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Abstract

We study, by large deviations analysis, the asymptotic performance of Gaussian running consensus

based distributed detection over random networks; in other words, we determine the exponential decay

rate of the detection error probability. With running consensus, at each time step, each sensor averages its

decision variable with the neighbors decision variables and accounts on-the-fly for its new observation.

We show that: 1) when the rate of network information flow (the speed of averaging) is above a threshold,

then Gaussian running consensus is asymptotically equivalent to the optimal centralized detector, i.e., the

exponential decay rate of the error probability for running consensus equals the Chernoff information;

and 2) when the rate of information flow is below a threshold, running consensus achieves only a fraction

of the Chernoff information rate. We quantify this achievable rate as a function of the network rate of

information flow. Simulation examples demonstrate our theoretical findings on the behavior of running

consensus based detection over random networks.
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tion flow, large deviations.

Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Partially supported by grants CMU-PT/SIA/0026/2009 and SFRH/BD/33517/2008 (through the Carnegie Mellon/Portugal
Program managed by ICTI) from Fundação para a Ciência e Tecnologia and also by ISR/IST plurianual funding (POSC program,
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Dragana Bajović and Dus̆an Jakovetić are with the Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST),
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I. INTRODUCTION

Existing literature on distributed detection can be broadly divided into three different classes. The first

studies parallel (fusion) architectures, where all sensors transmit their measurements, or local likelihood

ratios, or local decisions, to a fusion node; the fusion node subsequently makes the final decision (see,

e.g., [1], [2], [3], [4].) The second considers consensus-based detection, where no fusion node is required,

and sensors communicate with single-hop neighbors only over a generic network (see, e.g., [5], [6]).

Consensus-based detection operates in two phases. First, in the sensing phase, each sensor collects

sufficient observations over a period of time. In the second, communication phase, sensors subsequently

run the consensus algorithm to fuse their local log likelihood ratios. More recently, a third class of

distributed detection has been proposed (see [7], [8], [9], [10], [11],) where, as with consensus-based

detection, sensors communicate over a generic network, and no fusion node is required. Differently

than consensus-based detection, sensing and communication phases occur in the same time step. In this

paper, we study the error performance of running consensus. Specifically, we compute by large deviations

analysis the exponential decay rate of the error probability (as the time index k → ∞) of the running

consensus. The analysis is general and considers that the noise is correlated rather than white as originally

in [7].

More specifically, we study the binary detection problem where the sensors sense the environment and

cooperate to make a (distributed) decision. The network is time varying because it is random (see, e.g.,

[12]); in alternative, the network uses a random communication protocol, like gossip (see, e.g., [13], or the

recent overview [14]). The network connectivity is described by {W (k)}∞k=1, the sequence of identically

distributed (i.i.d.) consensus weight matrices. The sensors’ observations are Gaussian, correlated in space,

and uncorrelated in time. At each time k, each sensor: 1) communicates with its single-hop neighbors to

compute the weighted average of its own and the neighbors’ decision variables; and 2) accounts for its

new observation acquired at time k.

We quantify the rate of information flow (i.e., the speed of averaging) by | log r|, where r is the second

largest eigenvalue of the expected value of W 2(k). We show that running consensus based detection

over random networks is asymptotically equivalent to the optimal centralized detection, if this rate of

information flow across the random network is large enough; i.e., if it is above a threshold, then the

exponential rate of decay of the error probability of running consensus equals the Chernoff information–

the best possible rate of the optimal centralized detector. When the random network has slower information

flow, asymptotic optimality cannot be achieved. We find then the best possible rate of decay of the error

probability that running consensus can achieve. Our work quantifies the tradeoff between the network
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connectivity and achievable detection performance. Finally, simulation examples confirm our theoretical

findings.

In the context of estimation, distributed iterative schemes have also been considered. References [15],

[16] propose diffusion type LMS and RLS algorithms for distributed estimation; references [17], [18]

propose algorithms for distributed estimation based on the alternating direction method of multipliers.

These algorithms consider additive noise in the communication. Finally, reference [19] proposes linear

and nonlinear stochastic-approximation type algorithms for distributed estimation, allowing for randomly

varying networks and generic (with finite second moment) observation noise. With respect to the network

topology and the observation noise, we also allow for random networks, but we assume Gaussian, spatially

correlated observation noise.

We comment on the differences between this work and reference [8], which also studies asymptotic

performance of distributed detection via running consensus, with i.i.d. matrices W (k). Reference [8]

studies a problem different than ours, in which the means of the sensors’ observations under the two

hypothesis become closer and closer; consequently, there is an asymptotic, non zero, probability of miss,

and asymptotic, non zero, probability of false alarm. Within this framework, the running consensus

achieves the efficacy [20] of the optimal centralized detector, under a mild assumption on the underlying

network being connected on average. In contrast, we assume that the means of the distributions do not

approach each other as k grows, but stay fixed with k. The Bayes error probability exponentially decays

to zero, and we examine its rate of decay. We show that, in order to achieve the optimal decay rate of

the Bayes error probability, the running consensus needs an assumption stronger than connectedness on

average, namely, the averaging speed needs to be sufficiently large (as measured by | log r|.)

In recent work [21], we considered running consensus detection when the underlying network is

deterministically time varying; we showed that asymptotic optimality holds if the graph that collects

the union of links that are online at least once over a finite time window is connected. In contrast, we

consider here the case when the underlying network or the communication protocol are random, and we

establish a sufficient condition for optimality in terms of the averaging speed (measured by | log r|.)

Paper organization. The next paragraph defines notation that we use throughout the paper. Section II

reviews standard asymptotic results in hypothesis testing, in particular, the Chernoff lemma. Section III

explains the sensor observations model that we assume and studies the optimal centralized detection,

as if there was a fusion node to process all sensors’ observations. Section IV presents the running

consensus distributed detection algorithm. Section V studies the asymptotic performance of Gaussian

running consensus on a simple, yet illustrative, example of random matrices W (k). Section VI studies
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asymptotic performance of Gaussian running consensus in the general case. Section VII demonstrates by

simulation examples our theoretical findings. Finally, section VIII concludes the paper.

Notation. We denote by: Aij or [A]ij (as appropriate) the (i, j)-th entry of a matrix A; ai or [a]i the i-th

entry of a vector a; I , 1, and ei, respectively, the identity matrix, the column vector with unit entries,

and the i-th column of I , J the N ×N matrix J := (1/N)11>; ‖ · ‖l the vector (respectively, matrix)

l-norm of its vector (respectively, matrix) argument, ‖ · ‖ = ‖ · ‖2 the Euclidean (respectively, spectral)

norm of its vector (respectively, matrix) argument, ‖ · ‖F the Frobenius norm of a matrix; λi(·) the i-th

largest eigenvalue, Diag (a) the diagonal matrix with the diagonal equal to the vector a; E [·] and P (·) the

expected value and probability, respectively; IA the indicator function of the event A; finally, Q(·) the

Q-function, i.e., the function that calculates the right tail probability of the standard normal distribution;

Q(t) = 1√
2π

∫ +∞
t e−

u2

2 du, t ∈ R.

II. PRELIMINARIES

Binary hypothesis testing problem: Log-likelihood ratio test. Consider the sequence of independent

identically distributed (i.i.d.) d-dimensional random vectors (observations) y(k), k = 1, 2, ..., and the

binary hypothesis testing problem of deciding whether the probability measure generating y(k) is ν0

(under hypothesis H0) or ν1 (under H1). Assume that ν1 and ν0 are mutually absolutely continuous,

distinguishable measures. Based on the observations y(1), ..., y(k), formally, a decision test T is a

sequence of maps Tk : Rkd → {0, 1}, k = 1, 2, ..., with the interpretation that Tk(y(1), ..., y(k)) = l

means that Hl is decided, l = 0, 1. Specifically, consider the log-likelihood ratio (LLR) test to decide

between H0 and H1, where the Tk is given as follows:

D(k) :=
1
k

k∑
j=1

L(j) (1)

Tk = I{D(k)>γk}, (2)

where L(k) := log dν1
dν0

(y(k)) is the LLR (given by the Radon-Nikodym derivative of ν1 with respect to

ν0 evaluated at y(k),) and γk is a chosen threshold.

Asymptotic Bayes detection performance: Chernoff lemma. Given a test T , we are interested in

quantifying the detection performance, namely, in determining the Bayes error probability after k data

(observation) samples are processed:

P e(k) = P (H0)α(k) + P (H1)β(k), (3)

where P (Hl) are the prior probabilities, α(k) = P (Tk = 1|H0) and β(k) = P (Tk = 0|H1) are, respec-
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tively, the probability of false alarm and the probability of a miss. Generally, exact evaluation of α(k)

and β(k) (and hence, P e(k)) is very hard (as in the case of distributed detection over random networks

that we study; see also [22] for distributed detection on a parallel architecture.) We seek computationally

tractable estimates of P e(k), when k grows large. Typically, for large k, P e(k) is a small number (i.e.,

the detection error occurs rarely,) and, in many models, it exponentially decays to zero as k → +∞.

