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Array-Based QR-RLS Multichannel Lattice Filtering
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Abstract—An array-based algorithm for multichannel lattice
filtering is proposed. The filter is formed by a set of units that are
adapted locally and concurrently using recursions that closely
match those for single-channel lattice filters. The design, based on a
known modular decomposition approach, allows for unequal filter
lengths to be specified for different input channels. Individual
units are updated using a square-root recursive least-squares
(RLS) algorithm in array form that relies mainly on Givens
rotations and exhibits highly favorable numerical behavior and a
regular structure that is appealing from a hardware implemen-
tation perspective. Iterative implementations of Givens rotations
using the Newton method and CORDIC processors are examined
in the context of fixed-point implementations. A procedure based
on three CORDIC steps is proposed to handle complex data that
arise in several applications of multichannel filtering. Algorithm
initialization issues are also addressed. The array algorithm is
compared in simulation with plain RLS, QR-RLS, and two related
multichannel lattice algorithms. Its performance is shown to be
comparable to that of other QR-decomposition-based algorithms
under fixed-point arithmetic. In particular, it retains desirable
graceful degradation properties as the numerical precision de-
creases.

Index Terms—Adaptive filtering, lattice algorithms, multi-
channel filtering, recursive least-squares (RLS) estimation.

I. INTRODUCTION

A DAPTIVE lattice algorithms have been used in channel
equalization, system identification, filter banks, speech

analysis, and several other filtering applications. Their practical
relevance stems from the modularity, simplicity, robust numer-
ical behavior, and linear increase in computational complexity
with filter order, making them particularly well suited for hard-
ware implementation. While several adaptation criteria for lat-
tice filters have been published, recursive least-squares (RLS)
remains one of the most popular and is adopted in this work as
well [1].

In [2], a key correspondence was established between RLS
update expressions and Kalman filter equations for some very
simple dynamic systems. This provided a rich framework
whereby the myriad single-channel RLS lattice and transversal
algorithms were shown to be specific instances of known
Kalman filter equations in various forms. More importantly,
it allowed the extensive literature on Kalman filtering to be
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directly applied in RLS problems, suggesting novel algorithms
with improved performance.

The main objective of this paper is to extend the correspon-
dence with Kalman filtering to the multichannel lattice case,
where a single discrete-time sequence is estimated from sam-
ples observed over a period of time in a set of parallel chan-
nels. Potential applications abound in array processing, commu-
nications, acoustic echo cancellation, geophysics and medicine,
among others. Complex data arise naturally in several of these
problems, and will be assumed henceforth. Parts of this work ad-
dressing the derivation of the filter structure and some aspects
of the adaptation algorithm can be found in [3] and [4].

Early works on multichannel lattice filtering extended known
single-channel algorithms by considering multichannel linear
prediction, but some of the required matrix operations are dif-
ficult to compute in hardware or low-precision processors and
do not lend themselves to parallel implementation. Inversions
and other cumbersome matrix operations may be circumvented
by QR-type algorithms that directly operate on the data matrix,
rather than the sample autocorrelation matrix [5]. The deriva-
tion of QR-type algorithms for solving least-squares (LS) prob-
lems using Givens rotations was examined in [6] in a general set-
ting; among several algorithms, [6] describes the equivalent of
a single-channel lattice filter in array form. Modular decompo-
sitions were proposed as an alternative way of avoiding the ma-
trix formulation of multichannel lattice (or transversal) filtering
altogether by considering a set of interrelated single-channel
problems [7]–[10]. Similar decompositions have been used in
transversal filtering as well [11].

Starting from the modular decomposition approach of [9],
order-update and time-update recursions based on forward
and backward linear prediction are derived here for each of
the resulting LS subproblems paralleling the single-channel
case. Having established the properties of these subproblems,
how they map into individual processing units, and how
single-channel lattice recursions should be adapted to them,
one can readily derive simple dynamic systems whose Kalman
filter equations are equivalent to the basic update expressions.
In line with general results in [12] regarding the structure of
lattice filters, it was found that several theoretically equivalent
formulations could be chosen. A square-root array algorithm
based on angle-normalized errors is proposed here due to the
anticipated numerical robustness stemming from the stability
of Givens rotations and the compressed dynamic range of its
internal variables. Explicitly examining the connection of LS
subproblems with single-channel lattice theory also clarifies
the secondary issue, not addressed in [9], of appropriately
initializing the algorithm’s variables based on regularization.
The same modular decomposition was used in [13] to propose
a power-normalized multichannel lattice algorithm, whose
performance was not illustrated.
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Multichannel QR lattice algorithms for equal channel orders,
using both conventional and square-root-free Givens rotations,
were presented in [5]. That work was further developed in [14]
by removing redundant operations, which also improved the nu-
merical stability. An array-type algorithm of this kind based on
multichannel linear prediction for equal channel orders was also
given in [15]. In [16] the multichannel QR lattice of [14] was
extended to unequal channel orders by combining linear pre-
diction with so-called transition stages that decorrelate some of
the input channels so that they can be incorporated at various
points of the lattice cascade. The approach differs from modular
decomposition, but the resulting filter structures are strikingly
similar. When expressed in QR form the algorithm also resem-
bles the one proposed here and, as discussed in Section III-B,
will usually require fewer operations. Its structure is less reg-
ular, however, which is a relevant factor for hardware implemen-
tations. Yet another structurally similar multichannel filter was
derived in [17] by representing the basic QR-RLS algorithm as
a hierarchical signal flow graph and then applying a sequence
of high-level block manipulations in graphical form. In spite of
relatively minor differences, all multichannel algorithms men-
tioned above have complexity for channels and
filter coefficients per channel.

