxiliary batteries that can be used to power computers or other
electronic devices that the robot can carry.

To obtain the real measured voltage of this battery the following formula must be used:

PC1-PC2 battery voltage = (double)((double)[PC1-PC2] / 10.0);

Get Bumpers command:

[Command] = 0x53

Write -> [0x53]

Read -> [0x53] [Bumpers][Send Number] [CheckSum_H] [CheckSum_L]

D2.1.1 - MOnarCH Robots Hardware (update) Page 65 of 87

FP7-ICT-2011-9-601033 MOnarCH

Where:

[Bumpers] allows the detection of collisions in different parts of the robot. The received
[bumpers] byte indicates if a bump is being detected. Bumper byte has the following
composition [0000ABCD] where:

[A] is the right bump;

[B] is the left bump;

[C] is the front bump;

[D] is the rear bump.

Each bit can assume two possible values: 0 if no bump is being detected or 1 if a bump is
being detected.

Get Sonars command:

[Command] = 0x54

Write -> [0x54]

Read -> [0x54] [Sonar0_High_Byte] [Sonar0_High_Byte] ---- [Sonar11_High_Byte]
[Sonar11_High_Byte] [Send Number][CheckSum_H] [CheckSum_L]

The get sonars command will retrieve the distance information of 12 sonar sensor in cm. To get the
distance value in cm the following calculation must be performed:

Sonar 0..11 = (int)(0,013895*([Sonar0..11_High_Byte]*256+[Sonar0..11_Low_Byte]));

Enable/Disable Sonars command:

[Command] = 0x55

Write -> [0x55][Control]

Read -> [0x55] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Control] = 0 : Disable sonar readings;

[Control] = 1 : Enable sonar readings.

Get Environment sensors command:

[Command] = 0x56

Write -> [0x56]

Read -> [0x56] [Temperature] [Humidity] [Send Number][CheckSum_H] [CheckSum_L]

The Environment sensor command retrieves the information of the environment temperature and
humidity where:

[Temperature] retrieves a temperature between 0ºC to 125ºC;

[Humidity] retrieves the relative humidity between 0% and 100%;

Get Charger Status command:

[Command] = 0x58

Write -> [0x58]

Read -> [0x58] [Charger_Status][Send Number][CheckSum_H] [CheckSum_L]

D2.1.1 - MOnarCH Robots Hardware (update) Page 66 of 87

FP7-ICT-2011-9-601033 MOnarCH

where:

[Charger Status] retrieves the information of the Charger Status. [XXXXABCD]retrieves the
information of the Charger Status. [XXXXABCD]

[A]=0 :PC2 Battery Not Charging

[A]=1 :PC2 Battery Charging

[B]=0 :PC1 Battery Not Charging

[B]=1 :PC1 Battery Charging

[C]=0 : Motor Battery Not Charging

[C]=1 : Motor Battery Charging

[D]=0 : Electronic Battery Not Charging

[D]=1 : Electronic Battery Charging

This information is only valid if the robot is connected to the Charger with a voltage higher that
16V.

Get Ground Sensors Values:

[Command]=0x59

Write ->[0x59]

Read ->[0x59] [Right_Sensor][Right_Front_Sensor][Left_Front_Sensor][Left_Sensor][Send
Number][CheckSum_H] [CheckSum_L]

Get Firmware version number command:

[Command] = 0x20

Write -> [0x20]

Read -> [0x20] [Firmware information (25bytes)] [Send Number] [CheckSum_H]
[CheckSum_L]

where:

[Firmware information] is a set of 25 bytes in ascii with the following information:

“Board1 fw A.BC YYYY/MM/DD” for example “Board1 fw 1.00 2014/02/14”

A is the version and BC the revision number.

A.2. Motor Board Communication Protocol (board2)
Set Velocity command:

[Command] = 0x56

[Left front wheel Velocity]=[Left front wheel Velocity High][Left front wheel Velocity Low]

[Right front wheel Velocity]=[Right front wheel Velocity High][Right front wheel Velocity Low]

[Left rear wheel Velocity]=[Left rear wheel Velocity High][Left rear wheel Velocity Low]

[Right rear wheel Velocity]=[Right rear wheel Velocity High][Right rear wheel Velocity Low]

Write -> [0x56][Left front wheel Velocity High][Left front wheel Velocity Low][Right front wheel
Velocity High][Right front wheel Velocity Low][Left rear wheel Velocity High][Left rear wheel
Velocity Low][Right rear wheel Velocity High][Right rear wheel Velocity Low]

Read -> [0x56][Send Number][CheckSum_H][CheckSum_L]

D2.1.1 - MOnarCH Robots Hardware (update) Page 67 of 87

FP7-ICT-2011-9-601033 MOnarCH

To obtain the High and Low bytes use:

