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ABSTRACT | This paper considers the problem of pursuit

evasion games (PEGs), where the objective of a group of pur-

suers is to chase and capture a group of evaders in minimum

time with the aid of a sensor network. The main challenge in

developing a real-time control system using sensor networks is

the inconsistency in sensor measurements due to packet loss,

communication delay, and false detections. We address this

challenge by developing a real-time hierarchical control sys-

tem, named LochNess, which decouples the estimation of

evader states from the control of pursuers via multiple layers of

data fusion. The multiple layers of data fusion convert noisy,

inconsistent, and bursty sensor measurements into a consistent

set of fused measurements. Three novel algorithms are deve-

loped for LochNess: multisensor fusion, hierarchical multi-

target tracking, and multiagent coordination algorithms. The

multisensor fusion algorithm converts correlated sensor mea-

surements into position estimates, the hierarchical multitarget

tracking algorithm based on Markov chain Monte Carlo data

association (MCMCDA) tracks an unknown number of targets,

and the multiagent coordination algorithm coordinates pur-

suers to chase and capture evaders using robust minimum-

time control. The control system LochNess is evaluated in

simulation and successfully demonstrated using a large-scale

outdoor sensor network deployment.

KEYWORDS | Multiagent coordination; multisensor fusion;

multitarget tracking; networked control systems; pursuit eva-

sion games; sensor networks

I . INTRODUCTION

Recently we have been witnessing dramatic advances
in micro-electromechanical sensors (MEMS), digital sig-
nal processing (DSP) capabilities, computing, and low-
power wireless radios which are revolutionizing our
ability to build massively distributed, easily deployed, self-
calibrating, disposable, wireless sensor networks [1]–[3].
Soon, the fabrication and commercialization of inexpen-
sive millimeter-scale autonomous electromechanical de-
vices containing a wide range of sensors, including
acoustic, vibration, acceleration, pressure, temperature,
humidity, magnetic, and biochemical sensors, will be
readily available [4]. These potentially mobile devices,
called Bnodes,[ are provided with their own power supply
[5] and can communicate with neighboring sensor nodes
via low-power wireless communication to form a wireless
ad-hoc sensor network with up to 100 000 nodes [6], [7].
Sensor networks can offer access to an unprecedented
quantity of information about our environment, bringing
about a revolution in the amount of control an individual
has over his environment. The ever-decreasing cost of
hardware and steady improvements in software will make
sensor networks ubiquitous in many aspects of our lives [8]
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such as building comfort control [9], environmental moni-
toring [10], traffic control [11], manufacturing and plant
automation [12], service robotics [13], and surveillance
systems [14], [15].

In particular, wireless sensor networks are useful in
applications that require locating and tracking moving
targets and real-time dispatching of resources. Typical
examples include search-and-rescue operations, civil
surveillance systems, inventory systems for moving parts
in a warehouse, and search-and-capture missions in mili-
tary scenarios. The analysis and design of such applications
are often reformulated within the framework of pursuit
evasion games (PEGs), a mathematical abstraction which
addresses the problem of controlling a swarm of autono-
mous agents in the pursuit of one or more evaders [16],
[17]. The locations of moving targets (evaders) are un-
known and their detection is typically accomplished by
employing a network of cameras or by searching the area
using mobile vehicles (pursuers) with on-board high reso-
lution sensors. However, networks of cameras are rather
expensive and require complex image processing to prop-
erly fuse their information. On the other hand, mobile
pursuers with their on-board cameras or ultrasonic sensors
with a relatively small detection range can provide only
local observability over the area of interest. Therefore, a
time-consuming exploratory phase is required [18], [19].
This constraint makes the task of designing a cooperative
pursuit algorithm harder because partial observability
results in suboptimal pursuit policies [see Fig. 1(a)]. An
inexpensive way to improve the overall performance of a
PEG is to use wireless ad-hoc sensor networks [20]. With
sensor networks, global observability of the field and long-
distance communication are possible [see Fig. 1(b)].
Global pursuit policies can then be used to efficiently
find the optimal solution regardless of the level of in-

telligence of the evaders. Also, with a sensor network, the
number of pursuers needed is a function exclusively of the
number of evaders and not the size of the field.

In this paper, we consider the problem of pursuit
evasion games (PEGs), where the objective of a group of
pursuers is to chase and capture a group of evaders in
minimum time with the aid of a sensor network. The
evaders can either move randomly to model moving ve-
hicles in search-and-rescue and traffic control applications,
or can adopt evasive maneuvers to model search-and-
capture missions in military scenarios.

While sensor networks provide global observability,
they cannot provide high quality measurements in a timely
manner due to packet loss, communication delay, and false
detections. This has been the main challenge in developing
a real-time control system using sensor networks. In this
paper, we address this challenge by developing a real-time
hierarchical control system called LochNess (Large-scale
Bon-time[ collaborative heterogeneous Networked em-
bedded systems). LochNess decouples the estimation of
evader states from the control of pursuers via multiple
layers of data fusion. Although a sensor network generates
noisy, inconsistent, and bursty measurements, the multi-
ple layers of data fusion convert raw sensor measurements
into fused measurements in a compact and consistent
representation and forward the fused measurements to the
pursuers’ controllers in a timely manner.

The main contributions of this paper are: 1) a real-time
hierarchical control system LochNess for tracking and
coordination using sensor networks; 2) a demonstration
of the system on a large-scale sensor network deployment;
3) three new algorithms developed for LochNess.

• A multisensor fusion algorithm that combines
noisy and inconsistent sensor measurements
locally. The algorithm produces coherent evader

Fig. 1. (a) Sensor visibility in PEGs without sensor network. (b) Sensor visibility in PEGs with sensor network. Dots correspond to

sensor nodes, each provided with a vehicle detection sensor. Courtesy of [20].
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position reports and reduces the communication
load on the network.

• A multitarget tracking algorithm that tracks an
unknown number of targets (or evaders). The
algorithm is a hierarchical extension of the Markov
chain Monte Carlo data association (MCMCDA)
[21] algorithm for sensor networks to add scal-
ability. MCMCDA is a true approximation scheme
for the optimal Bayesian filter; i.e., when run with
unlimited resources, it converges to the Bayesian
solution [22]. MCMCDA is computationally effi-
cient and robust against measurement noise and
inconsistency (including packet loss and commu-
nication delay) [23]. In addition, MCMCDA
operates with no or incomplete classification in-
formation, making it suitable for sensor networks.
In fact, the performance of the algorithm can be
improved given additional measurements to help
identify the targets.

• A multiagent coordination algorithm that assigns
one pursuer to one evader such that the estimated
time to capture the last evader is minimized based
on the estimates computed by the multitarget
tracking algorithm.

Our control system LochNess was successfully demon-
strated using a large-scale sensor network. The system
correctly found the number of evaders and their tracks and
coordinated the pursuers to capture the evaders. Only a
handful of the tracking algorithms in the literature that are
designed for sensor networks have been demonstrated on a
real sensor network deployment. Of these demonstrations,
the algorithms are usually used to track a single target [14],
[24]–[26], or track multiple targets using classification
[15]. To our knowledge, this paper presents the first de-
monstration of multitarget tracking using a sensor network
without relying on classification.

The remainder of this paper is structured as follows.
The overall architecture of LochNess for a PEG using a
sensor network and formulations of multitarget tracking
and multiagent coordination are described in Section III.
The components of LochNess are described in Section IV.
The experimental results from the sensor network deploy-
ment are given in Section V.

II . RELATED WORK: TARGET TRACKING
IN SENSOR NETWORKS

One of the main applications of wireless ad-hoc sensor
networks is surveillance. However, considering the
resource constraints on each sensor node, the well-known
multitarget tracking algorithms such as joint probabilistic
data association filter (JPDAF) [27] and multiple hypoth-
esis tracker (MHT) [28], [29] are not feasible for sensor
networks due to their exponential time and space
complexities. As a result, many new tracking algorithms
have been developed recently.

Most of the algorithms developed for sensor net-
works are designed for single-target tracking [14], [15],
[24]–[26], [30]–[36] and some of these algorithms are
applied to track multiple targets using classification [15],
[30], [36] or heuristics, such as the nearest-neighbor filter
(NNF)1 [14]. A few algorithms are designed for multitarget
tracking [37]–[39] where the complexity of the data
association problem2 inherent to multitarget tracking is
avoided by classification [37], [39] or heuristics [38]. When
tracking targets of a similar type or when reliable classi-
fication information is not available, the classification-
based tracking algorithm behaves as the NNF. Considering
the fact that the complexity of the data association problem
is NP-hard [41], [42], a heuristic approach breaks down
under difficult circumstances. Furthermore, the measure-
ment inconsistencies common in sensor networks, such as
false alarms and missing measurements (due to missing
detection or packet loss), are not fully addressed in many
algorithms. On the contrary, the multitarget tracking algo-
rithm developed in this paper is based on a rigorous
probabilistic model and based on a true approximation
scheme for the optimal Bayesian filter.