More recent results on multichannel QR-based filtering have
emphasized the QR-RLS algorithm as a starting point, and
then consider block and sequential channel decompositions to
obtain fast algorithms for time-series data [18], [19]. Among
several variants, this approach leads to order-recursive forms
whose complexity is similar to that of previously-mentioned
algorithms, but their structure is less regular.

In the proposed algorithm the actual mapping from prearray
to postarray at each time step in scalar lattice units is performed
by a complex Givens rotation, which in its basic form requires
evaluating an inverse square root [20]. Square-root-free (fast)
Givens rotations have been applied in lattice filtering [5],
but they require formulating a modified lattice update with
increased numerical range that somewhat detracts from the
original appeal of array algorithms. In [6] the derivation of
Givens-based algorithms with and without square-roots is
examined, and it is shown that a particular lattice algorithm
using fast rotations is actually a variant of the unnormalized a
priori lattice. Two alternative implementations of the standard
Givens rotation suitable for fixed-point arithmetic are consid-
ered in this work and compared by simulation. One of them
iteratively computes the inverse square root using the Newton
method. The simplicity of the iteration and its fast convergence
make it particularly appropriate for programmable processors.
The other alternative uses CORDIC processors and is directed
towards hardware implementations. In the latter, complex data
are handled by splitting a Givens rotation into three more
elementary operations, each parameterized by a single real
angle, that perform phase rotation, real Givens rotation, and
phase counter-rotation. This approach is a modified version of
the two-step technique developed in [21] for QR-RLS filtering
using systolic arrays.

This paper is organized as follows. Section II states the mul-
tichannel LS filtering problem, reviews the modular decompo-
sition approach, the global structure of the multichannel lattice

filter, and derives the basic order and time recursions for indi-
vidual units in terms of a posteriori errors and angle-normalized
errors. Section III establishes the dynamical systems providing
the link with Kalman filtering, from which multichannel lattice
equations in array form are derived. Section IV describes the ap-
proaches for performing complex Givens rotations based on the
Newton algorithm and three-step CORDIC processors. Section V
examines the impact of the Newton and CORDIC approaches
in fixed-point arithmetic and presents simulation results com-
paring the performance of the proposed algorithm with other
multichannel filters. Finally, Section VI summarizes the main
results and draws some conclusions.

Notation: Throughout the paper, vectors and matrices are
represented by lowercase boldface and uppercase boldface
letters, respectively. The notations , and stand
for transpose, complex conjugate transpose (Hermitian) and
Moore-Penrose pseudoinverse, respectively. The inner product
of two complex vectors is denoted by . Modulo-
indexing (in the range rather than as usual),
is denoted by .

II. MULTICHANNEL LATTICE STRUCTURE

In the multichannel setup input channels convey discrete-
time signals , , that are observed over a period
of time and linearly combined to approximate a desired output
(reference signal) at time as , where the
input sample vector is given by

(1)

and the filter order need not be the same for all channels.
The optimal coefficient vector minimizes the exponentially
weighted LS cost function

(2)

with forgetting factor ,

(3)

and . The family of RLS algo-
rithms recursively updates the coefficient vector to avoid
explicitly evaluating at each time step the optimal solution

which projects onto the column space of
[22].

A. Modular Decomposition

The lattice filter is a cascade of blocks, each relying on for-
ward and backward linear prediction to progressively increase
the filter order from 0 to a desired value at the end of the cascade
[1], [22]. In the scalar case unit in the lattice addresses the LS
problem for input vectors con-
taining the most recent samples at each time instant. Order
recursions are derived by partitioning the input matrix in
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Fig. 1. Structure of a multichannel lattice block under modular decomposition for L = 3.

different ways to separate its columns containing the most re-
cent or oldest samples. The desired LS projection of is then
expressed in terms of the one performed by unit , as well
as forward and backward linear prediction residuals of the left-
most/rightmost columns of the input matrix [1].

In the modular decomposition approach of [9], [10] a se-
quence of parallel chains of scalar units interact over stages.
In each stage, the prediction order is increased by 1 in one of the
input channels in such a way that after stages the overall filter
order is increased in all channels. Fig. 1 depicts the structure of
one of these multichannel lattice blocks for , whose in-
ternal connections will be described in the sequel.

Consider a given lattice block and let denote the input
vector corresponding to the LS problem solved at the output of
the previous lattice block in the -th chain. The actual number
of samples in any of the input channels that make up is
unimportant for deriving the lattice recursions, and with a minor
abuse of notation will still be denoted by as in (1).
This vector is assumed to be updated up to time in channels

, but only up to time in the remaining channels, viz.

(4)

Unit in the first stage of the current lattice block solves
a LS problem whose input vector is obtained from

by incorporating the most recent sample ,
which increases the order by 1 in channel . The same
holds in general when going from to for
any stage of the lattice block. Chain indices should be inter-
preted modulo- in the range , and when wrap-around
occurs the time reference increases to . Fig. 2 depicts
this time/order update process for equal orders at the input of
stage 1.