Left front wheel Velocity High = (byte) (Left front wheel Velocity >> 8);

Left front wheel Velocity Low = (byte) (Left front wheel Velocity & 0xFF);

Right front wheel Velocity High = (byte) (Right front wheel Velocity >> 8);

Right front wheel Velocity Low = (byte) (Right front wheel Velocity & 0xFF);

Left rear wheel Velocity High = (byte) (Left rear wheel Velocity >> 8);

Left rear wheel Velocity Low = (byte) (Left rear wheel Velocity & 0xFF);

Right rear wheel Velocity High = (byte) (Right rear wheel Velocity >> 8);

Right rear wheel Velocity Low = (byte) (Right rear wheel Velocity & 0xFF);

Get Encoders Ticks command:

[Command] = 0x4A

Write -> [0x4A]

Read -> [0x4A][Left front Motor Ticks High][Left front Motor Ticks Low][Right front Motor Ticks
High][Right front Motor Ticks Low][Left rear Motor Ticks High][Left rear Motor Ticks Low]
[Right rear Motor Ticks High][Right rear Motor Ticks Low][Send Number][CheckSum_H]
[CheckSum_L]

To get the Left front Motor Ticks:

Left front Motor Ticks =(int)Left front Motor Ticks High*256+Left front Motor Ticks Low;

To get the Right front Motor Ticks:

Right front Motor Ticks =(int)Right front Motor Ticks High*256+Right front Motor Ticks Low;

To get the Left rear Motor Ticks:

Left rear Motor Ticks =(int)Left rear Motor Ticks High*256+Left rear Motor Ticks Low;

To get the Right rear Motor Ticks:

Right rear Motor Ticks =(int)Right rear Motor Ticks High*256+Right rear Motor Ticks Low;

To calculate the CheckSum use the following formula:

CheckSum = 0x4A + Left front Motor Ticks High + Left front Motor Ticks Low +
 Right front Motor Ticks High + Right front Motor Ticks Low +

Left rear Motor Ticks High + Left rear Motor Ticks Low +
 Right rear Motor Ticks High + Right rear Motor Ticks Low + Send Number;

Get Motor Board Voltage command:

[Command] = 0x51

Write -> [0x51]

Read -> [0x51] [Motor Voltage] [Driver Voltage] [Electronics Voltage] [Power Status] [Send
Number] [CheckSum_H] [CheckSum_L]

Where:

[Motor Voltage] is the voltage measure of the power supply of the motors. In normal
operation will have a value between 9.5V and 13V.

Motor voltage power = (double)((double)[Motor Voltage] / 10.0);

D2.1.1 - MOnarCH Robots Hardware (update) Page 68 of 87

FP7-ICT-2011-9-601033 MOnarCH

[Driver Voltage] is the voltage measured of the power supply of the drivers for the motors. In
normal operation the value should be between 12 to 15V.

Driver voltage power = (double)((double)[Driver Voltage] / 10.0);

[Electronics Voltage] is the voltage measured of the power supply of the control electronics.
In normal operation the value should be between 9.5 to 13V.

Electronics voltage power = (double)((double)[Electronics Voltage] / 10.0);

[Power Status] is the voltage status [AXXXXBCD].

where:

A =0 : Motor Drivers disabled;

A =1 : Motor Drivers enabled;

B =0 : Motor Power not OK;

B =1 : Motor Power OK;

C =0 : Driver Power not OK;

C =1 : Driver Power OK;

D =0 : Electronic Power not OK;

D =1 : Electronic Power OK.

Get temperature command:

[Command] = 0x52

Write -> [0x52]

Read -> [0x52] [Left front Motor Temperature] [Right front Motor Temperature] [Left rear
Motor Temperature] [Right rear Motor Temperature] [Left front Motor Driver Temperature]
[Right front Motor Driver Temperature][Left rear Motor Driver Temperature] [Right rear Motor
Driver Temperature] [Temperature Status] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Left front Motor Temperature] is the temperature of the left front motor in ºC;

[Right front Motor Temperature] is the temperature of the right front motor in ºC;

[Left rear Motor Temperature] is the temperature of the left rear motor in ºC;

[Right rear Motor Temperature] is the temperature of the right rear motor in ºC;

[Left front Motor Driver Temperature] is the temperature of the Left front Motor Driver in ºC;

[Right front Motor Driver Temperature] is the temperature of the Right front Motor Driver in
ºC;

[Left rear Motor Driver Temperature] is the temperature of the Left rear Motor Driver in ºC;

[Right rear Motor Driver Temperature] is the temperature of the Right rear Motor Driver in
ºC;

[Temperature Status] is the temperature status [ABCDEFGH]

where:

