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A robust model-based source localization (MBSL)
scheme for 3D positioning of high-frequency underwater
acoustic (UWA) transmitters, as well as performance
assessment of 3D speed vector estimation of the acoustic
source, deploying two linear receiver arrays, is developed
and evaluated. In addition, this paper presents the sen-
sitivity evaluation of MBSL to uncertainties involved in
environmental parameters, including the effects of sound
speed profile and bathymetry mismatches. The results
presented here pertain to the general framework of infer-
ring side information concerning an UWA link from the
environmental signature imprinted on waveforms by the
propagation medium. The presented algorithms directly
operate on estimated linear time-varying UWA channel
responses, represented as 3-dimensional delay-Doppler-
depth functions (DDDF). Estimation of DDDF coefficients
is achieved jointly for all receivers deployed at different
depths using Basis-Pursuit (BP) tools, which can efficiently
handle sparse unconstrained `2− `1 minimization, and di-
rectly operate on the complex signals of baseband models.
To extract delay/Doppler information related to each path
from the DDDF representation, an efficient energy-based
scheme is developed to detect and label wavefronts using
clustering techniques inspired by image processing.

I. INTRODUCTION

Ocean acoustic tomography (OAT) is developed based on
the fact that environmental variables like sound speed profile,
source/receiver configuration, water depth, and bottom struc-
ture imprint a particular signature on acoustic signals, in a
way that some of these characteristics can be recovered by
applying inverse problem techniques. The underwater medium
poses significant challenges to OAT due to the complexity of
sound propagation resulting from the nonhomogeneous sound
speed, multiple interactions with the sea surface and bottom,
and Doppler-induced compression or expansion of signals [1].

Much of the published work on underwater source localiza-
tion is concerned with low-frequency sources, where interac-
tions with poorly-characterized bottom sediment layers make
for a difficult estimation problem. Matched-field processing
(MFP) has been quite successful at accurately localizing

sources at frequencies up to several hundreds of Hz even in en-
vironments with strong refraction, strong bottom interactions,
or markedly non-flat bathymetry [2]. Unlike traditional ocean
acoustic tomography (OAT) approaches, whose frequencies are
much smaller than those found in underwater communication
systems, our designed scheme acquires position and velocity
information from communication waveforms, where full-field
inversion methods have limited use both due to large modeling
uncertainties and high required computational loads.

We present a robust technique to efficiently localize acoustic
sources and estimate their relative speeds in 3D space based on
matching predicted and observed arrivals in channel responses
obtained at 2 arrays of receivers, as a by-product of high-
frequency UWA communications.

The proposed 3D localization and speed estimation scheme
could be divided into four main stages. The first stage,
sparse channel estimation and clustering, aims to provide
accurate estimates of channel responses using Basis Pursuit
(BP) methods and characterize the main propagation paths in
the channel. The second stage, wavefront labeling, cooperates
with the third stage, UWA source localization, to assign an
appropriate number of bounces (i.e., a label) to each detected
wavefront. Using the extracted delay information from labeled
wavefronts, estimation algorithms in the third stage provide
accurate values for the source position. Finally, using the
extracted Doppler shifts from the labeling stage and the esti-
mated source position provided by MBSL, the source/receiver
relative velocity vector is estimated.

Considering the uncertainties involved in the environmental
parameters, this work also aims to analyze the robustness and
sensitivity of our MBSL approach, namely, its sensitivity to
model mismatches in sound speed profile, bathymetry and
vertical linear array (VLA) position.

The paper comprises the following sections. Section II
briefly presents the `2 − `1 BP techniques used for sparse
channel estimation. TDOA-based 3D source localization is
outlined in Section III. Section IV concisely explains the pro-
cedure of wavefront segmenting and labeling for detecting and
clustering wavefronts from channel estimates in 3D images. In
section V we derive the 3D velocity vector of a UWA source
using the Doppler information extracted in Section IV and
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Fig. 1: (a) A sample DDDF for an array of 16 hydrophones with equal spacing. (b) Arrival time delay vs. receiver depth. (c)
Radon transform of image 1b.

the final source position from Section III. The evaluation of
MBSL sensitivity considering various sources of uncertainty
is presented in section VI. Section VII provides numerical
results on the performance of 3D source localization and speed
estimation, using simulated data. Finally, Section VIII provides
conclusions and outlines future perspectives.