Tracking algorithms for sensor networks can be
categorized according to their computational structure:
centralized [15], [24], [33], hierarchical [34], [35], or
distributed [14], [25], [26], [30]–[32], [36]–[39]. How-
ever, since each sensor has only local sensing capability
and its measurements are noisy and inconsistent, mea-
surements from a single sensor and its neighboring sensors
are not sufficient to initiate, maintain, disambiguate, and
terminate tracks of multiple targets in the presence of
clutter; it requires measurements from distant sensors.
Considering the communication load and delay when ex-
changing measurements between distant sensors, a com-
pletely distributed approach to solve the multitarget
tracking problem is not feasible for real-time applications.
On the other hand, a completely centralized approach is
not robust and scalable. In order to minimize the com-
munication load and delay while being robust and scalable,
a hierarchical architecture is considered in this paper.

III . PROBLEM FORMULATION AND
CONTROL SYSTEM ARCHITECTURE

In this paper, we consider the problem of pursuing mul-
tiple evaders over a region of interest (or the surveillance
region). Evaders (or targets) arise at random in space and

1The NNF [27] processes the new measurements in some predefined
order and associates each with the target whose predicted position is
closest, thereby selecting a single association. Although effective under
benign conditions, the NNF gives order-dependent results and breaks
down under more difficult circumstances.

2In multitarget tracking, the associations between measurements and
targets are not completely known. The data association problem is to work
out which measurements were generated by which targets; more
precisely, we require a partition of measurements such that each element
of a partition is a collection of measurements generated by a single target
or clutter [40].
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time, persist for a random length of time, and then cease to
exist. When evaders appear, a group of pursuers is required
to detect, chase and capture the group of evaders in min-
imum time with the aid of a sensor network. In order to
solve this problem, we propose a hierarchical real-time
control system LochNess which is shown in Fig. 2. LochNess
is composed of seven layers: the sensor network, the multi-
sensor fusion (MSF) module, the multitarget tracking (MTT)
modules, the multitrack fusion (MTF) module, the multi-
agent coordination (MAC) module, the path planner mod-
ule, and the path follower modules.

Sensors are spread over the surveillance region and
form an ad-hoc network. The sensor network detects
moving objects in the surveillance region and the MSF
module converts the sensor measurements into target po-
sition estimates (or reports) using spatial correlation. This
paper considers a hierarchical sensor network. In addition
to regular sensor nodes (BTier-1[ nodes), we assume the
availability of BTier-2[ nodes which have long-distance
wireless links and more processing power. We assume that
each Tier-2 node can communicate with its neighboring
Tier-2 nodes. Examples of a Tier-2 node include high-
bandwidth sensor nodes such as iMote and BTnode [43],
gateway nodes such as Stargate, Intrinsyc Cerfcube, and
PC104 [43], and the Tier-2 nodes designed for our exper-

iment [44]. Each Tier-1 node is assigned to its nearest Tier-2
node and the Tier-1 nodes are grouped by Tier-2 nodes. We
call the group of sensor nodes formed around a Tier-2 node
a Btracking group.[ When a node detects a possible target,
it listens to its neighbors for their measurements and
fuses the measurements to forward to its Tier-2 node.
Each Tier-2 node receives the fused measurements from
its tracking group and the MTT module in each Tier-2
node estimates the number of evaders, the positions and
velocities of the evaders, and the estimation error bounds.
Each Tier-2 node communicates with its neighboring
Tier-2 nodes when a target moves away from the region
monitored by its tracking group. Finally, the tracks es-
timated by the Tier-2 nodes are combined hierarchically
by the MTF module at the base station.

The estimates computed by the MTF module are then
used by the MAC module to estimate the expected capture
times of all pursuer-evader pairs. Based on these estimates,
the MAC module assigns one pursuer to one evader by
solving the bottleneck assignment problem [45] such that
the estimated time to capture the last evader is minimized.
Once the assignments are determined, the path planner
module computes a trajectory for each pursuer to capture
its assigned evader in the least amount of time without
colliding into other pursuers. Then, the base station

Fig. 2. LochNess: a hierarchical real-time control system architecture using sensor networks for multitarget tracking and

multiagent coordination.
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transmits each trajectory to the path following controller
of the corresponding pursuer. The path following control-
ler modifies the pursuer’s trajectory on the fly to avoid any
obstacles sensed by the pursuer’s on-board sensors. The
path planning and path follower modules can be imple-
mented using dynamic programming [46] or model pre-
dictive control [47]. In the paper, we focus on MSF, MTT,
MTF, and MAC modules and they are described in
Section IV. In the remainder of this section, we describe
the sensor network model and the problem formulations of
multitarget tracking and multiagent coordination.

A. Sensor Network and Sensor Models
In this section, we describe the sensing modelsVthe

signal-strength and binary sensor modelsVand the sensor
network model considered in this paper. A signal-strength
sensor reports the range to a nearby target while a binary
sensor reports only a binary value indicating whether an
object is detected near the reporting sensor. The signal-
strength sensor model is used for the development and
analysis of our system while the binary sensor model is
used in our experiments. While the signal-strength sensors
provide better accuracy, our evaluation of the sensors de-
veloped for the experiments showed that the variability in
the signal strength of the sensor reading prohibited ex-
traction of ranging information. However, we found that
the sensors were still effective as binary sensors. We also
found that binary sensors were much less sensitive to time
synchronization errors than signal-strength sensors.

Let Ns be the number of sensor nodes, including both
Tier-1 and Tier-2 nodes, deployed over the surveillance
regionR ! R2. Let si 2 R be the location of the ith sensor
node and let S ¼ fsi : 1 # i # Nsg. Let Nss $ Ns be the
number of Tier-2 nodes and let ssj 2 S be the position of the
jth Tier-2 node, for j ¼ 1; . . . ;Nss.

Signal-Strength Sensor Model: Let Rs 2 R be the sensing
range. If there is an object at x 2 R, a sensor can detect the
presence of the object. Each sensor records the sensor’s
signal strength

zi ¼
!

1þ"ksi&xk# þ ws
i ; if ksi & xk # Rs

ws
i ; if ksi & xk 9 Rs

!

(1)

where #, !, and " are constants specific to the sensor type,
and we assume that zi are normalized such that ws

i has the
standard Gaussian distribution. This signal-strength based
sensor model is a general model for many sensors available
in sensor networks, such as acoustic and magnetic sensors,
and has been used frequently [14], [25], [26], [39].

Binary Sensor Model: For each sensor i, let Ri be the
sensing region of i. Ri can have an arbitrary shape but we
assume that it is known to the system. Let zi 2 f0; 1g be

the detection made by sensor i, such that sensor i reports
zi ¼ 1 if it detects a moving object in Ri, and zi ¼ 0 other-
wise. Let pi be the detection probability and qi be the false
detection probability of sensor i.

Sensor Network Model: Let G ¼ ðS; EÞ be a communica-
tion graph such that ðsi; sjÞ 2 E if and only if node i can
communicate directly to node j. Let g : f1; . . . ;Nsg !
f1; . . . ;Nssg be the assignment of each sensor to its
nearest Tier-2 node such that gðiÞ ¼ j if ksi & ssjk ¼
mink¼1;...;Nss

ksi & sskk. For a node i, if gðiÞ ¼ j, the shortest
path from si to ssj in G is denoted by spðiÞ. In this paper, we
assume that the length of spðiÞ, i.e., the number of com-
munication links from node i to its Tier-2 node, is smaller
when the physical distance between node i and its Tier-2
node is shorter. But if this is not the case, we can assign a
node to the Tier-2 node with the fewest communication
links between them.

Local sensor measurements are fused by the MSF
module described in Section IV-A. Let ẑi be a fused
measurement originated from node i. Node i transmits the
fused measurement ẑi to the Tier-2 node gðiÞ via the
shortest path spðiÞ. A transmission along an edge ðsi; sjÞ on
the path fails independently with probability pte and the
message never reaches the Tier-2 node. Transmission fail-
ures along an edge ðsi; sjÞ may include failures from re-
transmissions from node i to node j. We can consider
transmission failure as another form of a missing
observation. If k is the number of hops required to relay
data from a sensor node to its Tier-2 node, the probability
of successful transmission decays exponentially as k
increases. To overcome this problem, we use k indepen-
dent paths to relay data if the reporting sensor node is k
hops away from its Tier-2 node. The probability of suc-
cessful communication pcs from the reporting node i to
its Tier-2 node gðiÞ can be computed as pcsðpte; kÞ ¼
1& ð1& pteÞkÞ

k
, where k ¼ jspðiÞj and jspðiÞj denotes the

cardinality of the set spðiÞ.
We assume each node has the same probability pde of

delaying a message. If di is the number of (additional)
delays on a message originating from the sensor i, then di is
distributed as

pðdi ¼ dÞ ¼ spðiÞj jþ d& 1

d

" #

ð1& pdeÞ spðiÞj jðpdeÞd: (2)

We are modeling the number of (additional) delays by the
negative binomial distribution. A negative binomial ran-
dom variable represents the number of failures before
reaching a fixed number of successes from Bernoulli trials.
In our case, it is the number of delays before jspðiÞj suc-
cessful delay-free transmissions.

If the network is heavily loaded, the independence as-
sumptions on transmission failure and communication
delay may not hold. However, the model is realistic under
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moderate conditions and we have chosen it for its
simplicity.