B. Order Update

As in the scalar case, update recursions for cell in Fig. 1
are based on forward and backward linear prediction of selected
elements of from and (Fig. 3).

Fig. 2. Time/order update of the input data vector.

Paralleling (2), cell addresses the projection of , de-
noted by , onto the column space of

(5)

The “forward predicted” and “backward predicted” elements
highlighted in Fig. 3 may be singled-out from as

(6)

(7)

where , are permutation matrices, and
if and 0 otherwise. Then, known geometric

arguments from the scalar case [1] are readily extended to this
multichannel setting to conclude that the projection may
be order updated by considering auxiliary forward and back-
ward prediction error vectors

(8)

(9)

(10)

In (8)–(10), is the vector of conjugated residuals
for weighted LS backward prediction of
from for . Similarly, is built
from conjugated forward prediction residuals of given

. The scalars , and are the reflection
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Fig. 3. Forward/backward linear prediction in stage l > 1.

coefficients. The pattern of interconnections between the in-
ternal units of the lattice block in Fig. 1 is implied by (9),
(10). Note that the usual delay at the backward error input is
only present in the units of chain , where the data vector

only contains samples up to
time . Again paralleling the single-channel lattice, only
the last line of (9), (10) will be explicitly needed for cell
to recursively update its internal parameters over time.

1) Ladder Filter: A lattice filter transforms a correlated input
data sequence into a new sequence of uncorrelated, in the LS
sense, backward prediction errors. These enter a ladder section,
providing an orthogonal signal basis that simplifies the actual
filtering process.

A single multichannel lattice block increases the order
of the (implicit) LS estimation problem by one sample on
channels, so the unit should output a total of uncorrelated con-
tributions to an -stage ladder block. In principle, the back-
ward errors in any of the chains could be used for this purpose,
as they form an uncorrelated set. An obvious choice is , as
the associated data vectors use the same time reference
for the most recent sample in all channels (refer to Figs. 2 or 3).
Stage of the ladder block thus minimizes the analog of (2) for
data matrix and, from (8), the recursive expression for

the a posteriori output error vector to
be propagated is

(11)

C. Merging Channels

When several -channel lattice blocks are cascaded, all chan-
nels are constrained to share the same equivalent filter order.
This section discusses how different orders can be specified by
cascading lattice blocks with increasing dimension.

Channel indices are assumed to be sorted so that the required
filter orders satisfy . The filter will have a
total of cascaded lattice blocks with increasing size, as some
of the channels are only effectively incorporated later in the pro-
cessing chain. Channel enters the cascade blocks before
the final one, so that the input signal contributes to a total
of blocks as intended. In block the lattice dimension

equals the number of channels that satisfy .
Fig. 4 illustrates the filter structure for orders , ,

, where, similarly to [9], lattice blocks and
ladder sections are denoted by and , respec-

tively. Each ladder section is fed a scalar prediction error and

Fig. 4. Multichannel lattice filter for channel orders m = 4, m =
3, m = 1.

Fig. 5. Graphical depiction of prediction errors f , b needed in the first
stage (l = 1) of lattice block s+1 that incorporates c new channels. (a) Chain
1 < i � L . (b) Chain L + 1 < i � L + c.

the intermediate backward residuals ,
from its associated lattice block.

Suppose that a total of new channels are incorporated into
the lattice section after block , with indices .
This implies that the underlying data vectors at the input of
block contain no samples for channels
. It is then straightforward to verify that, for

, the residual is just the prediction error
of given the fully updated data vector at the output of
the previous lattice block, , regardless of the remaining
newly incorporated channels.

Fig. 5(a) depicts the samples involved in the computation of
forward/backward residuals , that are needed for order
update in unit , , in the first stage of a lattice
block. Fig. 5(b) shows a similar diagram for one of the units
in a newly incorporated chain. The figure highlights the fact
that only simple prediction errors of , , given

are needed at the input of block , in addition to the
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forward/backward residuals propagated from block . But
an entirely equivalent error based on is computed by the
ladder section for reference signal (Section II-B-1), implying
that identical ladder blocks should process each channel that
will be incorporated downstream. When is replaced by ,

, the last line of (11) still provides the order recursion
that is needed to gradually propagate the prediction error.

While distinct, prediction errors and reflection coefficients
in all ladder cells will be denoted by the same symbols ,
to keep the notation simple. When entering a lattice block,
becomes the zeroth-order error for the appropriate
chain . In the remainder of this paper the size of a lattice block
will still be represented as rather than , unless otherwise
noted, with the understanding that this parameter actually
changes along the filter for unequal channel orders.

D. Time Update

The norms of and in (9), (10) yield the predic-
tion error energies

(12)

which are minimized when the reflection coefficients
and are chosen according to

(13)

(14)

where the inner product in both numerators was abbrevi-
ated to . As forward prediction is ultimately a
growing-memory LS problem with data matrix and
reference , a known time recursion exists for
the residual energy involving the a priori error
and a posteriori error [22]

(15)

Moreover, at time these errors are known to be related by a
real conversion factor in the interval [0,1] that is uniquely de-
termined by the input data matrix (see Appendix A)
and will, hence, be denoted by . Similar comments can
be made about backward prediction and the a priori error
and a posteriori error . As , and , share a
single data matrix, the same will hold for the conversion factor

(16)

The numerator of (13), (14) is the inner product of residual vec-
tors in two RLS problems that share a common input data ma-
trix, and Appendix A shows that it may be recursively updated
in time similarly to , as

(17)

In the ladder section, where estimation is based on data matrix
, a priori errors and a posteriori errors are related by

.