A=0 : Left front Motor Temperature less that 40ºC;

A=1 : Left front Motor Temperature more that 40ºC;

B=0 : Right front Motor Temperature less that 40ºC;

B=1 : Right front Motor Temperature more that 40ºC;

D2.1.1 - MOnarCH Robots Hardware (update) Page 69 of 87

FP7-ICT-2011-9-601033 MOnarCH

C=0 : Left rear Motor Temperature less that 40ºC;

C=1 : Left rear Motor Temperature more that 40ºC;

D=0 : Right rear Motor Temperature less that 40ºC;

D=1 : Right rear Motor Temperature more that 40ºC;

E=0 : Left front Motor Driver Temperature less that 40ºC;

E=1 : Left front Motor Driver Temperature more that 40ºC;

F=0 : Right front Motor Driver Temperature less that 40ºC;

F=1 : Right front Motor Driver Temperature more that 40ºC.

G=0 : Left rear Motor Driver Temperature less that 40ºC;

G=1 : Left rear Motor Driver Temperature more that 40ºC;

H=0 : Right rear Motor Driver Temperature less that 40ºC;

H=1 : Right rear Motor Driver Temperature more that 40ºC.

note: The 40ºC value can be changed after a better understanding of the
normal operation of the robot.

Set cooling fans command:

[Command] = 0x53

Write -> [0x53][Fan Control]

Read -> [0x53][Send Number] [CheckSum_H] [CheckSum_L]

where:

[Fan Control] allow automatic or manual control of the fans to cool the motors and the
drivers. [AXXXBCDE]

[A]=0 manual control of the fans

[A]=1 automatic control of the fans. One or more fans will start to cool a motor or a
motor driver when its temperature reaches the 40ºC and stop to work when the
temperature is reduced to about 25º. It will not be possible to control the fans
manually.

In manual control mode:

[B] = 0 : turn OFF the front motor fans;

[B] = 1 : turn ON the front the motor fans;

[C] = 0 : turn OFF the rear motor fans;

[C] = 1 : turn ON the rear the motor fans;

[D] = 0 : turn OFF the front motor driver fans;

[D] = 1 : turn ON the front motor driver fans;

[E] = 0 : turn OFF the rear motor driver fans;

[E] = 1 : turn ON the rear motor driver fans.

In automatic control the controller will update automatically the [B] to [E] bits. Using 0
when the fans are OFF and 1 when the fans are ON.

note: The 40ºC and 25ºC values can be changed after a better understanding of the
normal operation of the robot.

Get cooling fans command:

D2.1.1 - MOnarCH Robots Hardware (update) Page 70 of 87

FP7-ICT-2011-9-601033 MOnarCH

[Command] = 0x54

Write -> [0x54]

Read -> [0x54][Fan Control][Send Number] [CheckSum_H] [CheckSum_L]

where:

[Fan Control] reads the Fan Control status byte described previously on the “Set cooling fans
command”

Set Hardstop timer command:

[Command] = 0x58

Write -> [0x58][Hardstop Timer]

Read -> [0x58][Send Number] [CheckSum_H] [CheckSum_L]

where:

[Hardstop Timer] allow to set the time that the robot will stay in Hardstop Mode. It is possible
to select between 0s to 255s.

Get Hardstop Status:

[Command] = 0x59

Write -> [0x59]

Read -> [0x59][Hardstop Status][Send Number] [CheckSum_H] [CheckSum_L]

where:

[Hardstop Status] is the Hardstop status [XXXXXXXA].

where:

A =0 : Hardstop Disable;

A =1 : Hardstop Enable;

Get Firmware version number command:

[Command] = 0x20

Write -> [0x20]

Read -> [0x20] [Firmware information (25bytes)] [Send Number] [CheckSum_H]
[CheckSum_L]

where:

[Firmware information] is a set of 25 bytes in ascii with the following information:

“Board2 fw A.BC YYYY/MM/DD” for example “Board2 fw 1.00 2014/02/14”

A is the version and BC the revision number.

A.3. IMU Communication Protocol

Sample IMU Data output

[Command] = 0x40

Write -> [0x40]

Read -> [0x40] [Yaw_High] [Yaw_Low][Pitch_High] [Pitch_Low][Roll_High][Roll_Low][Send
Number][CheckSum_H] [CheckSum_L]

D2.1.1 - MOnarCH Robots Hardware (update) Page 71 of 87

FP7-ICT-2011-9-601033 MOnarCH

The IMU sensor retrieves the information of the Yaw, Pitch and Roll angles in degrees. To obtain the
Yaw/Pitch/Roll angles in degrees it is necessary to make the following calculation:

Yaw=(double) [Yaw_High:Yaw_Low]/100,0;