Notation: Superscripts (·)T , (·)H stand for transpose and
conjugate transpose (hermitian), respectively. `p norms are
denoted by

∥∥·∥∥
p
, and `2 is assumed when the argument p

is omitted.

II. SPARSE UWA CHANNEL ESTIMATION

Estimation of sparse time-varying channels through basis
pursuit (BP) techniques is briefly reviewed here [3]. In this
paper, the channel output is viewed as a sum of replicas of
the input signal, each associated with a given delay, τ , and
Doppler shift, ν, that are assumed constant over an averaging
interval [4]. We adopt a linear time-varying model for UWA
channels, representing them by their DDSFs [5]. We consider
the following discrete-time model with input x(n) and output
ym(n) observed at the m-th array hydrophone

ym(n) =
∑
k,l

um,k,lxl(n− k) , xl(n) = x(n)ej2πνln , (1)

where νl = l
Tfs

is the l-th Doppler shift under sampling
frequency fs and input block duration T .

Taking advantage of the linearity in DDSF coefficients, the
channel model can be represented for all receivers in matrix
form as

Y = XU, (2)

where Y denotes a matrix of observed samples for all receivers
(one column per hydrophone), U defines the matrix of un-
known DDDF coefficients, and X is the dictionary matrix built
from a block of known transmitted samples. Sparse estimation
of DDDF coefficients is derived by solving

min
U

1

2

∥∥Y −XU
∥∥2

2
+ τ

∥∥U∥∥
1

(3)

using BP tools. While the first term (`2) quantifies the least-
squares fit between observed and predicted channel responses,
the second one (`1) is a sparsity promoting regularizer that
drives to zero insignificant channel coefficients [3].

III. UWA 3D SOURCE POSITIONING

A two-step approach, exploiting the temporal and spatial
structure of multipath observed at an array of sensors, was
developed to determine the source position [6]. The first step,
“Coarse Source Localization (CSL)”, is designed based on
free-space localization from time differences of arrival, in
addition to configuration parameters for the acoustic link such
as hydrophone positions, sound speed profile, and bathymetry,
[7], [8] to provide a good initial estimate of the UWA
transmitter with no a priori knowledge of its location and only
crude environmental information. The second stage, “Model-
Based Source Localization (MBSL)”, improves the estimated
source position by matching the predicted vs. observed pattern
of wavefronts impinging upon the array.

For a single linear array (Figure 2), the direction of received
signal and velocity vector component orthogonal to the vertical
plane containing the source and receivers does not impact the
DDDF. Therefore the proposed localization and speed estima-
tion approaches are just able to estimate the communication
range, source depth and the projection of velocity vector on
source-receivers plane. To fully estimate the 3D position and
velocity vector, at least two arrays of receivers would be
needed to create a nonplanar configuration (Figure 3a).

A. Coarse Source Localization (CSL)

The method presented in this section estimates the source
position, which is needed for model-based localization when
multiple maxima/minima exist in the associated cost function
that matches observed vs. predicted TDOA values. The method
builds upon a localization algorithm for free-space propagation
based on distance differences of arrival, which we modify to
include some of the effects present in ocean waveguides.



Fig. 2: Decomposition of the physical array into virtual surface
and bottom-reflected images. Each arrival is matched to the
propagation delay between the source and the associated image
hydrophone.

The method we use is presented in [7], and matches squared
range differences according to the cost function

min
xs

M∑
m=1

(∥∥xs − sm
∥∥2 − (dm +

∥∥xs∥∥)2
)2
. (4)

where xs and sm denote the positions of the unknown source
and the m-th sensor, and dm is the measured difference
between the range from the source to sensor sm, and the range
from the source to the reference sensor, located at the origin of
the coordinate system. A fast iterative algorithm is proposed in
[7] to efficiently find the global minimum of (4), even though,
in general, this problem is not convex.