B. Multitarget Tracking
The MTT and MTF modules of LochNess estimate the

number of targets, positions and velocities of targets, and
estimation error bounds. Since the number of targets is
unknown and time-varying, we need a general formulation
of the multitarget tracking problem. This section describes
the multitarget tracking problem and two possible
solutions.

Let Ts 2 Zþ be the duration of surveillance. Let K be
the number of targets that appear in the surveillance
region R during the surveillance period. Each target k
moves in R for some duration ½tki ; tkf * ! ½1; Ts*. Notice that
the exact values of K and ftki ; tkf g are unknown. Each target
arises at a random position inR at tki , moves independently
aroundR until tkf , and disappears. At each time, an existing
target persists with probability 1& pz and disappears with
probability pz. The number of targets arising at each time
over R has a Poisson distribution with a parameter $bV
where $b is the birth rate of new targets per unit time, per
unit volume, and V is the volume ofR. The initial position
of a new target is uniformly distributed over R.

Let Fk : Rnx ! Rnx be the discrete-time dynamics of
the target k, where nx is the dimension of the state variable,
and let xkðtÞ 2 Rnx be the state of the target k at time t for
t ¼ 1; . . . ; Ts. The target k moves according to

xkðtþ 1Þ ¼ Fk xkðtÞ
$ %

þ wkðtÞ; for t ¼ tki ; . . . ; t
k
f & 1 (3)

where wkðtÞ 2 Rnx are white noise processes. When a
target is present, a noisy observation (or measurement)3

of the state of the target is measured with a detection
probability pd. Notice that, with probability 1& pd, the
target is not detected and we call this a missing
observation. There are also false alarms and the number
of false alarms has a Poisson distribution with a parameter
$fV, where $f is the false alarm rate per unit time, per
unit volume. Let nðtÞ be the number of observations at
time t, including both noisy observations and false alarms.
Let yjðtÞ 2 Rny be the jth observation at time t for
j ¼ 1; . . . ; nðtÞ, where ny is the dimension of each
observation vector. Each target generates a unique ob-
servation at each sampling time if it is detected. Let
Hj : Rnx ! Rny be the observation model. Then the obser-
vations are generated as follows:

yjðtÞ ¼
Hj xkðtÞð Þ þ vjðtÞ; if yjðtÞ is from xkðtÞ
ufðtÞ; otherwise

!

(4)

where vjðtÞ 2 Rny are white noise processes and ufðtÞ +
UnifðRÞ is a random process for false alarms. We assume
that the targets are indistinguishable in this paper, but if
observations include target type or attribute information,
the state variable can be extended to include target type
information as done in [48].

The main objective of the multitarget tracking problem
is to estimate K, ftki ; tkf g and fxkðtÞ : tki # t # tkf g, for
k ¼ 1; . . . ;K, from noisy observations.

Let YðtÞ ¼ fyjðtÞ : j ¼ 1; . . . ; nðtÞg be all measure-
ments at time t and Y ¼ fYðtÞ : 1 # t # Tsg be all mea-
surements from t ¼ 1 to t ¼ Ts. Let ! be a collection of
partitions of Y such that, for ! 2 !, ! ¼ f%0; %1; . . . ; %Kg,
where %0 is a set of false alarms and %k is a set of mea-
surements from target k for k ¼ 1; . . . ;K. Note that ! is
also known as a joint association event in literature. More
formally, ! is defined as follows.

1) ! ¼ f%0; %1; . . . ; %Kg;
2)

SK
k¼0 %k ¼ Y and %i \ %j ¼ ; for i 6¼ j;

3) %0 is a set of false alarms;
4) j%k \ YðtÞj # 1 for k ¼ 1; . . . ;K and t ¼ 1; . . . ; Ts;
5) j%kj , 2 for k ¼ 1; . . . ;K.

An example of a partition is shown in Fig. 3. Here, K is the
number of tracks for the given partition ! 2 !. We call %k
a track when there is no confusion although the actual
track is the set of estimated states from the observations
%k. This is because we assume there is a deterministic
function that returns a set of estimated states given a set
of observations. A track is assumed to contain at least two
observations since we cannot distinguish a track with a
single observation from a false alarm, assuming $f 9 0.
For special cases in which pd ¼ 1 or $f ¼ 0, the definition
of ! can be adjusted accordingly.

Let neðt& 1Þ be the number of targets at time t& 1,
nzðtÞ be the number of targets terminated at time t and
ncðtÞ ¼ neðt& 1Þ & nzðtÞ be the number of targets from
time t& 1 that have not terminated at time t. Let nbðtÞ be
the number of new targets at time t, ndðtÞ be the number
of actual target detections at time t and nuðtÞ ¼ ncðtÞ þ
nbðtÞ & ndðtÞ be the number of undetected targets. Finally,
let nfðtÞ ¼ nðtÞ & ndðtÞ be the number of false alarms.

3Note that the terms observation and measurement are used
interchangeably in this paper.

Fig. 3. (a) An example of observations Y (each circle represents

an observation and numbers represent observation times).

(b) An example of a partition ! of Y.
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Using the Bayes rule, it can be shown that the posterior of
! is [22]

Pð!jYÞ / Pð!Þ - PðYj!Þ

/
Y

Ts

t¼1

pnzðtÞz ð1& pzÞncðtÞpndðtÞd ð1& pdÞnuðtÞ

.
Y

Ts

t¼1

ð$bVÞnbðtÞð$fVÞnfðtÞ - PðYj!Þ (5)

where PðYj!Þ is the likelihood of observations Y given !,
which can be computed based on the chosen dynamic and
measurement models.4 For example, the computation of
PðYj!Þ for the linear dynamic and measurement models
can be found in [21].

There are two major approaches to solve the multi-
target tracking problem [22]: maximum a posteriori (MAP)
and Bayesian approaches. The MAP approach finds a
partition of observations such that Pð!jYÞ is maximized
and estimates the states of the targets based on this par-
tition. A Bayesian approach called minimum mean square
error (MMSE) finds an estimate which minimizes the ex-
pected square error. For instance, EðxkðtÞjYÞ is the MMSE
estimate for the state xkðtÞ of target k. However, when the
number of targets is not fixed, a unique labeling of each
target is required to find EðxkðtÞjYÞ under the MMSE
approach. In this paper, we take the MAP approach to the
multitarget tracking problem for its convenience.

C. Agent Dynamics and Coordination Objective
In a situation where multiple pursuers and evaders are

present, several assignments are possible and some criteria
need to be chosen to optimize performance. In this work,
we focus on minimizing the time to capture all evaders.
However, other criteria might be possible, such as mini-
mizing the pursuer’s energy consumption while guaran-
teeing capture of all evaders or maximizing the number of
captured evaders within a certain amount of time. Since
the evaders’ motions are not known, an exact time to cap-
ture a particular evader is also not known. Therefore, we
need to define a metric to estimate the time to capture the
evaders. Let us define the state vector of a vehicle as
x ¼ ½x1; x2; _x1; _x2*T , where ðx1; x2Þ and ð _x1; _x2Þ are the posi-
tion and the velocity components of the vehicle along the
x and y axes, respectively. We denote by xp and xe the
state of a pursuer and an evader, respectively. We will use
the following definition of time-to-capture:

Definition 3.1 (Time-to-Capture): Let xeðt0Þ be the posi-
tion and velocity vector of an evader in a plane at time t0,
and xpðtÞ be the position and velocity vector of a pursuer at
the current time t , t0. We define the (constant speed)
time-to-capture as the minimum time Tc necessary for the
pursuer to reach the evader with the same velocity, as-
suming that the evader will keep moving at a constant
velocity, i.e.,

Tc :¼ min Tjxpðtþ TÞ ¼ xeðtþ TÞ½ *

where xe1;2ðtþ TÞ ¼ xe1;2ðt0Þ þ ðtþ T & t0Þ _xe1;2ðt0Þ, _xe1;2ðtþ
TÞ ¼ _xe1;2ðt0Þ, and the pursuer moves according to its
dynamics.

This definition allows us to quantify the time-to-
capture in an unambiguous way. Although an evader can
change trajectories over time, it is a more accurate esti-
mate than, for example, some metric based on the distance
between an evader and a pursuer, since the time-to-
capture incorporates the dynamics of the pursuer.

Given Definition 3.1 and the constraints on the dyna-
mics of the pursuer, it is possible to calculate explicitly the
time-to-capture Tc, as well as the optimal trajectory xe/ðtÞ
for the pursuers as shown in Section IV-C.

We assume the following dynamics for both pursuers
and evaders:

xðtþ &Þ ¼ A&xðtÞ þ G&uðtÞ (6)

'ðtÞ ¼ xðtÞ þ vðtÞ (7)

where & is the sampling interval, u ¼ ½u1; u2*T is the con-
trol input vector, 'ðtÞ is the estimated vehicle state pro-
vided by the MTF module, vðtÞ is the estimation error, and

A& ¼

1 0 & 0
0 1 0 &
0 0 1 0
0 0 0 1

2

6

6

4

3

7

7

5

G& ¼

&2

2 0

0 &2

2
& 0
0 &

2

6

6

4

3

7

7

5

which correspond to the discretization of the dynamics of a
decoupled planar double integrator. Although this model
appears simplistic for modeling complex motions, it is
widely used as a first approximation in path-planning
[51]–[53]. Moreover, there exist methodologies to map
such a simple dynamic model into a more realistic model
via consistent abstraction as shown in [54], [55]. Finally,
any possible mismatch between this model and the true
vehicle dynamics can be compensated for by the path-
follower controller implemented on the pursuer [47].