Pitch=(double) [Pitch_High:Pitch_Low]/100,0;

Roll=(double) [Roll_High:Roll_Low]/100,0;

Stream IMU Data output

[Command] = none

Write -> none

Read -> [0x40] [Yaw_High] [Yaw_Low][Pitch_High] [Pitch_Low][Roll_High][Roll_Low][Send
Number][CheckSum_H] [CheckSum_L]

The IMU sensor retrieves the information of the Yaw, Pitch and Roll angles in degrees. In streaming
mode the IMU will send the angle information with 100Hz updates. To obtain the Yaw/Pitch/Roll
angles in degrees it is necessary to make the following calculation:

Yaw=(double) [Yaw_High:Yaw_Low]/100,0;

Pitch=(double) [Pitch_High:Pitch_Low]/100,0;

Roll=(double) [Roll_High:Roll_Low]/100,0;

Disable/Sample/Stream IMU data flow

[Command] = 0x50

Write -> [0x50][Control]

Read -> [0x50] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Control] =0 : Disable IMU communication;

[Control] =1 : Stream Mode Activated.

[Control] =2 : Sample Mode Activated;

A.4. Interaction Communication Protocol (board3)

Set led mouth control

[Command] = 0x40

Write -> [0x40][32 bytes of 8 LEDs]

Read -> [0x40] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[32 bytes of 8 LEDs] - the LED controller is able to control a matrix of 32 LED columns (32
bytes) by 8 LED rows (8 bits). The mouth is organized in 32 LED columns by 8 LED rows.
The first byte will control the 8 leds of the first column. To enable a LED the bit must be
changed to ‘1’ and '0' to disable.

Set mouth intensity control

[Command] = 0x41

Write -> [0x41][Intensity]

Read -> [0x41] [Send Number] [CheckSum_H] [CheckSum_L]

D2.1.1 - MOnarCH Robots Hardware (update) Page 72 of 87

FP7-ICT-2011-9-601033 MOnarCH

where:

[Intensity] = [0-15] is the intensity level for the mouth. The maximum level is 15 and the
minimum is 0.

Set RGB LEDs control

[Command] = 0x43

Write -> [0x43][RGB_Device][Red_Intensity][Green_Intensity][Blue_Intensity][time]

Read -> [0x43] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[RGB_Device]=0; Left Eye Leds.

[RGB_Device]=1; Right Eye Leds.

[RGB_Device]=2; Cheeks Leds.

[RGB_Device]=3; Base Right Leds.

[RGB_Device]=4; Base Front Leds.

[RGB_Device]=5; Base Left Leds.

[Red_Intensity] = [0-100] is the intensity percentage of the signal that will drive the red LEDs.

[Green_Intensity] = [0-100] is the intensity percentage of the signal that will drive the green
LEDs.

[Blue_Intensity] = [0-100] is the intensity percentage of the signal that will drive the blue
LEDs.

[time] = [0-255] is the time that will take to reach the new intensity level. Where [0] is 0
seconds [1] is 0.01s and [255] is 2,55s.

Set head rotation angle control

[Command] = 0x44

Write -> [0x44][Angle]

Read -> [0x44] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Angle] = [0 – 180] is the final angle between the head and body of the robot. When Angle=0
the head is turned to the right, Angle = 90 the head is centred with the body and with the
Angle=180 the head is turned to the left.

Set Head velocity Control

[Command] = 0x45

Write -> [0x45][Velocity]

Read -> [0x45] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Velocity] = [0 – 100] is the percentage of the maximum velocity that the robot is able to
rotate the head.

Enable/Deactivate light beacons

[Command] = 0x46

D2.1.1 - MOnarCH Robots Hardware (update) Page 73 of 87

FP7-ICT-2011-9-601033 MOnarCH

Write -> [0x46][Enable/Disable]

Read -> [0x46] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Enable/Disable] Allows the user to activate or deactivate the light beacons installed on the
robot head.

Enable/Deactivate Projector

[Command] = 0x47

Write -> [0x47][Enable/Disable]

Read -> [0x47] [Send Number] [CheckSum_H] [CheckSum_L]

where:

[Enable/Disable] Allows the user to activate or deactivate the projector installed on the robot
head.

Get head angle position

[Command] = 0x50

Write -> [0x50]

Read -> [0x50][Angle][Send Number] [CheckSum_H] [CheckSum_L]

where:

[Angle] = [0 – 180] is the angle between the head and body of the robot. When Angle=0 the
head is turned to the right, Angle = 90 the head is centred with the body and with the
Angle=180 the head is turning to the left.