Thus, it is of interest to determine the (large deviations) rate of exponential decay of P e(k), given by:

lim
k→∞

−1
k

logP e(k). (4)

Lemma 1 ([23], [24]) states that, among all possible decision tests, the LLR test with zero threshold

maximizes (4) (i.e., has the fastest decay rate of P e(k).) The corresponding decay rate equals the Chernoff

information C, i.e., the Chernoff distance between the distributions of y(k) under H0 and H1, where C

is given by, [23]:

C = max
s∈[0,1]

{
− log

∫ (
dν0

dν1

)1−s
dν1

}
. (5)

Lemma 1 (Chernoff lemma) If P (H0) ∈ (0, 1), then:

sup
T

{
lim sup
k→∞

−1
k

logP e(k)
}

= C, (6)

where the supremum over all possible tests T is attained for the LLR test with γk = 0, ∀k.

Asymptotically optimal test. We introduce the following definition of the asymptotically optimal test.

Definition 2 The decision test T is asymptotically optimal if it attains the supremum in eqn. (6).

We will find a necessary condition and a sufficient condition for asymptotic optimality (in the sense of

Definition 2) of the running consensus distributed detection.

Inequalities for the standard normal distribution. We will use the following property of the Q(·)

function, namely, that for any t > 0 (e.g., [25]):

t

1 + t2
e−

t2

2 ≤
√

2πQ(t) ≤ 1
t
e−

t2

2 . (7)

III. CENTRALIZED DETECTION

We proceed with the Gaussian model for which we find (in section V) conditions for asymptotic

optimality of the running consensus distributed detection. Subsection III-A describes the model of the

sensor observations that we assume. Subsection III-B describes the (asymptotically) optimal centralized

detection, as if there was a fusion node that collects and processes the observations from all sensors.
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A. Sensor observations model

We assume that N sensors are deployed to sense the environment and to decide between the two

possible hypothesis, H1 and H0. Each sensor i measures a scalar quantity yi(k) at each time step k;

all sensors measure at time steps k = 1, 2, ... Collect the yi(k)’s, i = 1, ..., N , into the N × 1 vector

y(k) = (y1(k), ..., yN (k))>. We assume that {y(k)} has the following form:

Under Hl : y(k) = ml + ζ(k), l = 0, 1 m1 6= m0. (8)

The quantities ml, l = 0, 1,, m1 6= m0, are the constant signals and can be arbitrary deterministic vectors;

the quantity ζ(k) is zero-mean, Gaussian, spatially correlated noise, i.i.d. across time, with distribution

ζ(k) ∼ N (0, S), where S is a positive definite covariance matrix. Spatial correlation of the measurements

(i.e., non-diagonal covariance matrix S) accounts for, e.g., dense deployment in sensor networks. We note

that, to implement the algorithm, sensor i has to know the quantities vi :=
[
S−1(m1 −m0)

]
i
, [m1]i and

[m0]i; this knowledge can be acquired in the training period of the sensor network.

B. (Asymptotically) optimal centralized detection

This subsection studies optimal centralized detection under the Gaussian assumptions in III-A, as if

there was a fusion node that collects and processes all sensors’ observations. The LLR decision test is

given by eqns. (1) and (2), where it is straightforward to show that now the LLR takes the following

form:

L(k) = (m1 −m0)>S−1

(
y(k)− m1 +m0

2

)
. (9)

Conditioned on either hypothesis H1 and H0, L(k) ∼ N
(
m

(l)
L , σ

2
L

)
, where

m
(1)
L = −m(0)

L =
1
2

(m1 −m0)>S−1(m1 −m0) (10)

σ2
L = (m1 −m0)>S−1(m1 −m0). (11)

Define the vector v ∈ RN as

v := S−1(m1 −m0). (12)

Then, the LLR L(k) can be written as follows:

L(k) =
N∑
i=1

vi

(
yi(k)− [m1]i + [m0]i

2

)
=

N∑
i=1

ηi(k) (13)
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Thus, the LLR at time k is separable across sensors, i.e., the LLR is the sum of the terms ηi(k) that

depend affinely on the individual observations yi(k). We will exploit this fact in section IV to derive the

distributed, running consensus, detection algorithm.

Bayes probability of error: finite number of observations. The minimal Bayes error probability,

P ecen(k), when k samples are processed, and P (H0) = P (H1) = 1
2 (equal prior probabilities), is attained

for the (centralized) LLR test with zero threshold; P ecen(k) equals:

P ecen(k) = Q

(
√
k
m

(1)
L

σL

)
. (14)

The quantity P ecen(k) will be of interest when we compare (by simulation, in Section VII) the running

consensus detection with the optimal centralized detection, in the regime of finite k.

Bayes probability of error: time asymptotic results. The Chernoff lemma (Lemma 1) applies also to

the (centralized) detection problem as defined in subsection III-A. It can be shown that the Chernoff

information, in this case, equals:

C = Ctot =
1
8

(m1 −m0)>S−1(m1 −m0). (15)

In eqn. (15), the subscript tot designates the total Chernoff information of the network, i.e., the Chernoff

information of the observations collected from all sensors. Specifically, if the sensor observations are

uncorrelated (the noise covariance matrix S = Diag(σ2
1, ..., σ

2
N ),) then:

Ctot =
N∑
i=1

[m1 −m0]2i
8σ2

i

=
N∑
i=1

Ci, (16)

where Ci is the Chernoff information of the individual sensor i. That is, Ci equals the best achievable

rate of the Bayes error probability, if the sensor i worked as an individual (it did not cooperate with the

other sensors.)

Corollary 3 (Chernoff lemma for asymptotically optimal centralized detector) Consider the observation

model defined in subsection III-A, and let P (H0) ∈ (0, 1). The LLR test with γk = 0, ∀k, is asymptoti-

cally optimal in the sense of Definition 2. Moreover, for the LLR test with γk = 0, ∀k, we have:

lim
k→∞

1
k

logP ecen(k) = −Ctot, (17)

where Ctot is given by eqn. (15).
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IV. DISTRIBUTED DETECTION VIA RUNNING CONSENSUS

We now consider distributed detection, under the same assumptions on the sensor observations as

in III-A; but the fusion node is no longer available, and the sensors cooperate through a randomly

varying network. Specifically, we consider the running consensus distributed detection, proposed in [8],

and we extend it to spatially correlated observations. At each time k, each sensor i improves its decision

variable, call it xi(k), in two ways: 1) by exchanging the decision variable locally with its neighbors and

computing the weighted average of its own and the neighbors’ variables; and 2) by incorporating its new

observation at time k.

Recall the definition of v in (12) and ηi(k) in (13). The update of xi(k) is then as follows:

xi(k + 1) =
k

k + 1

Wii(k)xi(k) +
∑

j∈Oi(k)

Wij(k)xj(k)

+
1

k + 1
ηi(k + 1), k = 1, ... (18)

xi(1) = ηi(1).

Here Oi(k) is the (random) neighborhood of sensor i at time k, and Wij(k) are the (random) averaging

weights. The local sensor i’s decision test at time k, Tk,i, is given by:

Tk,i := I{xi(k)>0}, (19)

i.e., H1 (resp. H0) is decided when xi(k) > 0 (resp. xi(k) ≤ 0.) Let x(k) = (x1(k), x2(k), ..., xN (k))>

and η(k) = (η1(k), ..., ηN (k))>. Also, collect the averaging weights Wij(k) in N × N matrix W (k),

where, clearly, Wij(k) = 0 if the sensors i and j do not communicate at time step k. The algorithm in

matrix form becomes:

x(k + 1) =
k

k + 1
W (k)x(k) +

1
k + 1

η(k + 1), k = 1, 2, ..., x(1) = η(1). (20)

We remark that the algorithm in (20) extends the running consensus algorithm in [7] for spatially

correlated sensor observations (non-diagonal covariance matrix S.) When S is diagonal, the algorithm

in (20) reduces to the algorithm in [7].1

We allow the averaging matrices W (k) to be random. Formally, let (Ω,F ,P) be a probability space

(where Ω is a sample space, F is a σ-algebra, and P : F → [0, 1] is a probability measure.) For

any k, W (k) is a random variable, i.e., an F-measurable function W (k) = W (ω; k), ω ∈ Ω, W (k) :

Ω → RN×N . We now summarize the assumptions on W (k). Recall that J := 1
N (11>) and denote by

1Another minor difference between [7] and eqn. (20) is that [7] multiplies the log-likelihood ratio term (the term analogous
to 1

k+1
η(k + 1)) by N ; this multiplication does not affect detection performance.
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W̃ (k) := W (k) − J . From now on, we will drop the index k from W (k) and W̃ (k) when we refer to

the distribution of W (k) and W̃ (k).