The observation vector ' ¼ ½'1; '2; _'1; _'2*
T is inter-

preted as a measurement, although in reality it is the

4Our formulation of (5) is similar to MHT [49] and the derivation of
(5) can be found in [50]. The parameters pz, pd, $b and $f have been
widely used in many multitarget tracking applications [27], [49]. Our
experimental and simulation experiences show that our tracking algorithm
is not sensitive to changes in these parameters in most cases. In fact, we
used the same set of parameters for all our experiments.
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output from the MTF module shown in Fig. 2. The estima-
tion error vt ¼ ½v1; v2; _v1; _v2*T can be modeled as a Gaussian
noise with zero mean and covariance Q or as an unknown
but bounded error, i.e., jv1j G V1, jv2j G V2, j _v1j G _V1,
j _v2j G _V2, where V1, V2, _V1 and _V2 are positive scalars that
are possibly time-varying. Both modeling approaches are
useful for different reasons. Using a Gaussian noise ap-
proximation allows a closed-form optimal filter solution such
as the well-known Kalman filter [56]. On the other hand
using the unknown but bounded error model allows for the
design of a robust controller such as the robust minimum-
time control of pursuers proposed in Section IV-C.

We also assume that the control input to a pursuer is
bounded, i.e.,

up1j j # Up; up2j j # Up (8)

where Up 9 0. We consider two possible evader dynamics

ue1 +N ð0; qeÞ; ue2 + N ð0; qeÞ ðrandom motionÞ (9)

ue1
&

&

&

& #Ue; ue2
&

&

&

& # Ue ðevasive motionÞ (10)

where N ð0; qeÞ is a Gaussian distribution with zero mean
and variance qe 2 Rþ. Equation (9) is a standard model for
the unknown motion of vehicles, where the variation in a
velocity component is a discrete-time white noise accel-
eration [57]. Equation (10) allows for evasive maneuvers
but places bounds on the maximum thrust. The multiagent
coordination scheme proposed in Section IV-C is based on
dynamics (10) as pursuers choose their control actions to
counteract the best possible evasive maneuver of the
evader being chased. However, in our simulations and
experiments, we test our control architecture using the
dynamics (9) for evaders where we set qe ¼ 2Ue.

Since the definition of the time-to-capture is related to
relative distance and velocity between the pursuer and
the evader, we consider the state space error ( ¼ xp & xe

which evolves according to the following error dynamics:

(ðtþ &Þ ¼ A&(ðtÞ þ G&u
pðtÞ & G&u

eðtÞ
'(ðtÞ ¼ (ðtÞ þ v(ðtÞ (11)

where the pursuer thrust upðtÞ is the only controllable
input, while the evader thrust ueðtÞ acts as a random or
unknown disturbance, and v(ðtÞ is the measurement error
which takes into account the uncertainties on the states of
both the pursuer and the evader. According to the defi-
nition above, an evader is captured if and only if (ðtÞ ¼ 0,
and the time-to-capture Tc corresponds to the time nec-
essary to drive (ðtÞ to zero assuming ueðtÞ ¼ 0 for t , t0.
However, this assumption is relaxed in Section IV-C.

According to the definition of time-to-capture above
and the error dynamics (11), given the positions and velo-
cities of all the pursuers and evaders, it is possible to
compute the time-to-capture matrix C ¼ ½cij* 2 RNp.Ne ,
where Np and Ne are the total number of pursuers and
evaders, respectively, and the entry cij of the matrix C
corresponds to the expected time-to-capture between pur-
suer i and evader j. When coordinating multiple pursuers to
chase multiple evaders, it is necessary to assign pursuers to
evaders. Our objective is to select an assignment that mi-
nimizes the expected time-to-capture of all evaders, which
correspond to the global worst case time-to-capture. In this
paper, we focus on a scenario with the same number of
pursuers and evaders, i.e., Np ¼ Ne. When there are more
pursuers than evaders, then only a subset of all the pursuers
can be dispatched and the others are kept on alert in case
more evaders appear. Alternatively, more pursuers can be
assigned to a single evader. When there are more evaders
than pursuers, one approach is to minimize the time to
capture the Np closest evaders. Obviously, many different
coordination objectives can be formulated as they are
strongly application-dependent. We have chosen the de-
finition of global worst case time-to-capture as it enforces
strong global coordination to achieve high performance.

IV. CONTROL SYSTEM IMPLEMENTATION

A. Multisensor Fusion Module

1) Signal-Strength Sensor Model: Consider the signal-
strength sensor model described in Section III-A. Recall
that zi is the signal strength measured by node i. For each
node i, if zi , ), where ) is a threshold set for appropriate
values of detection and false-positive probabilities, the
node transmits zi to its neighboring nodes, which are at
most 2Rs away from si, and listens to incoming messages
from neighboring nodes within a 2Rs radius. We assume
that the communication range of each node is larger than
2Rs. For a node i, if zi is larger than all incoming messages,
zi1 ; . . . ; zik&1

, and zik ¼ zi, then the position of an object is
estimated by

ẑi ¼
Pk

j¼1 zij sij
Pk

j¼1 zij
: (12)

The estimate ẑi corresponds to a center of mass of the node
locations weighed by their measured signal strengths.
Node i transmits ẑi to the Tier-2 node gðiÞ. If zi is not the
largest compared to the incoming messages, node i simply
continues sensing. Although each sensor cannot give an
accurate estimate of the object’s position, as more sensors
collaborate, the accuracy of the estimates improves as
shown in Fig. 4.
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2) Binary Sensor Model: In order to obtain finer position
reports from binary detections, we use spatial correlation
among detections from neighboring sensors. The idea
behind the fusion algorithm is to compute the likelihood of
detections assuming there is a single target. This is only an
approximation since there can be more than one target.
However, any inconsistencies caused by this approxi-
mation are fixed by the tracking algorithm described in
Section IV-B using spatio-temporal correlation.

Consider the binary sensor model described in
Section III-A. Let x be the position of an object. For the
purpose of illustration, suppose that there are two sensors,
sensor 1 and sensor 2, and R1 \ R2 6¼ ; [see Fig. 5(a)]. The
overall sensing region R1 [ R2 can be partitioned into a set
of nonoverlapping cells (or blocks) as shown in Fig. 5(b).
The likelihoods can be computed as follows:

Pðz1; z2jx 2 S1Þ ¼ pz11 ð1&p1Þ1&z1qz22 ð1&q2Þ1&z2

Pðz1; z2jx 2 S2Þ ¼ qz11 ð1&q1Þ1&z1pz22 ð1&p2Þ1&z2

Pðz1; z2jx 2 S3Þ ¼ pz11 ð1&p1Þ1&z1pz22 ð1&p2Þ1&z2 (13)

where S1 ¼ R1 n R2, S2 ¼ R2 n R1, and S3 ¼ R1 \ R2 [see
Fig. 5(b)]. Hence, for any deployment we can first parti-
tion the surveillance region into a set of nonoverlapping
cells. Then, given detection data, we can compute the
likelihood of each cell as shown in the previous example.

An example of detections of two targets by a 10 . 10
sensor grid is shown in Fig. 6. In this example, the sensing
region is assumed to be a disk with radius of 7.62 m (10 ft).
We have assumed pi ¼ 0:7 and qi ¼ 0:05 for all i. These
parameters are estimated from measurements made with
the passive infrared (PIR) sensor of an actual sensor node
described in Section V. From the detections shown in
Fig. 6, the likelihood can be computed using equations
similar to (13) for each nonoverlapping cell (see Fig. 7).
Notice that it is a time-consuming task to find all

Fig. 5. (a) Sensing regions of two sensors 1 and 2. Ri is the sensing

region of sensor i. (b) A partition of the overall sensing region R1 [ R2

into nonoverlapping cells S1, S2 and S3, where S1 ¼ R1 n R2, S2 ¼ R2 n R1,

and S3 ¼ R1 \ R2.

Fig. 6. Detections of two targets by a 10. 10 sensor grid (targets in.,

detections in disks, and sensor positions in small dots).

Fig. 7. Likelihood of detections from Fig. 6.

Fig. 4. Single target position estimation error as a function of

sensing range. See Section IV-B3 for the sensor network setup used

in simulations (Monte Carlo simulation of 1000 samples, unity

corresponds to the separation between sensors).
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nonoverlapping cells for arbitrary sensing region shapes
and sensor deployments. Hence, we quantized the
surveillance region and the likelihoods are computed for
a finite number of points as shown in Fig. 7.