E. Angle Normalization

Published single-channel lattice algorithms have been formu-
lated with a priori, a posteriori or angle-normalized errors [1],
[22]. The latter are used in QR-type array algorithms of primary
interest to this work due to their excellent numerical properties.
In light of the rather direct multichannel extensions that have
been derived so far, the following angle-normalized prediction
errors are defined:

(18)

(19)

(20)

When written in terms of (18)–(20), the time recursions of
Section II-D assume a particularly simple form

(21)

(22)

(23)

As these are entirely analogous to the single-channel case, one
can still argue as in [1], [22] that, with suitable initialization
of (21)–(23), the reflection coefficients and in
(13), (14) optimally project onto each other the normalized error
vectors

(24)

(25)

and may be time updated by RLS. The adaptation of internal
variables in an individual lattice cell is formally indepen-
dent of other cells, and thus remains amenable to parallel
implementation.

III. ARRAY ALGORITHM

The major goal of the previous section was to establish that
the known model for single-channel lattice cells still applies
to individual units in a modular multichannel lattice with only
minor changes. In practice, multichannel expressions are readily
obtained from their single-channel counterparts by making the
substitutions

(26)
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TABLE I
KALMAN VARIABLES FOR NORMALIZED FORWARD/BACKWARD PREDICTION AND LADDER FILTERING

and keeping , , and unchanged. This should be viewed
in the broader context of the discussion in [12], which argues
that in order-recursive filters the structure and update relations
are largely decoupled. A particular multichannel decomposi-
tion strategy induces specific interconnections of elementary
(single-channel) building blocks, and these may be updated
by any algorithm of a relatively large selection of variants. In
light of this, the correspondences above follow directly from
[9]. However, providing a compact geometric derivation as
in Section II is useful to fully justify the exact initialization
procedure developed in Section III-A. From (26) guidelines are
extracted for building an unforced state-space model for which
the basic Kalman filter equations are equivalent to the RLS
recursion for [22]

(27)

where is the state variable, is the observation and
is white noise with zero mean and unit variance. Table I

generalizes the one given in [22], indicating how the Kalman
variables for this state-space model relate to RLS variables for
forward prediction defined previously. Models for backward
prediction and ladder filtering in the multichannel case may be
similarly derived, and their correspondences with RLS are also
listed in the table. All lines, except for the last two, follow di-
rectly from the equivalence between Kalman and RLS filtering.
The expression for the a priori Kalman output error for forward
prediction, , can be verified as in [22], by using (18) and
the top three lines of Table I to obtain

(28)

The term inside parenthesis is computed by the unit before
the reflection coefficient is updated and equals the a priori
error . The a posteriori Kalman output error is
derived by first noting that the a posteriori state estimate is

, and then proceeding similarly to to obtain

. In Kalman filter theory the
conversion factor is defined as .

Having established the correspondences of Table I, all that re-
mains to be done is to substitute them in the standard Kalman
filter equations in array form to obtain the desired lattice recur-
sions. Generically, a set of variables is updated by building a

prearray, applying a Givens rotation to zero-out one of its el-
ements, and then reading the new values from other positions
in the postarray. Being a type of square-root formulation of the
Kalman filter, this algorithm propagates and rather
than the energies , . Moreover, instead of actual reflec-
tion coefficients, the algorithm propagates a set of related vari-
ables , , such that

(29)

(30)

(31)

This is not problematic if, as is often the case, estimation errors
are the only relevant quantities to be extracted from the adap-
tive filter. Because the algorithm computes normalized errors,
the square-root conversion factors must be propagated as
well to obtain the unnormalized a priori error at the output of
the last ladder block as . Similarly to

the single-channel case, updating simply amounts to using
extended ladder arrays where an additional line allows the re-
quired variables to be read directly. Table II summarizes the
multichannel array algorithm.

At each stage the forward, backward and ladder arrays can
be evaluated in parallel for all chains.1 At time , the computa-
tions are sequentially performed for the various stages of a lat-
tice block, proceeding downstream until all blocks in the filter
have been updated. From an implementation point of view, it
makes sense to group the variables used to update an individual
lattice cell into a single local data structure or hardware unit.
This means that lattice cell should store , ,

, , and, for , the conversion factor2 . All ladder
cells in stage (processing the reference signal and unmerged
input channels) read the updated Givens matrix from lat-
tice cell and locally store .

A. Initialization

At time , the order recursion for the conversion factor and
normalized errors is initialized at the input of the first level of

1Strictly speaking this is not quite true in the algorithm of Table II because,
for improved efficiency, ladder cells at stage l reuse variables from unit (1; l).

2As discussed in Section II-C, the prediction order is 0 for newly incorpo-
rated channels at the input of block s + 1, hence the data matrix for ladder fil-
teringU coincides withU at the output of the previous block and
the conversion factor can be simply propagated between blocks as  =
 .
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TABLE II
SUMMARY OF THE MODULAR MULTICHANNEL QR-RLS LATTICE ALGORITHM IN ARRAY FORM

lattice/ladder blocks for zeroth-order prediction ,

, and or
, as appropriate in each chain.