Get Arm Switch's

[Command] = 0x51

Write -> [0x51]

Read -> [0x51][Arm_Switchs][Send Number] [CheckSum_H] [CheckSum_L]

where:

[Arm_Switchs] = [XXXXABCD]

A = Left Arm Top Switch;

B= Left Arm Bottom Switch;

C = Right Arm Top Switch;

D = Right Arm Bottom Switch;

if 0 the switch is not activated;

if 1 the switch is activated.

Get Capacitor Touch sensor data

[Command] = 0x52

Write -> [0x52]

D2.1.1 - MOnarCH Robots Hardware (update) Page 74 of 87

FP7-ICT-2011-9-601033 MOnarCH

Read -> [0x52][Touch_Sensors_L][Touch_Sensors_H][Send Number] [CheckSum_H]
[CheckSum_L]

where:

[Touch_Sensors_L] = [HGFEDCBA]

A = Right shoulder;

B= Right arm;

C = Head;

D = Left arm;

E = Left shoulder;

F = Touch Sensor 5; //not in use

G = Touch Sensor 6; //not in use

H = Touch Sensor 7; //not in use

[Touch_Sensors_H] = [XXXXLKJI]

I = Touch Sensor 8; //not in use

J= Touch Sensor 9; //not in use

K = Touch Sensor 10; //not in use

L = Touch Sensor 11; //not in use

if 0 the touch sensor is not activated;

if 1 the touch sensor is activated.

Get Firmware version number command:

[Command] = 0x20

Write -> [0x20]

Read -> [0x20] [Firmware information (25bytes)] [Send Number] [CheckSum_H]
[CheckSum_L]

where:

[Firmware information] is a set of 25 bytes in ascii with the following information:

“Board3 fw A.BC YYYY/MM/DD” for example “Board3 fw 1.00 2014/02/14”

A is the version and BC the revision number.

A.4. Arms (board4)

The SO robots have two independent arms. These arms rotate using two HerkuleX motors that
include all the needed hardware and software to make the position control of the arms.

More information about the Herkulex motors can be found in the following link:

http://www.robotshop.com/media/files/pdf/manual-drs-0201.pdf

The motors are powered by the interaction board and use a FTDI USB to RS232 converter to
communicate to the each module at the same time. Each Motor has its unique ID. The Left Arm will
reply to the 0x00 ID and Right Arm will reply to the 0x01 ID.

D2.1.1 - MOnarCH Robots Hardware (update) Page 75 of 87

http://www.robotshop.com/media/files/pdf/manual-drs-0201.pdf

FP7-ICT-2011-9-601033 MOnarCH

It is possible also to use broadcast 0xFD ID when a command must be sent to all the motors at the
same time. This is used, for example, to change the Torque State, from Torque ON, OFF or Break.

There is a software program that is used to change motor setup. The program can be found in the
following link:

http://www.dongburobot.com/jsp/board/boardDown.jsp?bseq=6783

The HerkuleX Manager program can be used, for example to, change of the ID, maximum and
minimum limits and controller gains. It can also be used to test the motors.

To control the two motor only two functions are needed.

1. Torque Control. There are three possible states for the Torque control:

◦ Torque OFF: 0x00 – the motor will be free and will not respond to position
commands;

◦ Torque ON: 0x60 – the motor will respond to position commands;

◦ Break ON: 0x40 – The motor will stay on the same place and will not respond to
position commands.

The Torque Control does not give an acknowledge reply.

public void Torque_Control(int ID, byte Torque_Com)
{
 PacketSize = 0x0A;
 CMD = 0x03;
 Data0 = 0x34;
 Data1 = 0x01;
 Data2 = Torque_Com;
 Checksum1 = (byte)((PacketSize ^ ID ^ CMD ^ Data0 ^ Data1 ^ Data2) & 0xFE);
 Checksum2 = (byte)((~Checksum1) & 0xFE);
 serialArms.Write(new byte[] { (byte)header1, (byte)header2, (byte)PacketSize,
(byte)ID, CMD, Checksum1, Checksum2, Data0, Data1, Data2 }, 0, PacketSize);
}

where ID:

• 0x00 for the Left Arm;

• 0x01 for the Right Arm;

• 0xFD both Arms;

and Torque_Com:

• Torque OFF: 0x00;

• Torque ON: 0x60;

• Break ON: 0x40.