Assumption 4 For the sequence of matrices {W (k)}∞k=1, we assume the following:

1) The sequence {W (k)}∞k=1 is i.i.d.

2) W is symmetric 2 and stochastic (row-sums are equal to 1 and the entries are nonnegative,) with

probability one.

3) W (l) and y(s) are mutually independent over all l and s.

In sections V and VI, we examine what (additional) conditions the matrices W (k) have to satisfy, to

achieve asymptotic optimality of Gaussian running consensus.

Network supergraph. Define also the network supergraph as a pair G := (V, E), where V is the set

of nodes with cardinality |V| = N , and E is the set of edges with cardinality |E| = M , defined by:

E = {{i, j} : P (Wij 6= 0) > 0, i < j}. Clearly, when, for some {i, j}, P (Wij 6= 0) = 0, then the link

{i, j} /∈ E and nodes i and j never communicate.

For subsequent analysis, it will be useful to define the matrices Φ(k, j), for k > j ≥ 1, as follows:

Φ(k, j) := W (k − 1)W (k − 2)...W (j). (21)

Then, the algorithm in eqn. (20) can be written as:

x(k) =
1
k

k−1∑
j=1

Φ(k, j)η(j) +
1
k
η(k), k = 2, 3, ... (22)

Also, introduce:

Φ̃(k, j) := W̃ (k − 1)W̃ (k − 2)...W̃ (j), k > j ≥ 1, (23)

and remark that

Φ̃(k, j) = Φ(k, j)− J.

Recall the definition of the N × 1 vector v in (12). The sequence of N × 1 random vectors {η(k)},

conditioned on Hl, is i.i.d. The vector η(k) (under hypothesis Hl, l = 0, 1) is Gaussian with mean m(l)
η

and covariance Sη:

2The averaging matrix W (k) need not be symmetric. We only need W (k) to be doubly stochastic, which is automatically
satisfied by setting W (k) be symmetric and stochastic. Relaxing the assumption on symmetry of W (k) would not change the
proofs in the paper and would only add a few matrix transposes.
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m(l)
η = (−1)(l+1)Diag (v)

1
2

(m1 −m0) (24)

Sη = Diag (v)SDiag (v) . (25)

Here Diag(v) is a diagonal matrix with the diagonal entries equal to the entries of v.

V. ASYMPTOTIC PERFORMANCE OF DISTRIBUTED DETECTION: SWITCHING FUSION EXAMPLE

In this section, we examine the asymptotic performance of the distributed detection algorithm on a

simple and impractical, yet illustrative example; we tackle the generic case in Section VI. The network

at a time step k can either be fully connected, with probability p, or completely disconnected (without

edges,) with probability 1 − p. Specifically, the distribution of the random averaging matrix W (k) is

given by:

W (k) =

 J with prob. p

I with prob. 1− p.
(26)

With model (26), at each time step k, each sensor behaves as a fusion node, with probability p, and as an

individual detector, with probability 1− p. We call this communication model the switching fusion. We

show that, to achieve asymptotic optimality of distributed detection, the fusion step (W (k) = J) should

occur sufficiently often, i.e., p should exceed a threshold. Namely, we find necessary and sufficient

condition for the asymptotic optimality in terms of p. When distributed detection is not optimal (p is

below the threshold,) we find the achievable rate of decay of the error probability, as a function of p.

The goal of the switching fusion example is two-fold. First, it provides insight on how the amount of

communication (measured by p) affects detection performance. Second, it explains in a clear and natural

way our methodology for quantifying detection performance on generic networks (in Section VI.) Namely,

Section VI mimics and extends the analysis from Section V to derive distributed detection performance

on generic networks. We next detail the sensor observations model.

We assume that the observations yi(k) of N different sensors are uncorrelated, and that the individual

Chernoff information, given by eqn. (16), is the same at each sensor i. Hence, we have Ctot = N Ci.

Denote by P ei,dis(k) the Bayes error probability at sensor i, after k samples are processed. We have

the following Theorem on the asymptotic performance of the distributed detection algorithm.

Theorem 5 Consider the distributed detection algorithm given by eqns. (18) and (19). Assume that the

sensor observations are spatially uncorrelated and that the Chernoff information Ci is equal at each sensor

i. Let W (k) be i.i.d. matrices with the distribution given by eqn. (26). Then, the exponential decay rate

of the error probability is given by:
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lim
k→∞

−1
k

logP ei,dis(k) =


Ctot if | log(1− p)| ≥ Ctot(N − 1)

Ci + | log(1− p)| if | log(1− p)| ≤ Ctot(N−1)
N2

2
√
| log(1−p)|Ctot

N−1 − | log(1−p)|
N−1 otherwise.

(27)

Moreover, a necessary and sufficient condition for asymptotic optimality, in the sense of Definition 2,

is given by:
| log(1− p)|
N − 1

≥ Ctot = NCi. (28)

Condition (28) says that the network connectivity should be good enough (i.e., p should be large enough,)

in order to achieve the asymptotic optimality of distributed detection. Also, distributed detection is

asymptotically optimal above a threshold on p, and it is not optimal below that threshold. Figure 1

plots the exponential decay rate of error probability (given by eqn. (27)) for the network with N = 20

sensors and Ctot = 0.1. We can see that, as p decreases, distributed detection performance becomes

worse and worse, and it approaches the performance of an individual sensor-detector.

We proceed with proving Theorem 5. In Section VI, we will follow a reasoning similar to the proof

of Theorem 5 to provide a sufficient condition for asymptotic optimality on generic networks.
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Fig. 1. Exponential decay rate of error probability φ? (given by eqn. (27)) for the model considered in Section V. The network
has N = 20 sensors and Ctot = 0.1. The optimal rate (equal to Ctot) is achieved for p ≥ 0.83.

Proof of Theorem 5: First, remark that x(k), conditioned on H0, is equal in distribution to −x(k),

conditioned on H1. This is true because η(k), conditioned on H0, is equal in distribution to −η(k),

conditioned on H1, for all k; and the distribution of W (k) does not depend on the active hypothesis, H0

or H1. Denote by Pl (·) = P(·|Hl), l = 0, 1, and consider the probability of false alarm, the probability

of miss, and the Bayes error probability at sensor i (with running consensus,) respectively:

αi,dis(k) = P0 (xi(k) > 0) , βi,dis(k) = P1 (xi(k) ≤ 0) (29)

P ei,dis(k) = P (H0)P0 (xi(k) > 0) + P (H1)P1 (xi(k) ≤ 0) . (30)
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Remark that Pl (xi(k) = 0) = 0, l = 0, 1, because Pl (xi(k) = 0) = E [ Pl (xi(k) = 0|W (k − 1), ...,W (1)) ];

and Pl (xi(k) = 0|W (k − 1), ...,W (1)) = 0, as, conditioned on any realization of W (1), ...,W (k − 1),

xi(k) is a Gaussian random variable, hence with a continuous density. Thus, we have that, ∀k, ∀i:

βi,dis(k) = P1 (xi(k) ≤ 0) = P1 (−xi(k) ≥ 0) (31)

= P0 (xi(k) ≥ 0) = P0 (xi(k) > 0) = αi,dis(k) (32)

= P ei,dis(k), (33)

where equality (33) holds because of eqn. (30) and the fact that αi,dis(k) = βi,dis(k).

We further assume that H0 is true, and we restrict our attention to αi,dis(k), but the same conclusions

(from (31)–(33)) will be valid for βi,dis(k) and P ei,dis(k) also. We now make the key step in proving

Theorem 5, by defining a partition of the probability space Ω. Fix the time step k and denote by Al,

l = 0, ..., k − 1, the event

Al =

 {max {s ∈ {1, ..., k − 1} : W (s) = J} = l} for l = 1, ..., k − 1

{W (s) = I, s = 1, ..., k − 1} for l = 0.

That is, Al is the event that the largest time step s ≤ k − 1, for which W (s) = J , is equal to s = l.