Regarding the time initialization of internal variables in
lattice units, under the assumption for
these may be chosen heuristically as

, and , where is a
small positive constant [22]. More formally, one may consider
modified LS cost functions where a judiciously-chosen regu-
larization term enables exact initial values to be derived [1]. In
the multichannel case the proposed regularized form for an LS
problem with data matrix is

(32)

with suitably chosen reference for each specific problem (for-
ward/backward prediction or filtering), as described in previous

sections. In the single channel case, a convenient regularization
matrix for an LS problem with input is

(33)

As shown in [1], the geometrical intuition behind forward/back-
ward prediction is preserved under LS regularization, all update
formulas remaining valid. The main effect of regularization
according to (33) is to provide a well-defined nonzero value for
the residual norms at time 1, which can then be recursively
updated in time as described previously. The multichannel
extension of (33) appearing in (32) is similarly related to the
time indices of the elements of shown schematically
in Fig. 3. Its explicit form is tedious but straightforward, and
will be omitted here. This choice of ensures that the same
permutation matrices , in (6), (7) partition it as

(34)

(35)
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Given the compatible partitioning of and expressed
in (6), (7) and (34), (35), the same steps used in the single-
channel case [1] may be repeated here to relate the original
LS problem (32) with lower-order problems involving forward/
backward prediction. Unsurprisingly, order recursions (8)–(10)
still hold, but in the resulting expressions the singled-out ele-
ments in (34) and (35) are added to and ,
respectively. This implies the following initial values for pre-
diction error energies

(36)
Equivalently, the internal energy variables of unit should
be set as

(37)

with

(38)

The remaining variables are initialized with zero, as in the
heuristic scheme mentioned above. Recall also that the same
symbol was adopted in all lattice blocks for channel orders
appearing in (38). In practice, in block should be set as
the number of previous lattice blocks that include chain

(39)

B. Computational Complexity

Each scalar unit in the algorithm of Table II executes exactly
the same abstract operations as one in a single-channel array lat-
tice [6]. These will be denoted below by (computing Givens
parameters; scaling a positive parameter by and updating it)
and (rotating a pair of complex values, one of which is scaled
by ). In the worst-case scenario of equal channel orders com-
plexity increases by a factor of relative to a single-channel
lattice with the same total order, as there are times more
full-blown lattice units in the multichannel filter.

The multichannel filter can also be readily compared with
[16], which uses essentially the same high-level block struc-
ture (see Fig. 4). In the former, updating a block with dimen-
sion requires3 updates in the lattice part
and in the associated ladder blocks. In
[16] the upper elements in the rightmost column of two ma-
trices with dimension and

must be annihilated (and other entries rotated),
requiring updates. From
[6, Table IV] and are broken down4 into elementary real
sums , products , divisions and square-roots
as and .
A comparative analysis for several values of and reveals

3For convenience, updating of the conversion factor  in chain 1 by a
single real product is ignored. The same is done for the algorithm of [16].

4Specifically, G accounts for the “angle computer” steps (2(A) + 4(M) +
2(D) + 1(Q)) and rotation of a single real value (2(A) + 3(M)), while R
accounts for the two-step “rotator” in [6, Table IV].

that the proposed algorithm tends to use slightly fewer sums and
products than [16], but more divisions and square-roots.

A comparison with the original modular algorithm of [9] can
be made at the level of a single unit, as both filters are struc-
turally identical. Most of its steps, listed also in [4, Table 2],
require operations (reflection coefficient updates
require an additional each, while energy updates are real
and use ), for a total of in
lattice cells and in ladder cells. On the
other hand, the previous analysis shows that the proposed algo-
rithm requires
in lattice cells and in ladder cells. As-
signing equal weight to all operations, the algorithm of [9] uses
62 (respectively, 26) operations per lattice (respectively, ladder)
unit, versus 72 (22) for the one of Table II. This implies that the
latter is less complex only in cases where there are at least 2.5
times more ladder units than lattice units. This might happen
when the order for a few of the input channels is much larger
than for the remaining ones.

IV. GIVENS ROTATIONS

The array algorithm relies on a set of unitary matrices to
annihilate the (1, 2) entry of each prearray in Table II, gener-
ating time-updated values in the postarray. For complex data
this requirement is satisfied by a complex Givens rotation of the
form [22]

(40)

In a prearray with top row , where is real and positive,
the sine and cosine parameters are given by [20]

(41)

which requires computing one inverse square root. Because
this operation is cumbersome to implement in hardware or
programmable fixed-point processors, square-root-free fast
Givens rotations have been proposed to circumvent it at the
expense of an increase in the numerical range of some variables
[5]. Here, two iterative implementations of the original rotation
are examined to better preserve the numerical robustness of the
array-based lattice algorithm.

A. Newton Algorithm

The function in (41) has a continuous derivative with re-
spect to and may be iteratively evaluated using the Newton-
Raphson algorithm. Due to its quadratic convergence speed, this
is one of the preferred numerical methods of computing a wide
range of functions including square root, inverse, and inverse
square root [23]. Evaluating amounts to finding the posi-
tive zero of the function , which yields
the iteration

(42)

In the lattice algorithm of Table II the parameter is a ratio
between instantaneous and accumulated errors at time , and

Authorized licensed use limited to: UNIVERSIDADE TECNICA DE LISBOA. Downloaded on October 15, 2008 at 12:37 from IEEE Xplore.  Restrictions apply.