2. Position Control: Controls the position of the motor shaft. It will receive a new reference
position and a delta time that it time that the motor will take from the original position to the
new one. The possible position values are represented in the +/- 166,7º, where value 0 =
-166,7º, 512 = 0º and 1023 = +166,7º. The Position Control does not give an acknowledge
reply.

public void Set_Left_Arm_Angle(int Left_Angle, byte Play_Time)
{
 int New_Left_Value;
 byte High_Value, Low_Value;

D2.1.1 - MOnarCH Robots Hardware (update) Page 76 of 87

http://www.dongburobot.com/jsp/board/boardDown.jsp?bseq=6783

FP7-ICT-2011-9-601033 MOnarCH

 b1=Left_Arm_Minimum_Value;
 m1=(Left_Arm_Maximum_Value-Left_Arm_Minimum_Value)/150.0;

 New_Left_Value = (int)(m1 * (double)Left_Angle + b1);
 if (New_Left_Value > Left_Arm_Maximum_Value) New_Left_Value =

Left_Arm_Maximum_Value;
 else if (New_Left_Value < Left_Arm_Minimum_Value) New_Left_Value =

Left_Arm_Minimum_Value;
 High_Value=(byte) (New_Left_Value >> 8);
 Low_Value=(byte) (New_Left_Value & 0x00FF);
 I_Jog_TAG_Control_1(0x00, (byte) High_Value, (byte) Low_Value, (byte) Play_Time);

}

public void Set_Right_Arm_Angle(int Right_Angle, byte Play_Time)
{
 int New_Right_Value;
 byte High_Value, Low_Value;
 b1 = Right_Arm_Maximum_Value;
 m1 = (Left_Arm_Minimum_Value - Left_Arm_Maximum_Value) / 150.0;
 New_Right_Value = (int)(m1 * (double)Right_Angle + b1);

 if (New_Right_Value > Right_Arm_Maximum_Value) New_Right_Value =
Right_Arm_Maximum_Value;
 else if (New_Right_Value < Right_Arm_Minimum_Value) New_Right_Value =
Right_Arm_Minimum_Value;

 High_Value = (byte)(New_Right_Value >> 8);
 Low_Value = (byte)(New_Right_Value & 0x00FF);
 I_Jog_TAG_Control_1(0x01, (byte)High_Value, (byte)Low_Value, (byte)Play_Time);
}

private void I_Jog_TAG_Control_1(int ID, byte POS_High, byte POS_Low, int Play_Time)
{
 PacketSize = 0x0C;
 CMD = 0x05;
 Data0 = POS_Low;
 Data1 = POS_High;
 Data2 = (byte)Led_Color;
 Data3 = (byte)ID;
 Data4 = (byte)(Play_Time);

 Checksum1 = (byte)((PacketSize ^ ID ^ CMD ^ Data0 ^ Data1 ^ Data2 ^ Data3 ^ Data4) &
0xFE);

 Checksum2 = (byte)((~Checksum1) & 0xFE);
 serialArms.Write(new byte[] { (byte)header1, (byte)header2, (byte)PacketSize, (byte)ID,

CMD, Checksum1, Checksum2, Data0, Data1, Data2, Data3, Data4 }, 0, PacketSize);
}

where:

Left_Arm_Minimum_Value = 100;

Left_Arm_Maximum_Value = 900;

Right_Arm_Minimum_Value = 100;

Right_Arm_Maximum_Value = 900;

To read information from two motor the following functions can be implemented.

The principal function is the Read_Info_Status. This function will call the desired function that the
users wants to receive, from one of the motors and it will return an int32 value.

D2.1.1 - MOnarCH Robots Hardware (update) Page 77 of 87

FP7-ICT-2011-9-601033 MOnarCH

 private Int32 Read_Info_STATUS (int ID, byte Memory, byte N_bytes)
 {
 byte[] buffer = new byte[100];
 Int32 Status;

 PacketSize = 0x09;
 CMD = 0x04;
 Data0 = Memory;
 Data1 = N_bytes;

 Checksum1 = (byte)((PacketSize ^ ID ^ CMD ^ Data0 ^ Data1) & 0xFE);
 Checksum2 = (byte)((~Checksum1) & 0xFE);

 serialArms.Write(new byte[] { (byte)header1, (byte)header2,
 (byte)PacketSize, (byte)ID,
 CMD, Checksum1, Checksum2,
 Data0, Data1 }, 0, PacketSize);

 int count = 0;

 if (N_bytes == 1)
while (serialArms.BytesToRead < 12 && count <6000)
count++;

 else if (N_bytes == 2)
while (serialArms.BytesToRead < 13 && count <6000) count++;

 if (N_bytes == 1)
 {
 if (serialArms.BytesToRead == 12)
 {
 serialArms.Read(buffer, 0, serialArms.BytesToRead);
 buffer[0] = buffer[0];
 Status = (Int32)buffer[9] * 0x00010000 +

 (Int32)buffer[10] * 0x00000100 +
 (Int32)buffer[11]* 0x00000001;
 return (Status);
 }
 }
 else if (N_bytes == 2)
 {
 if (serialArms.BytesToRead == 13)
 {
 serialArms.Read(buffer, 0, serialArms.BytesToRead);
 buffer[0] = buffer[0];
 Status = (Int32)buffer[10] * 0x01000000 +

 (Int32)buffer[9] * 0x00010000 +
 (Int32)buffer[11] * 0x00000100 +
 (Int32)buffer[12]* 0x00000001;

 return (Status);
 }
 }
 return (-1);
 }

where:

ID:

• 0x00 for the Right Arm;

D2.1.1 - MOnarCH Robots Hardware (update) Page 78 of 87

FP7-ICT-2011-9-601033 MOnarCH

• 0x01 for the Left Arm.