Since the localization scheme in [7] assumes free-space
propagation, some adaptations are considered to account for
the presence of multiple wavefronts in an ocean waveguide.
We adopt the image method [1] to replace the physical array
embedded in the waveguide with multiple virtual images in
free space, associated with surface and bottom reflections as
depicted in Figure 2 for a single array. To derive a reliable
source position in 3D, two linear arrays are deployed as it is
illustrated in Figure 3a. To derive range differences from the
source to the array hydrophones, the wavefront segmentation
methods described in Section IV are first used to estimate
delay differences. Multiplying theses time delays, τm, by an
average sound speed, cm, provides distance differences to plug

(a)

(b)

Fig. 3: (a) Decomposition of the 2 physical arrays into virtual
surface and bottom-reflected images in 3D. (b) Source-arrays
configuration with direction difference angle α.

into (4), dm = cmτm. We measure all delays relative to the
earliest arrival (direct path) in the topmost hydrophone of one
of the linear arrays.

To improve the accuracy of the proposed CSL approach
several modifications are developed to adapt it to non-
homogeneous underwater waveguides [8]: (i) Considering non-
linearity in the sound speed profile, (ii) compensating for
sloped bathymetry, (iii) compensating for acoustic ray bend-
ing.

1) Non-linearity in the Sound Speed Profile: Since the
source position is unknown, the CSL technique can be used
iteratively to gradually refine the mean velocities along each
ray path. In the first iteration a single global average sound
speed is used to compute an initial source position, and in
subsequent iterations the most recent estimate zs is used.
Similarly to the receiver array, the sound speed profile (SSP)
is expanded into surface and bottom-reflected images for
computing average sound speeds. This is shown in Figure 4c.

2) Compensating for Sloped Bathymetry in CSL: Unlike
the basic CSL method depicted in Figure 2, which assumes
flat (horizontal) bathymetry, in real scenarios the bottom could
have any shape. For 2D positioning, the bathymetry could be



Fig. 4: (a) Physical array and its surface, bottom, surface-bottom and bottom-surface reflections with sloped bathymetry. The
source is represented by a square on the right side. (b) Range differences to each hydrophone, relative to the source-to-reference
range (topmost physical hydrophone). (c) Expanded sound speed profile for surface, bottom, surface-bottom and bottom-surface
reflections.

approximated by multiple linear segments. With a piecewise-
linear bottom, an iterative scheme is needed to determine
the appropriate normal for each bottom reflection based on
the current source position estimate. For a single segment
(constant slope) the required modification for 2D positioning
is depicted in Figure 4.

In 3D localization the line with constant slope is replaced
by a plane defined by 3 points on the sea bottom. The best
choices for these 3 points are the water depths at the locations
of the linear arrays and the source. As the latter is unknown,
an iterative scheme is applied to account for the water depth
at the source position. Taking the average of the water depths
of both linear arrays could provide a good initial guess for the
water depth at the source position.

Our results suggest that only two CSL iterations are enough
to reach a solution with sufficiently good quality to initialize
the model-based localization scheme described in Section
III-B.

3) Compensating for Acoustic Ray Bending: Due to vari-
ations in sound speed, acoustic rays do not travel along
straight paths, whereas the basic CSL criterion (4) is built
under the assumption that travel times are proportional to
Euclidean distance (i.e., straight paths, constant speed). The
CSL method should account for changes in mean sound
speed when translating TDOAs into range differences, but
also for the departure of ray trajectories from the straight
line assumption. For compensating either of these distortions
we resort to iterative processing, using the previous source
position estimate to determine the required corrections, and

then recomputing those coordinates [6]. This compensation
procedure is more effective at ranges on the order of 1 km
and higher, where ray bending becomes significant.

B. Model-based Source Localization

This section outlines the previously proposed MBSL scheme
with some modifications to account for 3D positioning of the
acoustic transmitter and 2 linear receiver arrays. The MBSL
step refines the source position, previously estimated by CSL,
matching the predicted vs. observed pattern of wavefronts
impinging upon the array.