(The event Al includes the scenarios of arbitrary realizations of W (s)–either J or I–for s ≤ l; but it

requires W (s) = I for all l < s ≤ k − 1.) Remark that Al is a function of k, but the dependence

on k is dropped for notation simplicity. We have that P (Al) = p(1 − p)k−l−1, for l = 1, ..., k − 1,

and P (A0) = (1 − p)k−1. Also, each two events, Al and Aj , j 6= l, are disjoint, and ∪k−1
l=0 Al = Ω,

i.e., the events Al, l = 0, ..., k − 1, constitute a finite partition of the probability space Ω. (Note that∑k−1
l=0 P(Al) = 1.) Recall the definition of Φ(k, j) in eqn. (21) and note that, if Al occurred, we have:

Φ(k, s) =

 I if k − 1 ≥ s > l

J if s ≤ l.
(34)

Further, conditioned on Al, we have that (when l = 0, first sum in eqn. (35) does not exist)

x(k) =
1
k

 l∑
j=1

Jη(j) +
k∑

j=l+1

Iη(j)

 =
1
k

 l∑
j=1

(
1>η(j)
N

)
1 +

k∑
j=l+1

η(j)

 . (35)

Hence, conditioned on Al, xi(k) is a Gaussian random variable,

xi(k)|Al ∼ N
(
θ(l; k), ζ2(l; k)

)
,
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where

θ(l; k) = − 4l
N

Ctot − 4(k − l)Ci = −4kCi (36)

ζ2(l; k) =
8l
N2

Ctot + 8(k − l)Ci. (37)

Define
χ(l; k) := −θ(l; k)

ζ(l; k)
=

√
2Cik√

l
N + (k − l)

, (38)

and remark that P0 (xi(k) > 0|Al) = Q(χ(l; k)), where P0(·) := P(·|H0). Using the Theorem of total

probability, we can write αi,dis(k) = P0 (xi(k) > 0) as:

αi,dis(k) =
k−1∑
l=0

P0 (xi(k) > 0|Al) P(Al) =
k−1∑
l=1

Q(χ(l; k)) p(1− p)k−l−1 +Q(χ(0; k)) (1− p)k−1. (39)

We now proceed with calculating the exponential rate of decay of αi,dis(k) (and hence, P ei,dis(k)) as

k →∞. The key ingredient to do that is the representation of αi,dis(k) in eqn. (39), and the inequalities

for the Q-function in eqn. (7). Namely, we show in the Appendix that the following inequalities hold:

lim inf
k→∞

−1
k

logP ei,dis(k) ≥ lim inf
k→∞

φ̂(k) (40)

lim sup
k→∞

−1
k

logP ei,dis(k) ≤ lim sup
k→∞

φ̂(k),

where

φ̂(k) = min
j=0,...,k−1

Ctot

1 + (N − 1) j+1
k

+
j

k
| log(1− p)| (41)

= min
j=0,...,k−1

φ(j; k). (42)

Remark. A coarse interpretation of (40) is that, when k grows large, P ei,dis(k) behaves as:

P ei,dis(k) ∼
k−1∑
j=0

e−k φ(j;k), (43)

where the quantities φ(j; k), for different j’s, represent different “modes” of decay; the decay of P ei,dis(k)

is then determined by the slowest mode (41). The interpretation (43) follows from eqn. (39), eqns. (84)–

(89) in the proof of inequalities (40), and by neglecting slowly decaying terms that multiply e−k φ(j;k)

(see eqns. (84)–(89)).

We proceed by noting that the minimum of φ(j; k) over the discrete set j ∈ {0, 1, ..., k− 1} does not

differ much from the minimum of φ(j; k) over the interval [0, k− 1]. Denote by φ?(k) the minimum of
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φ(j; k) over [0, k − 1]:

φ?(k) = min
j∈[0,k−1]

φ(j; k). (44)

Then, it is easy to verify that:

φ?(k) ≤ φ̂(k) ≤ φ?(k) (1 +
N − 1
k

) +
| log(1− p)|

k
. (45)

The function φ(j, k) is convex in its first argument on j ∈ [0, k − 1]; it is straightforward to calculate

φ?(k), which can be shown to be equal to:

φ?(k) =


Ctot

1+N−1
k

if | log(1− p)| ≥ Ctot(N−1)

(1+N−1
k

)2

Ctot
N + k−1

k | log(1− p)| if | log(1− p)| ≤ Ctot(N−1)
N2

2
√
| log(1−p)|Ctot

N−1 − | log(1−p)|
N−1 − | log(1−p)|

k otherwise.

(46)

The limit limk→∞ φ
?(k) =: φ? exists, and is equal to:

φ? =


Ctot if | log(1− p)| ≥ Ctot(N − 1)
Ctot
N + | log(1− p)| if | log(1− p)| ≤ Ctot(N−1)

N2

2
√
| log(1−p)|Ctot

N−1 − | log(1−p)|
N−1 otherwise.

(47)

From eqns. (45) and (47), we have:

lim
k→∞

φ̂(k) = lim
k→∞

φ?(k) = φ?. (48)

In view of eqns. (48) and (40), it follows that the rate of decay of the error probability at sensor i is:

lim
k→∞

−1
k

logP ei,dis(k) = lim
k→∞

φ̂(k) = φ?. (49)

The necessary and sufficient condition for asymptotic optimality then follows from eqn. (47).

VI. ASYMPTOTIC PERFORMANCE OF DISTRIBUTED DETECTION: GENERAL CASE

This section provides a necessary condition, and a sufficient condition for asymptotic optimality of

distributed detection on networks and Gaussian observations. When distributed detection is not guaranteed

to be optimal, this section finds a lower bound on the exponential decay rate of error probability, in terms

of the system parameters. We start by pursuing sufficient conditions for optimality and evaluating the

lower bound on the decay rate of the error probability.
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A. Sufficient condition for asymptotic optimality

We proceed with a sufficient condition. Recall that r := λ2

(
E
[
W 2(k)

])
= ‖E

[
W 2(k)

]
− J‖. It is

well known that the quantity r measures the speed of the information flow, i.e., the speed of the averaging

across the network, like with standard consensus and gossip algorithms, e.g., [13]. (The smaller r is, the

faster the averaging is.) The next Theorem shows that distributed detection is asymptotically optimal if

the network information flow is fast enough, i.e., if r is small enough. The Theorem also finds a lower

bound on the rate of decay of the error probability, even when the sufficient condition for asymptotic

optimality does not hold. Denote by m0 := maxi=1,...,N |[m(0)
η ]i|, and recall also Ctot in eqn. (15).

Theorem 6 Let Assumption 4 hold and consider the distributed detection algorithm defined by eqns. (18)

and (19). Then, the following holds for the exponential decay rate of the error probability at each sensor:

lim inf
k→∞

−1
k

logP ei,dis(k) ≥

 Ctot if | log r| ≥ 1
8N

2
(
1 + (1− 1

N )K
)
‖Sη‖

−
(

1
2N2σ2

Lµ
2 + 1

Nm
(0)
L µ

)
otherwise,

(50)

where

µ =



1
4

K
K+1 + 1

4

√
K2+ 32| log r|

‖Sη‖ (1+K)

K+1 ,

if 1
8‖S

η‖ < | log r| < 1
8N

2(1 + (1− 1
NK))‖Sη‖;

1
4

√
K2 + 32| log r|

‖Sη‖ −
1
4K,

if | log r| ≤ 1
8‖S

η‖.

(51)

Here K = (8m) /‖Sη‖. Moreover, each sensor i is asymptotically optimal, and limk→∞− 1
k logP ei,dis(k) =

Ctot, ∀i, provided that:

| log r| ≥ 1
8
N2

(
1 + (1− 1

N
)K
)
‖Sη‖. (52)
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Fig. 2. Left: lower bound on the exponential decay rate of the error probability (given by eqn. (50)) for the (generic) model
in Section VI. The network has N = 20 sensors, and Ctot = 0.0047. The optimal rate (equal to Ctot) is achieved for
(1− r) ≥ 0.29. Right: Ratios χi, i = 1, 2, 3, defined by eqn. (53), as a function of N ; Ctot = 0.01 and r = 0.3.
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Figure 2 (left) illustrates the lower bound on the exponential decay rate of the error probability given

by Theorem 6 for a network with N = 20 sensors. We can see that the optimal rate Ctot is achieved

for (1 − r) ≥ 0.29; below (1 − r) = 0.29, the lower bound on the achievable rate decays as a concave

function as (1− r) decreases (as the connectivity becomes worse and worse.)

We now interpret Theorem 6 when the number of sensors N varies, and, in particular, when N grows

large. We consider spatially uncorrelated observations, with equal Chernoff information across sensors,

Ci = Ctot/N; in this case, it is straightforward to show that ‖Sη‖ = 2m = 8Ctot/N , σ2
L = −2m(0)

L =

8Ctot, and K = 4. We restrict Ctot and r ∈ (0, 1) to constant values (that do not depend on N ,) so

that the corresponding centralized detection problem and the network’s speed of averaging do not depend

on N . We compare the detection performance of: 1) optimal centralized detector; 2) running consensus

detector; and 3) an individual sensor–detector (that does not cooperate with other sensors); we define the

ratios:

χ1 :=
ρRC

ρCEN
, χ2 :=

ρIND

ρRC
, χ3 :=

ρIND

ρCEN
, (53)

where ρRC, ρCEN, and ρIND denote the exponential decay rate of the error probability for, respectively,

running consensus, centralized, and individual detectors. We have that ρCEN = Ctot and ρIND = Ctot/N .