Memory and N_Bytes:

• 5 – to read the Max_Temperature_Value – 1 Byte;

• 52 – to read the Torque_Control_Value – 1 Byte;

• 54 – to read the Voltage_Value – 1 Byte;

• 55 – to read the Temperature_Value – 1 Byte;

• 60 – to read the Absolute_Position_Value - 2 Byte.

Using the previous function it it possible to create the following functions to read the data from the
motor.

1. Read actual position of the motor

public int Read_Position(int ID)
 {
 Int32 Position_Int32;
 Int16 Position;

 Position_Int32 = Read_Info_STATUS(ID, Absolute_Position_Value, 2);
//The position will return a two bytes

 if (Position_Int32 == -1) return (-1);

 Position = (Int16)(Position_Int32 >> 16);

 return ((int)Position);

 }

where the Position value is a value between 0 and 1024.

2. Read actual temperature of the motor

 public int Read_Temperature(int ID)
 {
 Int32 Temperature_Int32;
 Int16 Temperature;

 Temperature_Int32 = Read_Info_STATUS(ID, Temperature_Value, 1);
//Return 1 bytes

 if (Temperature_Int32 == -1) return (-1);

 Temperature = (Int16)((double)((Int16)(Temperature_Int32 >> 16)) *
 0.7105 - 79.47);

 return ((int)Temperature);
 }

where Temperature is the temperature value between 0-100ºC

3. Read actual Torque Control

 public int Read_Torque_Control(int ID)
 {
 Int32 Torque_Control_Int32;
 Int16 Torque_Control;

D2.1.1 - MOnarCH Robots Hardware (update) Page 79 of 87

FP7-ICT-2011-9-601033 MOnarCH

 Torque_Control_Int32 = Read_Info_STATUS(ID,
Torque_Control_Value, 1);

 if (Torque_Control_Int32 == -1) return (-1);

 Torque_Control = (Int16)(Torque_Control_Int32 >> 16);

 return (Torque_Control);
 }

where torque control

• Torque OFF: 0x00;

• Torque ON: 0x60;

• Break ON: 0x40.

4. Read actual Status Error

The HerkuleX motors have an error flag that show, in case of error, the problem with the
motor.

It is possible to identify the following errors:

• Vin error (the powering voltage is to low or high);

• Position Limit error (for some reason the actual position is outside the maximum and
minimum defined limits);

• Temperature Error (if the temperature is higher that 85ºC the flag is activated);

• Packet Error (there was a communication error);

• Overload Error (there was a force higher that the maximum defined that was applied
to the motor);

• Driver error (there is some problem with the motor driver);

• EEP error (problem in the Controller EEPROM).

 public int Read_Status_Error(int ID)
 {
 Int32 Status_Error_Int32;
 Int16 Status_Error;

 Status_Error_Int32 = Read_Info_STATUS(ID, Torque_Control_Value, 1);
//1 byte
// All commands send the r(Status_Error) +r(Status_Detail)

 if (Status_Error_Int32 == -1) return (-1);

 Status_Error = (Int16)(Status_Error_Int32 & 0xFFFF);

 return ((int)Status_Error);
 }

where Status Error is the [Status_error:Status_Detail]

Using the HerkuleX manager it is possible to define if an error will put the torque to OFF or
not. By default all the error messages will turn OFF the torque.

5. Clear the Status Error

After having an error the user must clean the status by sending a STATUS clean message. If,
for example, the temperature error was detected, the temperature error bit of the error
STATUS will be 1. After some time the temperature will drop but the motor will continue to be

D2.1.1 - MOnarCH Robots Hardware (update) Page 80 of 87

FP7-ICT-2011-9-601033 MOnarCH

at the Torque OFF state, to take it out of it, a Clean STATUS must be sent. And then it will be
possible to change the torque to ON and control the motor.

 public void Clear_Status_Error(int ID)
 {
 PacketSize = 0x0B;
 CMD = 0x03;
 Data0 = 0x30;
 Data1 = 02;
 Data2 = 00;
 Data3 = 00;

 Checksum1 = (byte)((PacketSize ^ ID ^ CMD ^ Data0 ^ Data1 ^ Data2 ^

Data3) & 0xFE);
 Checksum2 = (byte)((~Checksum1) & 0xFE);

serialArms.Write(new byte[] { (byte)header1, (byte)header2,
 (byte)PacketSize, (byte)ID, CMD,
 Checksum1, Checksum2, Data0,
 Data1, Data2, Data3}, 0, PacketSize);

 }

The Clear STATUS Error does not give an acknowledge reply.