The proposed cost function penalizes the Euclidean norm of
predicted vs. observed TDOA differences for all hydrophones
and wavefronts for both linear arrays [6], [9]. We iteratively
solve

min
xs

f(xs) =
∥∥τ 1 − τ̂ 1(xs)

∥∥2
+
∥∥τ 2 − τ̂ 2(xs)

∥∥2
, (5)

where, for i ∈ {1, 2}, τ i denotes the vector of actual
TDOAs, obtained by segmenting and classifying the observed
wavefronts for linear array i, as described in Section IV, and
τ̂ i(xs) is the corresponding vector of TDOAs obtained from
the acoustic ray tracer for a source located at xs.

Specifically, in each iteration of the minimization algorithm
we update the current source position estimate by solving the
linear LS problem

xs,k+1 = arg min
xs

(
∥∥τ 1 − τ̂ 1,k(xs)

∥∥2
+
∥∥τ 2 − τ̂ 2,k(xs)

∥∥2
),

(6)
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Fig. 5: (a) Projection of speed vector along the transmit-
ter/receiver path.

where the nonlinear mapping from source position to delay
differences is replaced by a first-order approximation τ̂ i(xs)
for i ∈ {1, 2} around the current source position estimate xs,k
as

τ̂ i,k(xs)
∆
= τ̂ i(xs,k) +Dτ̂ i(xs,k)(xs − xs,k), (7)

and Dτ̂ i(xs,k) denotes the Jacobian matrix of the delay
vector for array i (see [6] for details). For M sensors and N
wavefronts τ̂ i ∈ RMN and Dτ̂ i ∈ RMN×2. The final source
position is obtained when the solution satisfies a stopping
criterion.

IV. WAVEFRONT DETECTION AND LABELING

Detecting wavefronts as a whole across the array provides
much more robust detection and classification performance
than would be possible by independently processing individual
hydrophone signals. To detect and segment the wavefronts
from a DDDF (figure 8) and extract delay/Doppler information
related to each propagation path from the DDDF representa-
tion, a robust method is developed using voting-based image
processing tools for line detection [8].

To reduce the computational complexity, we search for
wavefronts in projections of the DDDF onto the delay-depth
and Doppler-depth planes. A simple parametrization for a
delay-depth planar wavefront contains the angle of arrival
relative to the array axis, φ. For a uniform linear array
the candidate delay at the m-th sensor for this hypothetical
wavefront would be

τm(τ, φ) = τ + (m− 1)
d

c
sinφ, (8)

where d is the intersensor separation and c is the mean sound
speed. We evaluate the wavefront energy metric for these
parameters, J(τ, φ), as

J(τ, φ) =
M∑
m=1

∣∣Um(τm, ·)
∣∣ , (9)

where
∣∣Um(τ, ·)

∣∣ denotes the magnitude of the m-th DDSF
accumulated over all Doppler frequencies for any particular τ .
In practice we consider approaches based on the Radon and
Fourier transforms to efficiently evaluate this cost (see Figures
1b–1c). Given the wide disparity of wavefront amplitudes we

use the following successive cancellation approach to sequen-
tially detect them: (i) Find the maximum of (9) and store the
corresponding wavefront parameters. (ii) Remove the effect of
the detected wavefront by applying a zero mask to

∣∣Um(τ, ·)
∣∣

in a narrow strip along the wavefront direction/delay. (iii)
Recompute the energy metric for the masked DDSF and return
to the first step until the residual energy is sufficiently low.
Projected (2D) wavefront detection, yields a set of slices in
delay-Doppler-depth space, orthogonal to the Doppler axis.
Then we project each slice onto the Doppler-depth plane,
and find the remaining parameters to fully characterize the
orientation of wavefronts depicted in Figure 8.

Each detected wavefront must be labeled according to the
number of surface and bottom bounces, so that the corre-
sponding delays can be assigned to the correct images of the
array sensors for our localization criteria based on matching
distances/delays. A practical labeling scheme that leverages
the low computational cost of our CSL algorithm to examine
multiple candidate hypotheses is developed in [10].