With respect to running consensus, for smaller values of N , the inequality in eqn. (50) is satisfied and

ρRC = Ctot, i.e., the running consensus is asymptotically optimal. When N becomes sufficiently large,

the inequality in eqn. (50) does not hold. Using eqns. (50) and (51), it is straightforward to show that,

for very large N , ρRC behaves as: ρRC ∼ c
√
| log r|Ctot

1√
N
, where c is a constant and the terms of

lower order are neglected. Thus, for smaller values of N , we have that χ1 = 1, and, for larger values of

N , χ1 ∼ 1/
√
N . On the other hand, χ2 = 1/N for smaller values of N , and χ2 ∼ 1/

√
N for larger N ;

χ3 = 1/N , for all N . Hence, with respect to an individual sensor–detector, running consensus achieves

the gain ∼ N , for smaller N , and the gain ∼
√
N , when N grows large. At the same time, running

consensus is equivalent to the optimal centralized detector, when N is small, and has a loss ∼
√
N when

N grows large. Figure 2 (right) plots, in log-log scale, the ratios χi, i = 1, 2, 3, in eqn. (53), calculated

via eqns. (50) and (51); it clearly demonstrates the behavior explained above.

B. Setting up the proof of Theorem 6: Auxiliary Lemmata

Before proving Theorem 6, we state several preliminary results in Lemmata 7–10, and we set up the

proof of Theorem 6; proof of Lemma 7 is trivial, while proofs of Lemmata 8–10 are in the Appendix.

Lemma 7 Let V be a N × N stochastic matrix and consider the matrix Ṽ = V − J . Then, for all
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i = 1, ..., N , the following inequalities hold:

N∑
l=1

|Ṽil| ≤ 2
N − 1
N

< 2,
N∑
l=1

|Ṽil|2 ≤
N − 1
N

< 1. (54)

Lemma 8 Let Assumption 4 hold. Then, the following inequality holds:

P
(
‖Φ̃(k, j)‖ > ε

)
≤ N4

ε2
rk−j . (55)

Suitable partition of the probability space. When proving Theorem 6, we will partition the time

interval from the first to (k − 1)-th time step in windows of width B, for some integer B ≥ 1. That is,

we consider the subsets of consecutive time steps {k−B, k−B+ 1, ..., k− 1}, {k− 2B, ..., k−B− 1},

..., {k − (J − 1)B, ..., k −JB − 1}, {1, 2, ..., k −JB − 1}, where J is the integer part of k−1
B . (Note

that the total number of these subsets is J + 1; each of these subsets contains B time steps, except

{1, 2, ..., k −JB − 1} that in general has the number of time steps less or equal to B.) We then define

the events Aj , j = 1, ...,J + 1, as follows:

A1 =
{
‖Φ̃(k, k −B)‖ ≤ ε

}
(56)

A2 =
{
‖Φ̃(k, k −B)‖ > ε

}
∩
{
‖Φ̃(k, k − 2B)‖ ≤ ε

}
...

Aj+1 =
{
‖Φ̃(k, k − jB)‖ > ε

}
∩
{
‖Φ̃(k, k − (j + 1)B)‖ ≤ ε

}
...

AJ =
{
‖Φ̃(k, k − (J − 1)B)‖ > ε

}
∩
{
‖Φ̃(k, k − JB)‖ ≤ ε

}
AJ+1 =

{
‖Φ̃(k, k − JB)‖ > ε

}
.

It is easy to see that the events Aj , j = 1, ...,J + 1, constitute a finite partition of the probability space

Ω (i.e., each Ai and Aj , i 6= j, are disjoint, and the union of Aj’s, j = 1, ...,J + 1, is Ω.)

By Lemma 8, the probability of the event Aj , j = 1, ...,J + 1, is bounded from above as follows:

P (Aj) ≤
N4

ε2
r(j−1)B. (57)

Next Lemma (Lemma 9) says how much the matrices Φ̃(k, s) deviate from J = (1/N)11>, given that

the event Aj occurred.

Lemma 9 Consider the random matrices Φ̃(k, j) given by eqn. (23), and fix two time steps, k and j,
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k > j. Suppose that the event Aj occurred. Then, for any s ≤ k − jB, and for i = 1, ..., N :

N∑
l=1

|[Φ̃(k, s)]il| ≤ N
√
Nε,

N∑
l=1

|[Φ̃(k, s)]il|2 ≤ Nε2. (58)

Proof: See the Appendix.

Seeking the tightest Chernoff bound on the error probability. We first consider the probability of

false alarm, αi,dis(k) = P0 (xi(k) > 0), but the same conclusions will hold for βi,dis(k) = P1 (xi(k) < 0)

also (See the Proof of Theorem 5.) We examine the family of Chernoff bounds on the probability of

false alarm, parametrized by kµ, k = 1, 2, ..., µ > 0, given by:

αi,dis(k) ≤ E0

[
ekµxi(k)

]
=: C(kµ), (59)

where El [a] := E [a|Hl], l = 0, 1. We then examine the conditions under which the best Chernoff bound

falls below the negative of the Chernoff information, in the limit as k →∞. More precisely, we examine

under which conditions the following inequality holds:

lim sup
k→∞

1
k

log C(kµ) ≤ −Ctot. (60)

In Lemma 10, we express the Chernoff upper bound on lim sup of 1
k logP ei,dis(k) in terms of the “modes

of decay,” similarly as in the Proof of Theorem 5.

Lemma 10 Consider distributed detection algorithm given by eqns. (18) and (19), and let Assumption 4

hold. Then:

lim sup
k→∞

1
k

logαi,dis(k) = lim sup
k→∞

1
k

logP ei,dis(k) (61)

≤ lim sup
k→∞

1
k

log C(kµ)δ(kµ), ∀µ > 0, ∀ε ∈ (0, 1), ∀B = 1, 2, ...

where

C(kµ) = exp
(

(k − 1)(
1

2N2
σ2
Lµ

2 +
1
N
m

(0)
L µ)

)
(62)

δ(kµ) =
J∑
j=0

exp
(
|2µ2 − µ|m

{
2(j + 1)B + (k − (j + 1)B)N

√
Nε
})

(63)

exp
(
µ2

2
‖Sη‖

{
(j + 1)B + (k − (j + 1)B)Nε2

})(N4 rjB

ε2

)
.

Remark. The summands in eqn. (63) can be interpreted as the “modes of decay” that correspond to the

events Aj+1, j = 0, ...,J . We proceed now with the proof of Theorem 6.
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Proof of Theorem 6: We bound from above δ(kµ) in eqn. (63) by “the slowest mode”:

δ(kµ) ≤ (J + 1) max
j=0,...,J

exp
(
|2µ2 − µ|m

{
2(j + 1)B + (k − (j + 1)B)N

√
Nε
})

(64)

exp
(
µ2

2
‖Sη‖

{
(j + 1)B + (k − (j + 1)B)Nε2

})(N4 rjB

ε2

)
.

Introduce the variable θ = θ(j) = jB
k . We now replace the maximum over the discrete set j = 0, ...,J ,

in eqn. (64) by the supremum over j ∈ [0,J ], i.e., θ ∈ [0, 1]; we get:

δ(kµ) ≤ (J + 1) sup
θ∈[0,1]

exp
(
|2µ2 − µ|m

{
2kθ(1−N

√
Nε) +B(2−N

√
Nε) + kN

√
Nε
})

(65)

exp
(
µ2

2
‖Sη‖

{
kθ(1−Nε2) +B(1−Nε2) + kε2

})(N4rjB

ε2

)
.

Taking the limsup as k →∞, and then letting ε→ 0, we obtain the following inequality:

lim sup
k→∞

1
k

log C(kµ) ≤ sup
θ∈[0,1]

φ(θ; µ), ∀µ > 0 (66)

φ(θ; µ) =
1

2N2
σ2
Lµ

2 +
1
N
m

(0)
L µ+ 2|2µ2 − µ|mθ +

µ2

2
‖Sη‖θ + θ log r. (67)

Eqn. (66) gives a family of upper bounds, indexed by µ > 0, on the quantity lim supk→∞
1
k logαi,dis(k);

we seek the most aggressive bound, i.e., we take the infimum over µ > 0.