There are two parts in this likelihood computation: the
detection part (terms involving pi) and the false detection
part (terms involving qi). Hereafter, we call the detection
part of the likelihood as the detection-likelihood and the
false detection part of the likelihood as the false-detection-
likelihood. Notice that the computation of the false-
detection-likelihood requires measurements from all
sensors. However, for a large wireless sensor network, it
is not feasible to exchange detection data with all other
sensors. Instead, we use a threshold test to avoid com-
puting the false-detection-likelihood and distribute the
likelihood computation. The detection-likelihood of a cell
is computed if there are at least )d detections, where )d is a
user-defined threshold. Using )d ¼ 3, the detection-
likelihood of the detections from Fig. 6 can be computed
as shown in Fig. 8. The computation of the detection-
likelihood can be done in a distributed manner. Assign a
set of nonoverlapping cells to each sensor such that no two
sensors share the same cell and each cell is assigned to a
sensor whose sensing region includes the cell. For each
sensor i, let fSi1 ; . . . ; SimðiÞg be a set of nonoverlapping cells,
where mðiÞ is the number of cells assigned to sensor i.
Then, if sensor i reports a detection, it computes the
likelihoods of each cell in fSi1 ; . . . ; SimðiÞg based on its own
measurements and the measurements from neighboring
sensors. A neighboring sensor is a sensor whose sensing
region intersects the sensing region of sensor i. Notice that
no measurement from a sensor means no detection.

Based on the detection-likelihoods, we compute target
position reports by clustering. Let S ¼ fS1; . . . ; Smg be a
set of cells whose detection-likelihoods are computed, i.e.,

the number of detections for each Si is at least )d. First,
randomly pick Sj from S and remove Sj from S. Then
cluster around Sj the remaining cells in S whose set-
distance to Sj is less than the sensing radius. The cells
clustered with Sj are then removed from S. Now repeat the
procedure until S is empty. Let fCk : 1 # k # Kclg be the
clusters formed by this procedure, where Kcl is the total
number of clusters. For each cluster Ck, its center of mass
is computed to obtain a a fused position report, i.e., an
estimated position of a target. An example of position
reports is shown in Fig. 8.

The multisensor fusion algorithm described above runs
on two levels: Algorithm 1 on the Tier-1 nodes and
Algorithm 2 on the Tier-2 node. Each Tier-1 node
combines detection data from itself and neighboring nodes
using Algorithm 1 and computes detection-likelihoods.
The detection-likelihoods are forwarded to its Tier-2 node
and the Tier-2 node generates position reports from the
detection-likelihoods using Algorithm 2. The position
reports are then used by the MTT module described in
Section IV-B to track multiple targets.

Algorithm 1 Multisensor Fusion: Sensor i
Input: detections from sensor i and its neighbors
Output: detection-likelihoods
1: for each Sij , j ¼ 1; . . . ;mðiÞ do
2: if number of detections for Sij , )d then
3: compute detection-likelihood ẑiðjÞ of Sij ;
4: forward ẑiðjÞ to Tier-2 node gðiÞ;
5: end if
6: end for

B. Multitarget Tracking and Multitrack
Fusion Modules

Our tracking algorithms are based on MCMCDA [21].
We first describe the MCMCDA algorithm and then de-
scribe the MTT and MTF modules of LochNess.

Algorithm 2 Multisensor Fusion: Tier-2 Node
Input: detection-likelihoods Z ¼ fẑiðjÞg received from its

tracking group
Output: position reports y
1: S ¼ fSij : ẑiðjÞ 2 Zg;
2: y ¼ ;;
3: find clusters fCk : 1 # k # Kclg from S as described in
the text;

4: for each Ck, k ¼ 1; . . . ;Kcl do
5: compute the center of mass yk of Ck;
6: y ¼ y [ yk;
7: end for

Markov chain Monte Carlo (MCMC) plays a significant
role in many fields such as physics, statistics, economics,
and engineering [58]. In some cases, MCMC is the only

Fig. 8. Detection-likelihood of detections from Fig. 6 with threshold

)d ¼ 3. Estimated positions of targets are shown in circles.
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known general algorithm that finds a good approximate
solution to a complex problem in polynomial time [59].
MCMC techniques have been applied to complex proba-
bility distribution integration problems, counting prob-
lems such as #P-complete problems, and combinatorial
optimization problems [58], [59].

MCMC is a general method to generate samples from
a distribution * on a space ! by constructing a Markov
chain M with states ! 2 ! and stationary distribution
*ð!Þ. We now describe an MCMC algorithm known as the
Metropolis-Hastings algorithm [60]. If we are at state
! 2 !, we propose !0 2 ! following the proposal distri-
bution qð!; !0Þ. The move is accepted with an acceptance
probability Að!; !0Þ where

Að!; !0Þ ¼ min 1;
*ð!0Þqð!0; !Þ
*ð!Þqð!; !0Þ

" #

(14)

otherwise, the sampler stays at !, so that the detailed
balance is satisfied. If we make sure thatM is irreducible
and aperiodic, then M converges to its stationary distri-
bution by the ergodic theorem [61].

The MCMC data association (MCMCDA) algorithm is
described in Algorithm 3. MCMCDA is an MCMC algo-
rithm whose state space is !, as described in Section III-B,
and whose stationary distribution is the posterior (5). The
proposal distribution for MCMCDA consists of five types
of moves (a total of eight moves). They are: 1) a birth/death
move pair; 2) a split/merge move pair; 3) an extension/
reduction move pair; 4) a track update move; 5) a track
switch move. The MCMCDA moves are illustrated in
Fig. 9. We index each move by an integer such that m ¼ 1
for a birth move, m ¼ 2 for a death move and so on. The
move m is chosen randomly from the distribution qmK ðmÞ
where K is the number of tracks of the current partition !.
When there is no track, we can only propose a birth
move, so we set qm0 ðm ¼ 1Þ ¼ 1 and qm0 ðm ¼ m0Þ ¼ 0 for
m0 > 1. When there is only a single target, we cannot
propose a merge or track switch move, so qm1 ðm ¼ 4Þ ¼
qm1 ðm ¼ 8Þ ¼ 0. For the other values of K and m, we as-
sume qmK ðmÞ 9 0. For a detailed description of each move,
see [21]. The inputs for MCMCDA are the set of all ob-
servations Y, the number of samples nmc, the initial state
!init, and a bounded function X : !! Rn. At each step of
the algorithm, ! is the current state of the Markov chain.
The acceptance probability Að!; !0Þ is defined in (14)
where *ð!Þ ¼ Pð!jYÞ from (5). The output X̂ approx-
imates the MMSE estimate E*X and !̂ approximates the
MAP estimate argmax Pð!jYÞ. The computation of !̂ can
be considered as simulated annealing at a constant tem-
perature. Notice that MCMCDA can provide both MAP
and MMSE solutions to the multitarget tracking problem.
In this paper, we use the MAP estimate !̂ to estimate the
states of the targets.5

Algorithm 3 MCMCDA
Input: Y, nmc, !init, X : !! Rn

Output: !̂, X̂
1: ! ¼ !init; !̂ ¼ !init; X̂ ¼ 0:
2: for n ¼ 1 to nmc do
3: propose !0 based on ! (see text);
4: sample U from Unif[0,1];
5: ! ¼ !0, if U G Að!; !0Þ;
6: !̂ ¼ !, if pð!jYÞ=pð!̂jYÞ 9 1;
7: X̂ ¼ ðn=ðnþ 1ÞÞX̂ þ ð1=ðnþ 1ÞÞXð!Þ;
8: end for

It has been shown that MCMCDA is an optimal
Bayesian filter in the limit [22]. In addition, in terms of

Fig. 9. Graphical illustration of MCMCDA moves (associations are

indicated by dotted lines and hollow circles are false alarms). Each

moveproposes a new joint association event !0 which is amodification

of the current joint association event !. The birth move proposes !0

by forming a new track from the set of false alarms ððaÞ! ðbÞÞ.
The death move proposes !0 by combining one of the existing tracks

into the set of false alarms ððbÞ! ðaÞÞ. The split move splits a track

from ! into two tracks ððcÞ! ðdÞÞwhile themergemove combines two

tracks in ! into a single track ððdÞ! ðcÞÞ. The extension move extends

an existing track in ! ððeÞ! ðfÞÞ and the reduction move reduces an

existing track in! ððfÞ! ðeÞÞ. The trackupdatemove chooses a track in

! and assigns different measurements from the set of false alarms

ððgÞ$ ðhÞÞ. The track switch move chooses two track from ! and

switches some measurement-to-track associations ððiÞ$ ðjÞÞ.

5The states of the targets can be easily computed by any filtering
algorithm since, given !̂, the associations between the targets and the
measurements are completely known.
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time and memory, MCMCDA is more computationally
efficient than MHT and outperforms MHT with heuristics
(i.e., pruning, gating, clustering, N-scan-back logic and
k-best hypotheses) under extreme conditions, such as a
large number of targets in a dense environment, low
detection probabilities, and high false alarm rates [21].

1) Multitarget Tracking Module: At each Tier-2 node, we
implement the online MCMCDA algorithm with a sliding
window of size ws using Algorithm 3 [21]. This online
implementation of MCMCDA is suboptimal because it
considers only a subset of past measurements. But since
the contribution of older measurements to the current
estimate is much less than recent measurements, it is still a
good approximation. At each time step, we use the pre-
vious estimate to initialize MCMCDA and run MCMCDA
on the observations belonging to the current window. Each
Tier-2 node maintains a set of observations Y ¼ fyjðtÞ :
1 # j # nðtÞ; tcurr & ws þ 1 # t # tcurrg, where tcurr is the
current time. Each yjðtÞ is either a fused measurement ẑi
from some signal-strength sensor i or an element of the
fused position reports y from some binary sensors. At time
tcurr þ 1, the observations at time tcurr & ws þ 1 are
removed from Y and a new set of observations is appended
to Y. Any delayed observations are inserted into the
appropriate slots. Then, each Tier-2 node initializes the
Markov chain with the previously estimated tracks and
executes Algorithm 3 on Y. Once a target is found, the next
state of the target is predicted. If the predicted next state
belongs to the surveillance area of another Tier-2 node, the
target’s track information is passed to the corresponding
Tier-2 node. These newly received tracks are then in-
corporated into the initial state of MCMCDA for the next
time step. Finally, each Tier-2 node forwards its track in-
formation to the base station.