To use other commands refer to the manual.

D2.1.1 - MOnarCH Robots Hardware (update) Page 81 of 87

FP7-ICT-2011-9-601033 MOnarCH

Annex B. Robot Platform Base CAD Drawings
Figs. 72 to 76 depict the platform mechanics and its measures.

D2.1.1 - MOnarCH Robots Hardware (update) Page 82 of 87

Figure 72: Robot Platform. Top view

Figure 73: Robot Platform. Bottom view.

FP7-ICT-2011-9-601033 MOnarCH

D2.1.1 - MOnarCH Robots Hardware (update) Page 83 of 87

Figure 74: Robot Platform. Left view.

Figure 75: Robot Platform. Front view.

FP7-ICT-2011-9-601033 MOnarCH

D2.1.1 - MOnarCH Robots Hardware (update) Page 84 of 87

Figure 76: Robot Platform. Pulley system view.

FP7-ICT-2011-9-601033 MOnarCH

Annex C. Robot CAD Drawings
Figures 77 to 81 depict the MOnarCH robot mechanics and its measures.

D2.1.1 - MOnarCH Robots Hardware (update) Page 85 of 87

Figure 78: robot depth and laser position

Figure 77: robot height and width

FP7-ICT-2011-9-601033 MOnarCH

D2.1.1 - MOnarCH Robots Hardware (update) Page 86 of 87

Figure 80 : Position of the Projector from the centre of the robot

Figure 79: distance between the centre of rotation of the robot and centre of rotation of the head

FP7-ICT-2011-9-601033 MOnarCH

D2.1.1 - MOnarCH Robots Hardware (update) Page 87 of 87
Figure 82 : Position of the Stargazer from the centre of the robot

Figure 81 : Position of the UWB sensors from the centre of the robot

	1. Introduction
	2. MOnarCH Robot Features and Components
	2.1. MOnarCH Robots Main Features
	2.2. MOnarCH Robot Devices
	2.3. MOnarCH Sensors
	2.3.1. Navigation Sensors
	2.3.2. Perception and Interaction Sensors
	2.3.3. Environmental Sensors
	2.3.4. Low-level Safety Sensors

	2.4. MOnarCH Actuators
	2.4.1. Locomotion Actuators
	2.4.2. Interaction Actuators

	3. MOnarCH Robot Design and Mechanics
	3.1. The Storyboards
	3.2. Early Stage Drawings of the platform Base
	3.3. High-level Devices
	3.3.1. Robot Appearance (1st Iteration)

	3.4. Platform Base Production
	3.5. Upper Body Development
	3.5.1. Robot Appearance (2nd Iteration)
	3.5.2. Conclusion of Shell Design
	3.5.3. Upper Body Production

	3.6. Outer Shell Production
	3.7. The Final Result

	4. MOnarCH Robot Architecture
	4.1. MOnarCH Electronic Power Architecture
	4.2. Low-level Communication Architecture
	4.3. High-level Communication Architecture

	5. MOnarCH Robot Electronics
	5.1. Motor Controller Board
	5.2. Sensor&Management Board
	5.3. Sonar Board
	5.3. Ground Sensors Board
	5.4. IMU Board
	5.5. Interaction Board

	6. Charger Docking Station
	7. Working with the Robot
	7.1. Setting Up the Hardware
	7.2. Shutting Down the MOnarCH Robot
	7.3. Charging the Batteries

	8. Mbot_ROS
	8.1. User Tasks
	8.1.1. Dependencies
	8.1.2. Installation
	8.1.3. Controlling startup and shutdown of mbot_ros
	8.1.4. Automatic system shutdown
	8.1.5. View log files
	8.1.6. Visualizing robot information on rviz
	8.1.7. Driving the robot manually

	8.2. Reference documentation
	8.2.1. Robot reference frames
	8.2.2. Published topics
	8.2.3. Subscribed topics
	8.2.4. mbot Kinematics Transformations

	8.3. Experimental Results
	8.3.1. Hardware Communication Latencies

	Annex A. Board Controllers Software Protocol
	A.1. Sensor&Management Communication Protocol (board1)
	A.2. Motor Board Communication Protocol (board2)
	A.3. IMU Communication Protocol
	A.4. Interaction Communication Protocol (board3)
	A.4. Arms (board4)

	Annex B. Robot Platform Base CAD Drawings
	Annex C. Robot CAD Drawings