3518 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

hence will usually satisfy except for small and
during transients in the input/reference sequences. When the
Newton iteration is initialized fairly close to the desired value,
e.g., , the cosine parameter will be approximated to
an accuracy of about in 5–10 iterations. Moreover, when
implemented in a fixed-point DSP the simplicity of the Newton
iteration (42) will likely allow intermediate values to be stored
in internal extended-precision registers used for multiply-accu-
mulate (MAC) operations.

To achieve high numerical accuracy in fixed-point arithmetic,
few bits should be allocated to the integer part of , but in turn
this increases the likelihood of overflow during transient events.
Whenever in (41) a scaling factor (typically a power
of two) could be determined so that does not
overflow. Then the modified Newton iteration

(43)

converges to a fixed point such that , .

B. CORDIC Algorithm

In hardware implementations, the CORDIC algorithm consti-
tutes an attractive way of approximately zeroing the required
prearray element through a number of rotations involving
mainly shifts and additions [23]. Specifically, a vector with
(real) coordinates undergoes a series of rotations over
angles , satisfying , , such that

results. Although this would seem to require
an infinite number of iterations, under fixed-point arithmetic
there is no point in increasing the index beyond the available
number of bits because would then be represented as 0.
An elementary CORDIC rotation involving only shifts and sums
is given by

(44)

After the last iteration, the resulting vector is multiplied by the
constant gain which compensates for a small
amplification in every simplified rotation (44).

In addition to vectoring mode, described above, the CORDIC

processor can also operate in rotating mode, applying to its input
vector a prespecified sequence of rotations. To annihilate the (1,
2) element of a two-column real prearray its first line is pro-
cessed in vectoring mode and the resulting angles are used in ro-
tating mode for all remaining rows. This is formally equivalent
to right multiplication of the prearray by a real Givens matrix.

A modification to this method is proposed in [21] when the
element of the prearray to be annihilated is complex. To make it
real its column is first multiplied by a complex exponential, and
then the CORDIC procedure is applied in the manner described
above. Actually, this prerotation can itself be implemented by
CORDIC, resulting in an elegant algorithm with two similar steps.
The method of [21] is developed for updating the QR decompo-
sition of the RLS data correlation matrix by appending a new
input vector to the triangular Cholesky factor and then using
a sequence of two-step rotations to zero-out all its elements
and in the process update the factor. The setup for lattice fil-
tering is somewhat different, as a single element is to be annihi-
lated and the remaining entries in that column of the postarray

contain relevant updated variables. It is, therefore, necessary
to undo the prerotation by applying a symmetric postrotation
after the CORDIC step. Prerotation and CORDIC are, respectively,
equivalent to right multiplication of the two-column prearray by

, where is the phase of the (1, 2) ele-
ment, and

(45)

Overall, the complex prearray is thus multiplied by the product
of unitary prerotation-CORDIC-postrotation matrices

(46)

which, unlike in [21], conforms to the structure of
the general complex Givens matrix (40). In summary, the fol-
lowing practical procedure is used to update the arrays in

Table II, denoted here by

V. SIMULATION RESULTS

The performance of the proposed modular QR-based algo-
rithm (denoted by MQR) is illustrated in simulation and selec-
tively compared with that of plain RLS, QR-RLS (implemented
according to [14, Table II]), the original modular algorithm of
Glentis and Kalouptsidis [9] (denoted by MGK, and also listed
in [4, Table 2]), and the multichannel lattice algorithm of Yang
[16] (QR-MLSL(K)). MGK is a type of error-feedback form
where reflection coefficients are directly updated in time, rather
than indirectly by dividing a crosscorrelation by an accumulated
residual energy. Such feedback schemes are thought to exhibit
improved numerical stability, at least in the single-channel case
[22]. The filter is still structured as shown in Figs. 1 and 4, with
lattice unit storing and updating , , , .
Conversion factors are absent, as the algorithm explicitly com-
putes a priori and a posteriori errors. The particular implemen-
tation of plain RLS used in this paper is the one designated by
version II in [24, Table 13.2], which exhibits improved numer-
ical behavior at the cost of moderate added redundancy.

The algorithms were hand-coded in C in a 32-bit Intel pro-
cessor. Taking advantage of native integer data types with stan-
dard (32 bit) and extended (64 bit) precision, low-level arith-
metic functions were developed for true fixed-point arithmetic
with variable integer/fractional part lengths, up to a total word
length of 32 bits. Floating-point versions of the algorithms were
generated by recompiling the same high-level code (making op-
tional adjustments such as computing Givens rotation parame-
ters in closed form), linking with modified low-level arithmetic
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Fig. 6. Learning curves for lattice (MQR, MGK) and plain RLS filtering under
64-bit floating-point arithmetic. (a) AR(6,3,2) channel, RLS order 6,3,2. (b)
MA(6,3,2) channel, RLS order 18,9,6.

functions using floating-point operations, and checking the re-
sults against MATLAB code.

AR and MA scenarios: A random sequence of symbols from
the set is filtered by three randomly-generated
parallel channels, complex white noise with identical variance
is added to each signal so that the mean SNR is 20 dB, and the
resulting multichannel waveform is rescaled for unitary peak
magnitude. At time the channel changes abruptly to an
independent realization. In the AR (MA) scenario, the channels
are independent single-channel AR (MA) filters with orders 6,
3, and 2 whose poles (zeros) are randomly placed inside the disk

. The RLS filters for AR and MA channels have order
6, 3, 2 and 18, 9, 6, respectively, and the same forgetting factor

is used for all. In MA the input signals are differen-
tially delayed with respect to the reference prior to entering each
RLS filter to account for 6, 3, 2 (equivalent) anticausal samples.