2) Multitrack Fusion Module: Since each Tier-2 node
maintains its own set of tracks, there can be multiple
tracks from a single target maintained by different Tier-2
nodes. To make the algorithm fully hierarchical and scal-
able, the MTF module performs the track-level data asso-
ciation at the base station to combine tracks from different
Tier-2 nodes. Let !j be the set of tracks maintained by
Tier-2 node j 2 f1; . . . ;Nssg. Let Yc ¼ f%iðtÞ 2 !j : 1 #
t # tcurr; 1 # i # j!jj; 1 # j # Nssg be the combined ob-
servations only from the established tracks. We form a
new set of tracks !init from f%i 2 !j : 1 # i # j!jj; 1 #
j # Nssg while making sure that the constraints defined in
Section III-B are satisfied. Then, we run Algorithm 3 on
this combined observation set Yc with the initial state !init.
An example in which the multitrack fusion corrects
mistakes made by Tier-2 nodes due to missing observa-
tions at the tracking group boundaries is shown in
Section IV-B3.

The algorithm is autonomous and shown to be robust
against packet loss, communication delay and sensor

localization error. In simulation, there is no performance
loss up to an average localization error of 0.7 times the
separation between sensors, and the algorithm tolerates up
to 50% lost-to-total packet ratio and 90% delayed-to-total
packet ratio [23].

3) An Example of Surveillance Using Sensor Networks:
Here, we give a simulation example of surveillance using
sensor networks. The surveillance region R ¼ ½0; 100*2
was divided into four quadrants and sensors in each
quadrant formed a tracking group, where a Tier-2 node
was placed at the center of each quadrant. The scenario is
shown in Fig. 10(a). We assumed a 100 . 100 sensor grid,
in which the separation between sensors was normalized
to 1. Thus, the unit length in simulation was the length of
the sensor separation. For MCMCDA, nmc ¼ 1000 and
ws ¼ 10. The signal-strength sensor model was used with
parameters # ¼ 2, " ¼ 1, ) ¼ 2, and ! ¼ 3ð1þ "R#

s Þ. In
addition, pte ¼ :3 and pde ¼ :3. The surveillance duration
was Ts ¼ 100.

The state vector of a target is x ¼ ½x1; x2; _x1; _x2*T as
described in Section III-C. The simulation used the dy-
namic model in (6) and the evader control inputs were
modeled by the random motion (9) with qe ¼ :152 and Q
set according to Fig. 4. Since the full state is not ob-
servable, the measurement model (7) was modified as
follows:

yðtÞ ¼ DxðtÞ þ vðtÞ; where D ¼ 1 0 0 0
0 1 0 0

' (

(15)

and y is a fused measurement computed by the MSF
module in Section IV-A.

Fig. 10(b) shows the observations received by the Tier-2
nodes. There were a total of 1174 observations and 603
of these observations were false alarms. A total of 319
packets out of 1174 packets were lost due to transmission
failures and 449 packets out of 855 received packets were
delayed. Fig. 10(c) shows the tracks estimated locally by
the MTT modules on the Tier-2 nodes while Fig. 10(d)
shows the tracks estimated by the MTF module using
track-level data association. Fig. 10(d) shows that the MTF
module corrected mistakes made by Tier-2 nodes due to
missing observations at the tracking group boundaries.
The algorithm is written in C++ and MATLAB and run
on PC with a 2.6-GHz Intel Pentium 4 processor. It takes
less than 0.06 seconds per Tier-2 node, per simulation
time step.

C. Multiagent Coordination Module
The time-to-capture is estimated using the abstract

model of pursuer and evader dynamics given in
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Section III-C. Let us consider the error between the pur-
suer and the evader ( ¼ ½(1; (2; _(1; _(2*

T whose dynamics is
given in (11). The time-to-capture problem is equivalent to
the following optimization problem:

minup1 ðtÞ;u
p
2ðtÞ T

subject to

(ðtþ &Þ ¼ A&(ðtÞ þ G&upðtÞ

up1ðtÞj j # Up; u
p
2ðtÞj j # Up

(ðtþ TÞ ¼ 0:

8

>

>

<

>

>

:

(16)

Recently, Gao et al. [62] solved the previous problem as an
application of minimum-time control for the discretized
double integrator. An extension to minimum-time control
for the discretized triple integrator is also available [63].
Despite its simplicity and apparent efficacy, minimum-
time control is rarely used in practice, since it is highly
sensitive to small measurement errors and external dis-
turbances. Although, in principle, minimum-time control
gives the best performance, it needs to be modified to cope

with practical issues such as the quantization of inputs,
measurement and process noise, and modeling errors. We
propose an approach that adds robustness while preserving
the optimality of minimum-time control.

Since the state error dynamics is decoupled along the
x- and y-axes, the solution of the optimization problem
(16) can be obtained by solving two independent
minimum-time problems along each axis. When &! 0
in (11), the minimum-time control problem restricted to
one axis reduces to the well-known minimum-time control
problem of a double integrator in continuous time, which
can be found in many standard textbooks on optimal
control such as [64], [65]. The solution is given by a bang-
bang control law and can be written in state feedback form
as follows:

up1 ¼

&Up; if 2Up
_(1 9 & (1j(1j

þUp; if 2Up
_(1 G & (1j(1j

&Upsignð(1Þ; if 2Up
_(1 ¼ &(1j(1j

0; if _(1 ¼ (1 ¼ 0:

8

>

>

>

>

<

>

>

>

>

:

(17)

Fig. 10. (a) Tracking scenario, where the numbers are target appearance and disappearance times, the initial positions are marked by circles,

and the stars are the positions of Tier-2 nodes. (b) Accumulated observations received by Tier-2 nodes with delayed observations circled.

(c) Tracks estimated locally by the MTT modules at Tier-2 nodes, superimposed. (d) Tracks estimated by the MTF module.
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The minimum time required to drive (1 to zero in the
x-axis can be also written in terms of the position and
velocity error as follows:

Tc;1ð(1; _(1Þ ¼
& _(1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 _(
2

1&4Up(1

p

Up
; if 2Up

_(1 , &(1j(1j
_(1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 _(
2

1þ4Up(1

p

Up
; otherwise.

8

>

<

>

:

(18)

Fig. 11 shows the switching curve 2Up
_(1 ¼ &(1j(1j and the

level curves of the time-to-capture Tc for different values.
Similar equations can be written for the control up2

along the y-axis. Therefore the minimum time-to-capture
is given by

Tc ¼ maxðTc;1; Tc;2Þ: (19)

According to the previous analysis, given the state error
(ðtÞ at current time t, we can compute the corresponding
constant velocity time-to-capture Tc, the optimal input
sequence up/ðt0Þ and the optimal trajectory (/ðt0Þ for
t0 2 ½t; tþ Tc*.

However, the optimal input (17) is the solution when
&! 0 in (11) with no measurement errors and no change
in the evader’s trajectory. In order to add robustness to
take into account the quantization in the digital implemen-
tation, the measurement errors, and the evasive maneuvers

of the evader, we analyze how the time-to-capture can be
affected by these terms. Let us first rewrite the error
dynamics given by (11) explicitly for the x-axis

(1ðtþ &Þ ¼ (1ðtÞ þ & _(1ðtÞ þ
1

2
&2up1ðtÞ þ

1

2
&2ue1ðtÞ

_(1ðtþ &Þ ¼ _(1ðtÞ þ &up1ðtÞ þ &ue1ðtÞ

'(1ðtÞ ¼ (1ðtÞ þ v(1ðtÞ

_'(1ðtÞ ¼ _(1ðtÞ þ _v(1ðtÞ

:

If we substitute the last two equations into the first two
we get

(1ðtþ &Þ ¼ '(1ðtÞ þ & _'(1ðtÞ þ
1

2
&2up1ðtÞ

& v(1ðtÞ & & _v(1ðtÞ þ
1

2
&2ue1ðtÞ (20)

_(1ðtþ &Þ ¼ _'(1ðtÞ þ &up1ðtÞ & _v(1ðtÞ þ &ue1ðtÞ (21)

where ð'(1 ; _'
(
1Þ are output estimates from the MTF mod-

ule, up1 is the controllable input, and ðue1; v
(
1; _v

(
1Þ play the

role of external disturbances. Our goal now is to choose
up1 , i.e., the thrust of the pursuer, in such a way as to
minimize the time-to-capture under the worst possible
choice of ðue1; v