We first discuss the values of the parameter r, for which there exists a range µ ∈ [1
2 , µ] (where µ is

given by eqn. (51),) where the supremum in eqn. (66) is attained at θ = 0. It can be shown that this

range is nonempty if and only if:

| log r| > 1
8
‖Sη‖. (68)

In view of eqns. (66), (67), and (68), we have the following inequality:

lim sup
k→∞

1
k

log C′(kµ) ≤ min
µ∈[ 1

2
,µ]

{
1

2N2
σ2
Lµ

2 +
1
N
m

(0)
L µ

}
. (69)

The global minimum (on µ ∈ R) of the function µ 7→ 1
2N2σ2

Lµ
2+ 1

Nm
(0)
L µ is attained at µ? = N/2; and it

can be shown that it equals the negative of the Chernoff information −Ctot = −1
8(m1−m0)>S−1(m1−

m0). Thus, a sufficient condition for lim supk→∞
1
k logαi,dis(k) ≤ lim supk→∞

1
k log C′(kµ) ≤ −Ctot is

that µ? = N
2 ∈ [1

2 , µ]. By straightforward algebra, it can be shown that the latter condition translates into

the following condition:

| log r| ≥ 1
8
N2

(
1 + (1− 1

N
)K
)
‖Sη‖. (70)
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The analysis of the upper bound on αi,dis(k) remains true for the upper bound on βi,dis(k); hence,

we conclude that, under condition (70), we have: lim supk→∞
1
k log βi,dis(k) ≤ −Ctot. Thus, under the

condition (70), the following holds:

lim sup
k→∞

1
k

logP ei,dis(k) ≤ −Ctot. (71)

On the other hand, by the Chernoff Lemma (Lemma 3,) we also know that

lim inf
k→∞

1
k

logP ei,dis(k) ≥ −Ctot. (72)

By eqns. (71) and (72), we conclude that limk→∞
1
k logP ei,dis(k) = −Ctot, for the values of r that satisfy

the condition (70). Hence, condition (70) is a sufficient condition for asymptotic optimality. Consider

now the values of r such that:

1
8
‖Sη‖ < | log r| < 1

8
N2

(
1 + (1− 1

N
)K
)
‖Sη‖. (73)

In this range, 1
2 < µ < µ? = N/2, and the minimum of the function µ 7→ 1

2N2σ2
Lµ

2 + 1
Nm

(0)
L µ on

µ ∈ [1
2 , µ] is attained at µ = µ. Hence, for the values of r in the range (73), we have:

lim sup
k→∞

1
k

logP ei,dis(k) ≤ 1
2N2

σ2
Lµ

2 +
1
N
m

(0)
L µ. (74)

Finally, consider the values of r such that the condition in (68) does not hold, i.e., 1
8‖S

η‖ ≥ | log r|.

We omit further details, but it can be shown that, in this case, the supremum in eqn. (66) is attained at

θ = 0 only for the values of µ in a subset of [0, 1
2 ]; and it can be shown that lim supk→∞

1
k logP ei,dis(k)

can be bounded as given by eqn. (50).

C. Necessary condition for asymptotic optimality

We proceed with necessary conditions for asymptotic optimality, for the case when the sensors’

observations are spatially uncorrelated. Denote by Ei(k) the event that, at time k, sensor i is connected

to at least one of the remaining sensors in the network; that is,

Ei(k) :=
{[

max
j=1,...,N, j 6=i

Wij(k) > 0
]}

. (75)

Further, denote by Pi(k) = Pi = P(Ei(k)) We have the following result.

Theorem 11 (Necessary condition for asymptotic optimality) Consider the distributed detection algorithm

in eqns. (18) and (19) with spatially uncorrelated sensors’ observations, and let Assumption 4 hold. Then,
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a necessary condition for the asymptotic optimality of distributed detection at sensor i is:

| log(1− Pi)| ≥ Ctot −Ci. (76)

Proof: Assume H0 is true; consider αi,dis(k), but remark that the same conclusions will hold for

βi,dis(k), as αi,dis(k) = βi,dis(k). (See the proof of Theorem 5.) Further, using inequalities (7), we have:

αi,dis(k) = P0 (xi(k) > 0) (77)

≥ P0

(
xi(k) > 0| ∩k−1

s=1 Ei(s)
)

P
(
∩k−1
s=1Ei(s)

)
(78)

≥ 1√
2π

√
2kCi

1 + 2kCi
e−kCi(1− Pi)k. (79)

In eqn. (78), Ei(s) denotes the complement of the event Ei(s). To see why the inequality (78) is true,

note that xi(k), conditioned on the event ∩k−1
s=1Ei(s), equals:

1
k

k∑
j=1

ηi(j), (80)

where, for the case of spatially uncorrelated observations, ηi(k)|Hl ∼ N
(
µ(l), σ2

)
, with

µ(l) =
(−1)l+1

2
([m1 −m0]i)

2

Sii
, σ2 =

([m1 −m0]i)
2

Sii
. (81)

Recall eqn. (22). Eqn. (80) is true because, if the event ∩k−1
s=1Ei(s) occurred, then, over time j = 1, ..., k,

sensor i worked as an individual detector; that is, i-th row of matrix Φ(k, j) equals ei, for all j =

1, ..., k − 1. Hence, conditioned on ∩k−1
s=1Ei(s), xi(k) ∼ N

(
µ(0), σ

2

k

)
; it is straightforward to show that

P0

(
xi(k) > 0| ∩k−1

s=1 Ei(s)
)

= Q
(√

k−µ
(0)

σ

)
= Q

(√
2kCi

)
. Then, after upper bounding Q

(√
2kCi

)
via (7), and noting that P0

(
xi(k) > 0| ∩k−1

s=1 Ei(s)
)

= (1 − Pi)k−1 ≥ (1 − Pi)k, we get (79). Then,

taking the liminf in (79) we get:

lim inf
k→∞

1
k

logαi,dis(k) ≥ − (Ci + | log(1− Pi)|) . (82)

Now, assume that (76) does not hold. Then, by eqn. (82), we have that:

lim inf
k→∞

1
k

logP ei,dis(k) = lim inf
k→∞

1
k

logαi,dis(k) > −Ctot, (83)

and sensor i is not asymptotically optimal detector in the sense of Definition 2. This proves that (76) is

a necessary condition for asymptotic optimality of sensor i.
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VII. SIMULATIONS

In this section, we corroborate by simulation examples our analytical findings on the asymptotic

behavior of distributed detection over random networks. Namely, we demonstrate the change in behavior

of distributed detection with respect to the speed of network information flow, as predicted by Theorem

6. Also, we demonstrate that a sensor with poor connectedness to the rest of the network cannot be an

optimal detector, as predicted by Theorem 11; moreover, its performance approaches the performance of

an isolated sensor, i.e., a sensor that works as an individual detector, as connectedness becomes worse

and worse.

Simulation setup. We consider a supergraph G with N = 40 nodes and M = 247 edges. Nodes are

uniformly distributed on a unit square and nodes within distance less than a radius ` are connected by

an edge. As averaging weights, we use the standard time-varying Metropolis weights Wij(k), defined

for {i, j} ∈ E, i 6= j, by Wij(k) = 1/(1 + max(di(k), dj(k))), if the link {i, j} is online at time k,

and 0 otherwise. The quantity di(k) represents the number of neighbors (i.e., the degree) of node i at

time k. Also, Wii(k) = 1 −
∑

j∈Ωi(k)Wij(k), for all i, and Wij(k) ≡ 0, for i 6= j, {i, j} /∈ E. The

link failures are spatially and temporally independent. Each link {i, j} ∈ E has the same probability of

formation, i.e., the probability of being online at a time, qij = q. This network and weight model satisfy

Assumption 4.

We assume equal prior probabilities, P(H0) = P(H1) = 0.5. We set the N × 1 signal vector under

H1 (respectively, H0) to be m1 = 1 (respectively, m0 = 0.) We generate randomly the covariance

matrix S, as follows. We generate: a N × N matrix MS , with the entries drawn independently from

U [0, 1]–the uniform distribution on [0, 1]; we set RS = MSM
>
S ; we decompose RS via the eigenvalue

decomposition: RS = QSΛSQ>S ; we generate a N × 1 vector uS with the entries drawn independently

from U [0, 1]; finally, we set S = αS QSDiag(uS)Q>S , where αS > 0 is a parameter. For the optimal

centralized detector, we evaluate P ecen(k) by formula (6). For the distributed detector, we evaluate P ei,dis(k)

by Monte Carlo simulations with 20,000 sample paths (20,000 for each hypothesis Hl, l = 0, 1) of the

running consensus algorithm.

Exponential rate of decay of the error probability vs. the speed of information flow. First, we

examine the asymptotic behavior of distributed detection when the speed of network information flow

varies, i.e., when r varies. (We recall that r := λ2

(
E
[
W 2(k)

])
.) To this end, we fix the supergraph, and

then we vary the formation probability of links q from 0 to 0.75. Figure 3 (top right) plots the estimated

exponential rate of decay, averaged across sensors, versus q. Figure 3 (bottom) plots the same estimated

exponential rate of decay versus 1− r. For q greater than 0.1, i.e., for 1− r > 0.25, the rate of decay of
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the error probability is approximately the same as for the optimal centralized detector Ctot–the simulation

estimate of Ctot is 0.0106. 3 For q < 0.1, i.e., for 1 − r < 0.25, the detection performance becomes

worse and worse as q decreases. Figure 3 (top left) plots the estimated error probability, averaged across

sensors, for different values of q. We can see that the curves are “stretched” for small values of q; after

q exceeds a threshold (on the order of 0.1,) the curves cluster, and they have approximately the same

slope (the error probability has approximately the same decay rate,) equal to the optimal slope.