Fig. 6 shows the a priori mean-square error (MSE) perfor-
mance of RLS, MQR and MGK, averaged over 50 Monte Carlo
runs using double-precision floating-point arithmetic. QR-RLS
and QR-MLSL(K) provided virtually identical results to MQR,
and for clarity are not depicted in the figure. In this particular
experiment Givens rotations were calculated in closed form
using (41), rather than the iterative methods of Section IV.
Bearing in mind their theoretical equivalence, the similarity of
results obtained with the various algorithms is not surprising.
The MSE in lattice filters, however, tends to overshoot, the
effect becoming more noticeable as the filter order increases.
Fig. 7 shows similar learning curves for fixed-point arith-
metic, and also the steady-state MSE as a function of word
length, averaged over iterations 800–1000. Regarding MQR,
curves are shown for Givens rotations implemented with the
Newton method (MQRN) and CORDIC (MQRC). All units in
a given lattice/ladder block share the same numerical format
(integer/fraction length), which was manually chosen to cover
the empirical floating-point range with as many fractional bits

as possible. The common format used for all internal variables
in plain RLS was chosen similarly, but it was found that up to
two extra bits were needed in the integer part to avoid saturation
when switching to fixed-point arithmetic. Table III lists the
integer part lengths that were used for all algorithms in the
three test cases described in this section. Steady-state MSE
plots include results for QR-RLS using Newton-based rotations
(QR-RLSN), but the curves have been omitted in learning plots
where they nearly coincide with MQRN. The QR-MLSL(K)
algorithm was found to provide even closer results to MQR
over all examined precisions using either Newton or CORDIC

rotations. Its performance is only explicitly documented in the
DFE scenario below, again to avoid cluttering the plots.

Plain RLS is actually more numerically sensitive than the
plots suggest, as these do not account for the fact that it failed to
converge in about 15% of trials for MA and 2% for AR even with
32-bit precision. Multichannel estimation problems are often
ill-conditioned in the absence of noise, reflecting the ambiguity
of estimating the reference with similar reliability from different
subsets of input channels. This is also the case for the simu-
lated scenarios considered here, and thus increasing the SNR
(not shown) degrades the numerical conditioning, expands the
dynamic range of the RLS algorithm’s internal variables, and ul-
timately yields poorer performance in fixed point. By contrast,
rotation-based and lattice algorithms were able to cope better
with such ill-posed LS problems.

Regarding MQRN, the algorithm stops when the difference
between consecutive iterates in (42) is lower than or a
maximum of 10 Newton steps have been performed. Under
floating-point arithmetic 5–6 iterations are typically carried out
when , whereas the maximum of 10 is often reached
when operating in fixed point. MQRN clearly outperforms the
CORDIC-based MQRC in Fig. 7 at low precisions, although the
difference between them using 8-bit arithmetic is not really
meaningful, as both algorithms display large steady-state MSE.
Similar behavior was observed in Newton versus CORDIC

rotations for QR-RLS and QR-MLSL(K).
The MGK algorithm achieved the best residual MSE perfor-

mance at low precisions in the AR scenario, which is similar to
the one reported in [9], although its convergence time clearly in-
creased relative to floating-point benchmarks. This behavior is
exacerbated in the two other MA-like scenarios considered here,
i.e., at intermediate precisions the algorithm does not really di-
verge in the same way that RLS does, but rather strongly over-
shoots during initialization and then tends to slowly settle down.
Note that, as in rotation-based algorithms, abrupt changes in the
channel have no obvious negative impact on stability. The poor
transient behavior may be related to the choice of computing
both a priori and a posteriori errors, which is not the approach
used in known error-feedback single-channel lattice algorithms,
where consistency is ensured by propagating conversion factors
and a single type of error. As the near cause of the overshooting
phenomenon was found to be linked to division by very small
prediction error energies, this may possibly be alleviated using
thresholding strategies as described in [22, Section 15.11].

Fractionally-Spaced Decision-Feedback Equaliza-
tion (DFE): In this digital communications scenario the
same symbol (reference) sequence considered previously
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Fig. 7. Fixed-point MSE performance for lattice and transversal filtering. (a), (c) Learning curves for AR(6,3,2) channel, RLS order 6,3,2 using 16, 12 bits. (e)
Steady-state MSE for AR channel with variable word length. (b), (d) Learning curves for MA(6,3,2) channel, RLS order 18,9,6 using 24, 20 bits. (f) Steady-state
MSE for MA channel.

modulates a train of raised-cosine pulses with 100%
rolloff. The continuous pulse-modulated signal is trans-
mitted through a multipath channel with impulse response

, where is the
symbol interval. The received signal, contaminated by white
Gaussian noise for a mean nominal SNR of 20 dB, is sampled
twice per symbol and split into odd and even sample streams at
symbol rate. As in MA, these signals are differentially delayed
with respect to the reference prior to entering the lattice filter,
providing equivalent anticausal samples on both channels
as needed. The reference itself, delayed by one sample, is
added as a third input channel to be causally processed by the
equalizer (feedback filter) when operating in training mode.
The lattice DFE merges a feedforward section that filters the
input channels and a feedback section that filters the delayed
reference. The coefficients for these two sections are typically
jointly optimized by a minimum-MSE-like criterion, so the
multichannel model of Section II still applies. The orders,
chosen by trial and error to yield the best performance, were
set to 5, 5, 10, with three anticausal samples on the first two
channels. The simulation was run for 2000 symbols.