(
1; _v

(
1Þ, which are not known in advance but

are bounded. Fig. 11 illustrates this approach graphically:
the hexagon in the figure represents the possible position
of the true state error ð(1; _(1Þ at the next time step tþ &
which accounts for all possible evasive maneuvers of the
evader, i.e., jue1j G Ue, and accounts for the estimation
errors on the position and velocity of the pursuer and the
evader, i.e., jv(1j G V1, j _v(1j G _V1, for a given choice of up1 .
Since the center of the hexagon ð'(1 þ & _'(1 þ ð1=2Þ&2up1 ;
_'(1 þ &up1Þ depends on the pursuer control up1 , one could
try to choose up1 in such a way that the largest time-to-
capture Tc;1 of the hexagon is minimized. This approach
is common in the literature for noncooperative games
[66]. More formally, the feedback control input will be
chosen based on the following min-max optimization
problem

up1
/ðtÞ ¼ arg min

up1j j#Up

max
v
(
1j j#V1 ; _v

(
1j j# _V1 ;

ue
1j j#Ue

Tc;1 (1ðtþ&Þ; _(1ðtþ&Þ
$ %

0

B

B

B

@

1

C

C

C

A

:

(22)

This is, in general, a nonlinear optimization prob-
lem. However, thanks to the specific structure of the

Fig. 11. Optimal switching curve for the continuous minimum-time

control of the double integrator (thick solid line) and curves of

constant time-to-capture (thin solid lines) in the phase space ð(1; _(1Þ.
The hexagon represents the set of all possible locations of the

true error state ð(1ðtþ &Þ; _(1ðtþ &ÞÞ at the next time step tþ & given

measurement ð'1; _'1Þ and pursuer control input up
1 at time t.
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time-to-capture function Tc;1, it is possible to show that
(22) is equivalent to

up1
/ ¼ arg min

u
p
1j j#Up

max Tc;1 (þ1 ;
_(
þ
1

* +

; Tc;1 (&1 ;
_(
&
1

$ %

* +

(01 :¼ '(1 þ & _'(1 0 V1 0 & _V1 0
1

2
&2Ue þ

1

2
&2up1

_(
0
1 :¼ _'(1 0 _V1 0 &Ue þ &up1 (23)

i.e., it is necessary to compute only the time-to-capture of
the top right and the bottom left corner of the hexagon in
Fig. 11 since all points inside the set always have smaller
values of Tc;1. Once the expected minimum time-to-
capture control input up/ðt0Þ, t0 2 ½t; tþ Tc* is computed,
then the corresponding optimal trajectory for the pursuer
xp/ðt0Þ, t0 2 ½t; tþ Tc* can be easily obtained by substitut-
ing up/ðt0Þ into the pursuer dynamics (6). The robust
minimum-time path planning algorithm is summarized in
Algorithm 4.

Algorithm 4 Robust Minimum-Time Path Planning
Input: xpðtÞ, xeðtÞ, and bounds V1; V2; _V1; _V2;Ue;Up

Output: optimal trajectory xp/ðt0Þ, t0 2 ½t; tþ Tc*
1: compute up/ðt0Þ, t0 2 ½t; tþ Tc* using (23) ;
2: compute xp/ðt0Þ, t0 2 ½t; tþ Tc* given up/ðt0Þ using (6).

Fig. 12 shows the performance of the proposed robust
minimum time-to-capture control feedback for a scenario
where the evader moves with random motion and the
evader’s position and velocity estimates are noisy. It is
compared with the discrete-time minimum-time controller
proposed in [63] and [62]. Our controller feedback design
outperforms the discrete-time minimum-time controller
since the latter one does not take into account process and
measurement noises. Note how both controllers do not
direct pursuers toward the actual position of evader, but to
the estimated future location of the evader to minimize the
time-to-capture.

As introduced in Section III-C, given the positions and
velocities of all pursuers and evaders and bounds on the
measurement error and evader input, it is possible to
compute the expected time-to-capture matrix C ¼ ½cij* 2
RNp.Ne using the solution to the optimal minimum-time
control problem. The entry cij of the matrix C corresponds
to the expected time for pursuer i to capture evader j,
Tcði; jÞ, that can be computed as described in (18) and
(19). As motivated in Section III-C, we assume the same
number of pursuers as the number of evaders, i.e.,
Np ¼ Ne ¼ N.

An assignment can be represented as a matrix " ¼
½+ij* 2 RN.N, where the entry +ij of the matrix " is equal
to 1 if pursuer i is assigned to evader j, and equal to 0

otherwise. The assignment problem can therefore be writ-
ten formally as follows:

min+ij2f0;1g maxi;j¼1;...;Nðcij - +ijÞ

subject to
X

N

i¼1

+ij ¼ 1; 8i

X

N

j¼1

+ij ¼ 1; 8j: (24)

As formulated in (24), the assignment problem is a com-
binatorial optimization problem.

The optimization problem given in (24) can be
reformulated as a linear bottleneck assignment problem
and can be solved by any of the polynomial-time algo-
rithms based on network flow theory. Here we give a brief
description of one algorithm and we direct the interested
reader to the survey [45] for a detailed review of these
algorithms. For our implementation, we use a randomized
threshold algorithm that alternates between two phases. In
the first phase, we list the cost elements cij in increasing
order and we choose a cost element c/, i.e., a threshold.
Then we construct the matrices #Cðc/Þ ¼ ½#cij* 2 RN.N and
CTutteðc/Þ 2 R2N.2N as follows:

#cij ¼
aij; if cij 9 c/

0; if cij # c/

!

; CTutte ¼
0 #C
&#C 0

' (

(25)

where aij’s are independent random numbers sampled
from a uniform distribution in the interval [0,1], i.e.,

Fig. 12. Trajectories of pursuers and evaders on the x-y plane.

The feedback control is based on noisy measurements (thin solid line)

of the true evader positions (thick solid line). The robust minimum

time-to-capture feedback proposed in this paper (dot-solid line)

is compared with the discrete-time minimum time-to-capture

feedback (dashed line) proposed in [63].
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aij + Uð½0; 1*Þ. Using Tutte’s Theorem [45], it is possible to
show that if detðCTutteðc/ÞÞ 6¼ 0, then there exists an
assignment that achieves c/.6 Therefore, we search for the
smallest c/min in the ordered list of costs cij which guar-
antees an assignment. Once we find c/min, we find the
pursuer-evader pair corresponding to that cost. Then, we
remove its row and column from the cost matrix C and
repeat the procedure until all pursuers are assigned. The
assignment algorithm is summarized in Algorithm 5.

Algorithm 5 Pursuers-to-evaders Assignment
Input: xpi , x

e
j , i; j ¼ 1; . . . ;N

Output: assignment ði! jÞ for i ¼ 1; . . . ;N
1: compute matrix C ¼ ½cij*, cij ¼ Tcði; jÞ;
2: for n ¼ 1 to N do
3: ½i/; j/* ¼ argminijfcijj detðCTutteðcijÞÞ 6¼ 0g, using (25);
4: assign pursuer i/ to evader j/, i.e., ði/ ! j/Þ;
5: C fCjremove row i/ and column j/g;
6: end for

It is important to note that an assignment based on the
solution to the global optimization problem described
above is necessary for good performance. For example, let
us consider the greedy assignment algorithm. This algo-
rithm looks for the smallest time-to-capture entry in the
matrix C, assigns the corresponding pursuer-evader pair,
and removes the corresponding row and column from the
matrix C. The dimensions of the resulting matrix C become
ðN & 1Þ . ðN & 1Þ and the algorithm repeats the same
process until each pursuer is assigned to an evader. This
algorithm is very simple and can be implemented in a fully
distributed fashion. However, it is a suboptimal algorithm
since there are cases where the greedy assignment finds
the worst solution. Consider the time-to-capture matrix

C ¼ 1 2
3 100

' (

. The optimal assignment that minimizes

the time-to-capture of all evaders for this matrix is (1! 2)
and (2 ! 1), which gives Tc;max ¼ 3, where Tc;max is the
time-to-capture of all evaders. The greedy assignment
would instead assign pursuer 1 to evader 1 and pursuer 2 to
evader 2, with the time-to-capture of all evaders equal to
Tc;max ¼ 100.

V. EXPERIMENTS

Multitarget tracking and a pursuit evasion game using the
control system LochNess were demonstrated at the Defense
Advanced Research Projects Agency (DARPA) Network
Embedded Systems Technology (NEST) final experiment
on August 30, 2005. The experiment was performed under

warm sunny conditions on a large-scale, long-term, out-
door sensor network testbed deployed on a short grass field
at U.C. Berkeley’s Richmond Field Station (see Fig. 13). A
total of 557 sensor nodes were deployed and 144 of these
nodes were allotted for the tracking and PEG experiments.
However, six out of the 144 nodes used in the experiment
were not functioning on the day of the demo, reflecting the
difficulties of deploying large-scale, outdoor systems.

The 144 nodes used for the tracking and PEG exper-
iments were deployed at approximately 5 meter spacing in
a 12. 12 grid (see Fig. 14). Each node was elevated using a
camera tripod to prevent the PIR sensors from being
obstructed by grass and uneven terrain [see Fig. 13(a)].
The locations of the nodes were measured during deploy-
ment using differential GPS and stored in a table at the
base station for reference and for generating Fig. 14. How-
ever, in the experiments the system assumed the nodes
were placed exactly on a 5-m spacing grid to highlight the
robustness of the system with respect to localization error.