Study of a sensor with poor connectivity to the rest of the network. Next, we demonstrate that a

sensor with poor connectivity to the rest of the network cannot be an asymptotically optimal detector,

as predicted by Theorem 11; its performance approaches the performance of an individual detector-

sensor, when its connectivity becomes worse and worse. For the i-th individual detector-sensor (no

cooperation between sensors,) it is easy to show that the Bayes probability of error, P ei,no cooper.(k) equals:

P ei,no cooper.(k) = Q
(√

kmi,no cooper.

σi,no cooper.

)
, where mi,no cooper. = 1

2
[m1−m0]2i

Sii
, and σ2

i,no cooper. = [m1−m0]2i
Sii

. It

is easy to show that the Chernoff information (equal to limk→∞
1
k logP ei,no cooper.(k)) for sensor i, in the

absence of cooperation, is given by 1
8

[m1]2i
Sii

.

We now detail the simulation setup. We consider a supergraph with N = 35 nodes and M = 263

edges. We initially generate the supergraph as a geometric disc graph, but then we isolate sensor 35

from the rest of the network, by keeping it connected only to sensor 3. We then vary the formation

probability of the link {3, 35}, q3,35, from 0.05 to 0.5 (see Figure 4.) All other links in the supergraph

have the formation probability of 0.8. Figure 4 plots the error probability for: 1) the optimal centralized

detection; 2) the distributed detection at each sensor, with cooperation (running consensus;) and 3) the

distributed detection at each sensor, without cooperation (sensors do not communicate.) Figure 4 shows

that, when q3,35 = 0.05, sensor 35 behaves almost as bad as the individual sensors that do not communicate

(cooperate) with each other. As q increases, the performance of sensor 35 gradually improves.
VIII. CONCLUSION

We studied Gaussian running consensus based distributed detection over random networks. At each

time step k, each sensor: 1) averages its decision variable with the neighbors decision variables; and

2) accounts on-the-fly for its new observation. We analyzed how asymptotic detection performance, i.e.,

the exponential decay rate of the error probability, depends on the random network connectivity, i.e., on

the speed of information flow across network. We showed that distributed detection is asymptotically

optimal, if the network speed of information flow is above a Chernoff information dependent threshold.

3In this numerical example, the theoretical value of Ctot is 0.009. The estimated value shows an error because the decay of
the error probability, for the centralized detection, and for distributed detection with a large q, tends to slow down slightly when
k is very large; this effect is not completely captured by the simulation with k < 700.
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Fig. 3. Monte Carlo estimate of the performance of distributed detection for different values of the link formation probability
q. Top left: Error probability averaged across N sensors. Each line is labeled with the value of q; performance of centralized
detection is plotted in gray. Top right (respectively, bottom): Estimated exponential rate of decay of the error probability vs. q
(respectively, 1− r). Recall that r := λ2

(
E
[
W 2(k)

])
.
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Fig. 4. Error probability averaged across sensors for the optimal centralized detection, distributed detection at each sensor
(with cooperation), and detection at each sensor, without cooperation. The formation probability q3,35 of the link {3, 35} varies
between 0.05 and 0.5: q3,35=0.05 (top right); 0.2 (top left); 0.3 (bottom left); 0.5 (bottom right).
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When below the threshold, we find a lower bound on the achievable performance (the exponential rate

of decay of error probability,) as a function of the network connectivity and the Chernoff information.

Simulation examples demonstrate our theoretical findings on the asymptotic performance of distributed

detection.
APPENDIX

Proof of inequalities (40). Recall χ(l; k) in eqn. (38). Using eqn. (39), and noting that (1 − p)k−1 ≥

p(1− p)k−1, we bound αi,dis(k) from below as follows:

αi,dis(k) ≥ max
l=0,...,k−1

Q(χ(l; k)) p(1− p)k−l−1 (84)

≥ 1√
2π

max
l=0,...,k−1

χ(l; k)
1 + χ(l; k)2

e−
1
2
χ(l;k)2 p(1− p)k−l−1 (85)

≥ 1√
2π

√
2kCi

1 + 2kNCi
max

l=0,...,k−1
e−

1
2
χ(l;k)2 p(1− p)k−l−1 (86)

=
1√
2π

√
2kCi

1 + 2kNCi
max

l=0,...,k−1
p e
− kCtot

1+(N−1)(1− l
k

)
−(k−l−1)| log(1−p)|

(87)

=
1√
2π

√
2kCi

1 + 2kNCi
max

j=0,...,k−1
p e
− kCtot

1+(N−1) (j+1)
k

−j| log(1−p)|
(88)

=
1√
2π

√
2kCi

1 + 2kNCi
max

j=0,...,k−1
p e−k φ(j;k). (89)

Inequality in eqn. (85) is due to (7), equality in (88) is by letting j = k − l − 1, and equality in (89) is

by definition of φ(j; k) in eqn. (41). Taking lim infk→∞ 1
k logαi,dis(k), (84)-(89) yields:

lim inf
k→∞

1
k

logP ei,dis(k) = lim inf
k→∞

1
k

logαi,dis(k) ≥ − lim sup
k→∞

{
min

j=0,...,k−1
φ(j; k)

}
. (90)

Next, using eqn. (39), we bound P0 (xi(k) > 0) from above as follows:

αi,dis(k) ≤ k max
l=0,...,k−1

Q(χ(l; k)) (1− p)k−l−1 (91)

≤ k
1√
2π

max
l=0,...,k−1

1
χ(l; k)

e−
1
2
χ(l;k)2 (1− p)k−l−1 (92)

≤ k
1√
2π

1√
2Cik

max
l=0,...,k−1

e−
1
2
χ(l;k)2 (1− p)k−l−1 (93)

= k
1√
2π

1√
2Cik

max
l=0,...,k−1

e
− kCtot

1+(N−1)(1− l
k

)
−(k−l−1)| log(1−p)|

(94)

= k
1√
2π

1√
2Cik

max
j=0,...,k−1

e
− kCtot

1+(N−1) j
k

−j| log(1−p)|
(95)

= k
1√
2π

1√
2Cik

max
j=0,...,k−1

e−k φ(j;k). (96)

Inequality in (92) is due to (7), and equality in (96) is by definition of φ(j; k) in eqn. (41). We complete
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the proof by noting that inequalities (91)-(95) imply that:

lim sup
k→∞

1
k

logP ei,dis(k) = lim sup
k→∞

1
k

logαi,dis(k) ≤ − lim inf
k→∞

{
min

j∈{0,...,k−1}
φ(j; k)

}
. (97)

Proof of Lemma 8. Consider the random vector z(i)(k, j) = Φ̃(k, j)ei, which is equal to the i-th column

of the matrix Φ̃(k, j). First, by the Markov inequality, we have:

P
(
‖z(i)(k, j)‖ > ε

)
≤ 1
ε2

E
[
z(i)(k, j)>z(i)(k, j)

]
. (98)

Now, we can bound E
[
z(i)(k, j)>z(i)(k, j)

]
as follows:

E
[
z(i)(k, j)>z(i)(k, j)

]
= E

[
E
[
e>i Φ̃(k − 1, j)>W̃ (k − 1)W̃ (k − 1)Φ̃(k − 1, j)ei |W̃ (j), ..., W̃ (k − 2)

]]
= E

[
e>i Φ̃(k − 1, j)>E

[
W̃ (k − 1)W̃ (k − 1)

]
Φ̃(k − 1, j)ei| W̃ (j), ..., W̃ (k − 2)

]
≤ ‖E

[
W̃ (k − 1)2

]
‖ · E

[
e>i Φ̃(k − 1, j)>Φ̃(k − 1, j)ei

]
.

= rE
[
z(i)(k − 1, j)>z(i)(k − 1, j)

]
. (99)

Now, bounding successively E
[
z(i)(k − s, j)>z(i)(k − s, j)

]
for s = 1, ..., k − j, as in (99), yields:

E
[
z(i)(k, j)>z(i)(k, j)

]
≤ rk−j , (100)

which yields (by eqn. (98):)

P
(
‖z(i)(k, j)‖ > ε

)
≤ 1
ε2
rk−j , i = 1, ..., N. (101)

Now, observe that ‖z(i)(k, j)‖1 ≤ N‖z(i)(k, j)‖, and hence,

P
(
‖z(i)(k, j)‖1 > ε

)
≤ P

(
‖z(i)(k, j)‖ > ε

N

)
.