V. VELOCITY ESTIMATION OF THE ACOUSTIC SOURCE

Velocity vector estimation of the acoustic source is achieved
by matching the observed and predicted evolutions of Doppler
shifts in 3D wavefronts. The proposed strategy requires a good
estimate of source position to compute the departure angle of
acoustic paths for each individual hydrophone in the receiver
array [8].

The observed Doppler shift, ∆f , is approximately given by

∆f = −vs,r
c
fc, (10)

where vs,r is the projection of the relative velocity vector along
the transmitter/receiver path of interest and fc is the carrier
frequency. An iterative scheme described in [11] can be used to
efficiently compute eigenrays. Alternatively, the same acoustic
ray tracer used for MBSL directly yields the grazing angle
associated with each source-receiver eigenray [8].

In UWA channels, we can take advantage of multipath
to solve an overdetermined system of equations matching
Doppler shifts for all hydrophones and paths (wavefronts). The
velocity vector component orthogonal to the plane comprising
the source and receivers does not impact the DDDF, and hence
it is not detectable by a single linear array. To fully estimate the
3D velocity vector, at least two arrays of receivers would be
needed to create a nonplanar configuration. Defining a matrix,
U containing projection coefficients for all rays, we have:

vs,r = arg min
v

∥∥∥ fccz Uv −∆f
∥∥∥ (11)

where vs,r is the velocity vector with vx, vy and vz compo-
nents, vector ∆f contains the (M1 + M2)N Doppler shifts
associated with Mi sensors of array i and N wavefronts, and
cz is the sound speed at the source depth.

The full iterative source localization and speed estimation
procedure is as follows:

1) The UWA channel response is estimated using the basis
pursuit method described in Section II.
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Fig. 6: Sensitivity Analysis of MBSL to Environmental Uncertainties. (a) Measured SSP and noisy SSP, respectively plotted
in blue and red. (b) Sensitivity analysis of MBSL to SSP mismatch for various communication ranges. (c) Sensitivity analysis
of MBSL to bias in batheymetry profile for various communication ranges.

2) Using segmentation methods from section IV, the
TDOAs and Doppler shifts for all hydrophones and paths
are computed.

3) The initial guess for source position to be used in MBSL
is obtained by implementing the CSL scheme of Section
III-A.

4) An acoustic channel model is used to predict the time
delays for the current source location estimate. By
computing the derivatives of time delay with respect
to the acoustic source depth and communication range,
we update source position by solving an overdetermined
linear LS problem.

5) Using the Doppler shifts from section IV and estimated
source position provided by MBSL in section III-B, the
velocity vector of the source is estimated by solving
(11).

VI. SENSITIVITY ANALYSIS OF MBSL TO
ENVIRONMENTAL UNCERTAINTIES

This section investigates the dependency of uncertainty in
the output of the acoustic localization model to different
sources of uncertainty in the environmental variables (such
as sound speed profile, bathymetry and array position).

The motivation for this study includes (i) evaluation of
the robustness of the localization results in the presence of
uncertainty in the inputs, (ii) better understanding of the
interactions between environmental parameters and MBSL
estimation results, (iii) improving the robustness by identifying
variables that cause significant uncertainty in the localization
output.

The speed of sound in water is a function of pressure,
temperature and salinity. A sample measured sound speed
profile (SSP) for CALCOM’10 sea trial is plotted in Figure
6a (in blue). To evaluate the sensitivity of the model-based
localization technique to deviations in the SSP, measurement
noise with variable power is added to each measured point
(in red in Figure 6a). Applying Monte Carlo approach for
200 experiments for each case, negligible positioning error is

observed at the MBSL output. This can be interpreted by the
fact that the mean of SSP over depth remains constant for
different noise powers, thus the sum of induced localization
errors essentially cancels out.