The deployment of LochNess contained some modifi-
cations to the architecture described in Section III. Due to
the time constraint, the Tier-2 nodes were not fully func-
tional on the day of the demo. Instead, we used a mote
connected to a personal computer as the Tier-2 node. Only
one such Tier-2 node was necessary to maintain con-
nectivity to all 144 nodes used for the tracking exper-
iment. In the experiment, simulated pursuers were used
since it was difficult to navigate a ground robot in the
field of tripods.

A. Platform
A new sensor network hardware platform called the

Triomote was designed by Dutta et al. [44] for the outdoor
testbed. The Trio mote is a combination of the designs of
the Telos B mote, eXtreme Scaling Mote (XSM) sensor
board [67], and Prometheus solar charging board [68],

6In reality, since the algorithm is randomized, there is a small
probability equal to ð1=NÞr that there exists a feasible assignment if
detðCTutteÞ ¼ 0 for r random Tutte’s matrices CTutte. In the rare cases
when this event happens, the algorithm simply gives a feasible assignment
with a higher cost to capture.

Fig. 13. Hardware for the sensor nodes. (a) Trio sensor node on

a tripod. On top is the microphone, buzzer, solar panel, and

user and reset buttons. On the sides are the windows for the

passive infrared sensors. (b) A live picture from the 2 target PEG

experiment. The targets are circled.
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with improvements. Fig. 15 shows the Trio node com-
ponents and Fig. 13(a) shows the assembled Trio node in a
waterproof enclosure sitting on a tripod.

The Telos B mote [69] is the latest in a line of wireless
sensor network platforms developed by U.C. Berkeley for
the NEST project. It features an 8 MHz Texas Instru-
ments MSP430 microcontroller with 10 kB of RAM and
48 kB of program flash and a 250 kbps, 2.4 GHz, IEEE
802.15.4 standard compliant, Chipcon CC2420 radio. The
Telos B mote provides lower power operation than pre-
vious motes (5.1 ,A sleep, 19 mA on) and a radio range of
up to 125 meters (m), making it the ideal platform for
large-scale, long-term deployments.

The Trio sensor board includes a microphone, a pie-
zoelectric buzzer, x-y axis magnetometers, and four PIR
motion sensors. For the multitarget tracking application,
we found that the PIR sensors were the most effective at
sensing human subjects moving through the sensor field.

The magnetometer sensor had limited range even detect-
ing targets with rare earth magnets and the acoustic sensor
required complex signal processing to pick out the various
acoustic signatures of a moving target from background
noise. The PIR sensors provided an effective range of ap-
proximately 8 m, with sensitivity varying depending on
weather conditions and time of day. The variability in the
signal strength of the PIR sensor reading prohibited
extraction of ranging information from the sensor, so the
PIR sensors were used as binary detectors.

The software running on the sensor nodes are written
in NesC [70] and run on TinyOS [71], an event-driven
operating system developed for wireless embedded sensor
platforms. The core sensor node application is the
DetectionEvent module, a multimode event generator for
target detection and testing node availability. The sensor
node application relies on a composition of various TinyOS
subsystems and services that facilitate management and
interaction with the network (see Fig. 16).

The DetectionEvent module provides four modes of
event generation from the nodeVevents generated peri-
odically by a timer; events generated by pressing a button
on the mote; events generated by the raw PIR sensor value
crossing a threshold; and events generated by a three-stage
filtering, adaptive threshold, and windowing detection
algorithm for the PIR sensor signal developed by the
University of Virginia [75]. The timer generated events
were parsed and displayed at the base station to help
visualize which nodes in the network were alive. The
three-stage PIR detection filter code was used during the
development cycle. While it had potential to be more

Fig. 16. Software services on the sensor network platform. The core

networkmanagement servicesareDeluge fornetwork reprogramming

[72] and Marionette for fast reconfiguration of parameters on the

nodes [73]. The DetectionEvent application relies on the Drip and

Drain routing layer for dissemination of commands and collection of

data [74]. For more details on the software architecture used in the

outdoor testbed, see [44], [73].

Fig. 14. Sensor network deployment (not all deployed sensor nodes

are shown). The disks and circles represent the positions of

the sensor nodes. The network of 144 nodes used in the multitarget

tracking and PEG experiments is highlighted.

Fig. 15. (a) Telos B. (b) Trio sensor board, based off the XSM sensor

board and Prometheus solar power circuitry. See [44] for details.
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robust to different environmental conditions, during the
day of the demo we reverted to the simple threshold PIR
detector because the simple threshold detector was easy to
tune and performed well.

The algorithms for the MSF, MTT, MTF, and MAC
modules are all written in MATLAB and C++ and run on
the base station in real-time. The same implementation of
the tracking algorithm and the robust minimum time
controller used in the simulations shown in Figs. 10 and 12
are used in the experiments. The data was timestamped at
the base station.

B. Live Demonstration
The multitarget tracking algorithm was demonstrated

on one, two, and three human targets, with targets en-
tering the field at different times. In all three experiments,
the tracking algorithm correctly estimated the number of
targets and produced correct tracks. Furthermore, the
algorithm correctly disambiguated crossing targets in the
two and three target experiments without classification
labels on the targets, using the dynamic models and target
trajectories before crossing to compute the tracks.

Fig. 17 shows the multitarget tracking results with
three targets walking through the field. The three targets
entered and exited the field around time 10 and 80, res-
pectively. During the experiment, the algorithm correctly
rejected false alarms and compensated for missing detec-
tions. There were many false alarms during the span of the
experiments, as can be seen from the false alarms before
time 10 and after time 80 in Fig. 18. Also, though not
shown in the figures, the algorithm dynamically corrected
previous track hypotheses as it received more sensor read-

ings. Fig. 18 also gives a sense of the irregularity of net-
work traffic. The spike in traffic shortly after time 50 was
approximately when two of the targets crossed. It shows
that the multitarget tracking algorithm is robust against
missing measurements, false measurements, and the ir-
regularity of network traffic.

In the last demonstration, two simulated pursuers were
dispatched to chase two crossing human targets. The
pursuer-to-target assignment and the robust minimum
time-to-capture control law were computed in real-time, in
tandem with the real-time tracking of the targets. The
simulated pursuers captured the human targets, as shown
in Fig. 19. In particular, note that the MTT module is able
to correctly disambiguate the presence of two targets [right
panel of Fig. 19(a)] using past measurements, despite the
fact that the MSF module reports the detection of a single
target [upper left panel of Fig. 19(a)]. A live picture of this
experiment is shown on the right of Fig. 13.

VI. CONCLUSION AND FUTURE WORK

This paper described LochNess, a hierarchical real-time
control system for sensor networks. LochNess is applied to
pursuit evasion games, in which a group of evaders are
tracked using a sensor network and a group of pursuers are
coordinated to capture the evaders. Although sensor net-
works provide global observability, they cannot provide
high quality measurements in a timely manner due to
packet loss, communication delay, and false detections.
These factors have been the main challenge to developing
a real-time control system using sensor networks.

This paper proposes a possible solution for closing
the loop around wireless ad-hoc sensor networks. The

Fig. 17. Estimated tracks of targets at time 70 from the experiment

with three people walking in the field. (upper left) Detection panel.

Sensors are marked by small dots and detections are shown in

large disks. (lower left) Fusion panel shows the fused likelihood.

(right) Estimated Tracks and Pursuer-to-evader Assignment panel

shows the tracks estimated by the MTT module, estimated

evader positions (stars) and pursuer positions (squares).

Fig. 18. Raster plot of the binary detection reports from the

three target tracking demo. Dots represent detections from nodes

that were successfully transmitted to the base station.
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hierarchical real-time control system LochNess decouples
the estimation of evader states from the control of pur-
suers by using multiple layers of data fusion, including the
multisensor fusion (MSF) module, the multitarget track-
ing (MTT) module, and the multitrack fusion (MTF)
module. While a sensor network generates noisy, incon-
sistent, and bursty measurements, the three layers of data
fusion convert raw sensor measurements into fused mea-
surements in a compact and consistent representation and
forward the fused measurements to the pursuers’ control-
lers in a timely manner.

In order to coordinate multiple pursuers, the MAC
module is developed. The assignments of pursuers to eva-
ders are chosen such that the time to capture all evaders is
minimized. The controllers for the pursuers are based on
minimum-time control but were designed to account for
the worst-case evader motions and to add robustness to the
quantization of inputs, measurement and process noises,
and modeling errors.

Simulation and experimental results have shown that
LochNess is well suited for solving real-time control prob-
lems using sensor networks and that a sensor network is an
attractive solution for the surveillance of a large area.

In this paper, we assumed a stationary hierarchy, i.e.,
the Tier-2 nodes and base station are fixed. However, a
stationary hierarchy is not robust against malicious attacks.
In our future work, we will address this issue by intro-
ducing redundancy, distributing the coordination tasks
among Tier-2 nodes, and dynamically managing the
hierarchy of the system. Our immediate goal is to quantify
the robustness of the system against false measurements
and packet loss and to identify the sensor network
parameters such as maximum delay rate, maximum packet
loss rate, and maximum false detection rate, necessary for
seamless operation of the control system. h
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