Further, in view of the matrix norm inequality ‖B‖ ≤
√
N‖B‖1, we have:

P
(
‖Φ̃(k, j)‖ > ε

)
≤ P

(
‖Φ̃(k, j)‖1 >

ε√
N

)
= P

(
max

i=1,...,N
‖z(i)(k, j)‖1 >

ε√
N

)

= P
(
∪Ni=1{‖z(i)(k, j)‖1 >

ε√
N

)
≤

N∑
i=1

P
(
‖z(i)(k, j)‖1 >

ε√
N

)
≤ N4

ε2
rk−j .

Proof of Lemma 9. First, note that, if Aj occurred, we have that:

‖Φ̃(k, s)‖ ≤ ε, ∀s ≤ k − jB,

since ‖Φ̃(k, s)‖ = ‖[Φ̃(k, k−jB)Φ̃(k−jB−1, s)‖ ≤ ‖Φ̃(k, k−jB)‖‖Φ̃(k−jB−1, s)‖, and ‖[Φ̃(k, k−
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jB)‖ ≤ ε and ‖Φ̃(k − jB − 1, s)‖ ≤ 1. First inequality in (58) holds true, because:

N∑
l=1

|[Φ̃(k, s)]il| ≤ N max
i,l=1,...,N

|[Φ̃(k, s)]il|,

and maxi,l=1,...,N |[Φ̃(k, s)]il| ≤
√
N ‖Φ̃(k, s)‖ ≤

√
Nε. Second inequality in (58) holds true, because,

for s ≤ k − jB,
N∑
l=1

|[Φ̃(k, s)]il|2 ≤ ‖Φ̃(k, s)‖2F ≤ N‖Φ̃(k, s)‖2 = Nε2.

Proof of Lemma 10. Consider the Chernoff bound on αi,dis(k), given by:

C (kµ) := E0 [exp (kµxi(k))] = E0

[
exp

(
kλ>x(k)

)]
, (102)

where λ = µ ei, λ ∈ RN . Further, we have:

C (kµ) = E0

[
exp

(
λ>

k−1∑
s=1

Φ(k, s)η(j)

)]
E0

[
exp

(
λ>η(k)

)]
, (103)

where the last equality holds because η(k) is independent from η(s) and W (s), s = 1, ..., k− 1. We will

be interested in computing lim supk→∞
1
kΛ(l)

k (k µ), for all µ ∈ R; with this respect, remark that

lim
k→∞

1
k

log E0

[
exp

(
λ>η(k)

)]
= 0,

for all λ ∈ RN , because η(k) is a Gaussian random variable and hence it has finite log-moment generating

function at any point λ.

Thus, we have that

lim sup
k→∞

1
k

log C (kµ) = lim sup
k→∞

1
k

log C′(kµ), (104)

where

C′(kµ) = E0

[
exp

(
λ>

k−1∑
s=1

Φ(k, s)η(s)

)]
.

We thus proceed with the computation of C′(kµ). Conditioned on W (1),W (2), ...,W (k−1), the random

variables λ>Φ(k, s)η(s), s = 1, ..., k−1, are independent; moreover, they are Gaussian random variables,

as linear transformation of the Gaussian variables η(s). Recall that m(0)
η and Sη denote the mean and

the covariance of η(k) under hypothesis H0. After conditioning on W (1),W (2), ...,W (k− 1), using the

independence of η(j) and η(s) s 6= j, and using the expression for the moment generating function of
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η(s), we obtain successively:

C′(µ) = E

[
E0

[
exp

(
λ>

k−1∑
s=1

Φ(k, s)η(s)

)]
|W (1), ...,W (k − 1)

]
= E

[
E0

[
Πk−1
j=1exp

(
λ>Φ(k, s)η(s)

)]
|W (1), ...,W (k − 1)

]
= E

[
Πk−1
s=1E

[
exp

(
λ>Φ(k, s)m(l)

η

)
exp

(
1
2
λ>Φ(k, s)>SηΦ(k, s)λ

)]]
= E [Πk−1

s=1 exp
(
λ>
(

Φ̃(k, s) + J
)
m(0)
η

)
exp

(
1
2

(
J + Φ̃(k, s)

)>
Sη
(
J + Φ̃(k, s)

))
].

Denote further:

δ(kµ) := E[ exp

(
λ>

k−1∑
s=1

Φ̃(k, s)m(l)
η

)
exp

(
1
2
λ>

(
k−1∑
s=1

Φ̃(k, s)>SηΦ̃(k, j)

)
λ

)
(105)

exp

(
1
2
λ>JSη

k−1∑
s=1

Φ̃(k, s)λ

)
exp

1
2
λ>

k−1∑
j=1

Φ̃(k, s)>SηJλ

 ],

C(kµ) := exp
(

(k − 1)
(
λ>Jm(l)

η −
1
2
λ>JSηJλ

))
, (106)

where dependence on H0 is dropped in the definition of δ(kµ). Then, it is easy to see that

C′(kµ) = C(kµ)δ(kµ). (107)

Recall the expressions for v, m(0)
L and σ2

L in eqns. (10), (12). After straightforward algebra, it can be

shown that C(kµ) equals the expression in eqn. (62). Remark further that δ(kµ) equals:

δ(kµ) = E

[
exp

(
(µ− 2µ2)e>i

k−1∑
s=1

Φ̃(k, s)m(0)
η

)
exp

(
µ2

2
e>i

k−1∑
s=1

Φ̃(k, s)SηΦ̃(k, s)>ei

)]
. (108)

Recall that m0 := maxi=1,...,N |[m(0)
η ]i|. Now, δ(kµ) can be bounded from above as follows:

δ(kµ) ≤ E

[
exp

(
|µ− 2µ2|m0

k−1∑
s=1

N∑
l=1

|[Φ̃(k, s)]il|

)
exp

(
µ2

2
‖Sη‖

k−1∑
s=1

N∑
l=1

|[Φ̃(k, s)]il]|2
)]

(109)

≤ E

[
exp

(
|µ− 2µ2|m0

k∑
s=1

N∑
l=1

|[Φ̃(k, s)]il|

)
exp

(
µ2

2
‖Sη‖

k∑
s=1

N∑
l=1

|[Φ̃(k, s)]il]|2
)]

(110)

=: E [β(k, µ)] =
J∑
j=0

E [β(k, µ)|Aj+1] P(Aj+1), (111)
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where eqn. (111) uses the Theorem of total probability law with partition Aj+1, j = 0, ...,J . Next,

conditioned on Aj+1, we bound the terms
∑N

l=1 |[Φ̃(k, s)]il| and
∑N

l=1 |[Φ̃(k, s)]il]|2 as follows: 1) for

s ≤ k− (j + 1)B, we bound these terms as given by Lemma 9; and 2) for s > k− (j + 1)B, we bound

these terms as given by Lemma 7. Hence, E [β(k, µ)|Aj+1] is bounded from above as follows:

E [β(k, µ)|Aj+1] ≤ exp
(
|2µ2 − µ|m

{
2(j + 1)B + (k − (j + 1)B)N

√
Nε
})

(112)

exp
(
µ2

2
‖Sη‖

{
(j + 1)B + (k − (j + 1)B)Nε2

})
.

Finally, after upper bounding P(Aj) as in eqn. (57), and combining (111) and (112), we get δ(kµ) ≤ δ(kµ)

with δ(kµ) given by eqn. (63); the latter inequality combined with eqns. (104) and (107) completes the

proof of Lemma 10.
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Superior Técnico (IST), Lisbon, Portugal, in 2002. Currently, he is an Assistant Professor in the Department

of Electrical and Computer Engineering, IST. He is also a Researcher at the Institute of Systems and

Robotics (ISR), Lisbon, Portugal. His current research interests are in the area of optimization, sensor

networks and signal processing on manifolds.

Bruno Sinopoli (M’03) Bruno Sinopoli received the Dr. Eng. degree from the University of Padova in

1998 and his M.S. and Ph.D. in Electrical Engineering from the University of California at Berkeley, in

2003 and 2005 respectively. After a postdoctoral position at Stanford University, Dr. Sinopoli joined the

faculty at Carnegie Mellon University where he is an assistant professor in the Department of Electrical

and Computer Engineering with courtesy appointments in Mechanical Engineering and in the Robotics

Institute. Dr. Sinopoli was awarded the 2006 Eli Jury Award for outstanding research achievement in the

areas of systems, communications, control and signal processing at U.C. Berkeley and the NSF Career award in 2010. His

research interests include networked embedded control systems, distributed estimation and control over wireless sensor-actuator

networks and cyber-physical systems security.

May 4, 2011 DRAFT



32
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