This LS problem is less well-conditioned than the previous
ones, as manifested, e.g., by the greater numerical range of en-
tries in the RLS inverse covariance matrix (see Table III). It is
included here primarily to expose differences between QR-type
algorithms. Learning curves have been omitted, as they quali-

TABLE III
INTEGER PART LENGTHS (BITS) USED IN THE THREE TEST CASES

tatively resemble those of Fig. 7(a), (c) or (b), (d) when tran-
sitioning from 20 to 16 bit precision. Fig. 8(a) shows averaged
MSE values over iterations 1500–2000 with , and
Fig. 8(b) repeats the analysis for higher , focusing
on MQR, QR-MLSL(K), and QR-RLS. The CORDIC version of
QR-MLSL(K) (not shown) nearly coincides with the curve for
MQRC, similarly to the behavior seen for Newton-based rota-
tions. In this example, QR-RLS has a significant performance
advantage over MQR and QR-MLSL(K) at precisions lower
than 20 bits, an effect that was partly masked in Fig. 8(a) due to
a higher noise floor.

Finally, Fig. 8(c) shows the improvement in MSE, for
, that results from using extended-precision Newton it-

erations, as proposed in Section IV-A. Somewhat surprisingly,
insignificant gains were obtained for all but the lowest preci-
sions, and even for these the absolute MSE is well above zero,
rendering the filter output useless. Similar results were obtained
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Fig. 8. Fixed-point steady-state MSE in DFE scenario with RLS order 5,5,10.
(a) SNR = 20 dB. (b) QR-type algorithms only, SNR = 35 dB. (c) MSE im-
provement in QR-type algorithms using extended-precision Newton iterations,
SNR = 35 dB.

for other tested values of SNR. No definitive explanation for
this behavior was found, but intermediate quantizations may in-
troduce a type of randomization that partially compensates for
large systematic errors at low precision.

To summarize the results of this simulation study, perhaps the
most noteworthy point is that MQR inherits the numerical ro-
bustness of QR-type algorithms. Its performance is almost iden-
tical to QR-MLSL(K), and while QR-RLS will often attain lower
MSE, the difference will usually be small for word lengths of
16–20 bits and higher. Differences in architecture therefore seem
to play a minor role in the examined QR-type algorithms. The
same trend was observed in an analysis of real data from digital
communication experiments in reverberant media, to be reported
elsewhere. Being comparable to QR-MLSL(K) both in terms of
performance and computational complexity, the MQR filter may
very well be the preferred choice for hardware implementation
due to the simplicity of its scalar units and highly regular internal
block structure, which can be compactly expressed in hardware
description languages. Still related to hardware implementation,
it would be useful to better understand why Newton-based rota-
tions outperform CORDIC at low/intermediate word lengths. Re-
garding the MGK algorithm, it is clearly superior to plain RLS,
but its performance was found to be inconsistent across test cases
and somewhat disappointing for what was expected of an error-
feedback form. Clarifying and improving its behavior is beyond

the scope of this work, but it should be noted that similar abrupt
changes in the performance of other single-channel error-feed-
back algorithms have been reported in the technical literature [1].

VI. CONCLUSION

An adaptation algorithm in array form for multichannel RLS
lattice filtering was presented. The filter is based on a modular
decomposition approach and comprises several interconnected
units that operate similarly to those found in single-channel
lattice filters. The structure is amenable to parallel implemen-
tation by adding pipeline registers between stages. As in other
algorithms, the complexity for channels and coefficients
per channel (unequal orders are supported) is . By
exploiting a link with Kalman filtering, the update equations
were formulated in square-root (QR) array form. Newton
and three-step CORDIC algorithms were proposed to carry
out complex Givens rotations when the filter is implemented
in fixed-point hardware. The Newton-based implementation
proved to be slightly more accurate, and will actually execute
faster in many programmable architectures. Simulation results
show that the algorithm shares the robustness properties of
other QR-type variants of RLS, operating reliably over several
test cases with fixed-point word lengths under 20 bits. Unlike
other considered alternatives, the performance of this algorithm
degrades gracefully as the numerical precision decreases.

APPENDIX A
RLS PROPERTIES

Consider the RLS cost function (2) at time . It is assumed
that the previous optimal coefficient vector minimizes

, making the residual vector orthogonal to the columns
of the data matrix so that

(47)

At time , the reference vector and input matrix are updated as

(48)

and using (47) the orthogonality property is seen to be lost

(49)

where is the a priori error.
To restore orthogonality at time the RLS algorithm adds a
correction to , yielding

(50)

where designates the pinning vector. Let

(51)

be the a posteriori error. Replacing with (50) and simpli-
fying leads to the real conversion factor

(52)

Consider now two distinct RLS problems with reference vectors
, , coefficient vectors , , and a common
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data matrix . Using (48) and (50) the a posteriori residual
vector at time satisfies, for 1 or 2

(53)

Using (47), (53) and the idempotence and Hermitian symmetry
of leads to a recursive expression for the inner product

(54)

By (52) the last term equals , hence

(55)
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