The estimation error of MBSL output as a function of bias in
SSP measurement for various communication ranges from 250
m to 750 m are presented in Figure 6b. For all cases, the source
is deployed at a depth of 40 m. The receiver array consist of
16 hydrophones with 4 m spacing. As the results illustrate, for
all channel configurations, MBSL estimation output does not
present high sensitivity to an acceptable measurement error
in sound speed (less than 10 m/s deviation). As expected, for
higher uncertainty in SSP and higher communication ranges,
we observe higher estimation error.

Figure 6c provides the MBSL positioning error as a func-
tion of the bias in bathymetry profile for the same channel
configurations as in Figure 6b. As results demonstrate, high
sensitivity to discrepancy in water depth (bathymetry profile) is
observed. When compared with the results for SSP, the trend as
a function of mismatch is now less linear and less predictable.
Since the MBSL is more sensitive to the bathymetry profile,
high deviation in water depth measurements may cause the
(iterative) algorithm to become trapped in undesirable local
minima.

For predominantly flat bathymetry errors in VLA position
will naturally affect the estimated source position by the same
amount.

VII. PERFORMANCE ASSESSMENT

The performances of the proposed UWA source localization
and velocity estimation approaches are assessed in 2D and 3D
for single-carrier (QPSK) transmissions over simulated chan-
nels for various communication ranges and varying relative
speed within the limit of 6 knots.

An UWA simulator, developed by the University of Algarve,
is used to assess the proposed source localization and speed
estimation methods in 2D and 3D. In each simulation, a
QPSK packet is transmitted at 2.4 kbaud, with 5.5 kHz carrier
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Fig. 7: Simulation and experimental results for source localization. (a) Simulation results for CSL. Range estimation error for
different source depths. (b) Simulation results for MBSL with flat bathymetry. (c) Evaluation of CSL and MBSL methods with
real CALCOM’10 data. The figure shows a global discrepancy metric of predicted vs. observed TDOAs.

(a) (b)

Fig. 8: Evaluation of source localization in 3D using simulation data. Two linear receiver arrays are located at (0, 200) and
(0, -200) which are shown by green circles. (a) CSL estimation error for various source positions (b) MBSL estimation error
after two iterations for various source position.

frequency, 4.5 kHz bandwidth, root-raised-cosine (RRC) pulse
shape (88% rolloff) for total duration of 3 s with a sandy
bottom (1600 m/s, 2 g/cm3, 0.8 dB/λ). The baseband received
signal is sampled at 4 times the symbol rate, fs = 12 kHz. For
3D estimation, two linear arrays are considered with various
source-array configurations. Each linear array consists of 16
hydrophones, placed at 4 m intervals between 6 m and 66 m
depths.

Figure 7a shows results for range errors at three different
source depths as a function of the actual source range. It is
clear that errors increase with communication range. The norm
of the source localization error obtained by MBSL, with CSL
initialization, as a function of range (source depth is 30 m)
after the first and second iterations is presented in Figure 7b.
As in CSL, errors grow larger as the communication range
increases. However, given the good initial point, MBSL is able

to drastically reduce the total source localization error within
2 iterations.

Figure 8a presents the CSL estimation error using two linear
arrays in 3D. The arrays are located at (0, 200) and (0,-
200) and the localization error is obtained for various source
positions with respect to the arrays. The acoustic source depth
for all cases is constant and equal to 30 m. Comparing the
results with the 2D case in Figure 7a we can infer that we
obtained more accurate results for the region between the two
arrays. It is clear that, in general, larger estimation errors are
obtained for longer communication ranges with respect to both
arrays. This is to be expected, as the set of selected wavefronts
carry less information about the source position as it moves
further into the far-field of the receiver arrays.

Similar to Figure 8a, the results of MBSL for the same
configurations are shown in Figure 8b. Note that there is
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Fig. 9: Source speed estimation. (a) Simulation results for different source speeds varying from 0 to 3 m/s. (b) Simulation
results for constant source speed (2 m/s horizontal, 1 m/s vertical) and varying communication range from 200 m to 2 km.

no environmental mismatch in the ray tracer between data
generation and computation of predicted delays.

Evaluation of source speed estimation using UWA channel
simulator is presented in Figures 9a and 9b applying either `1
or `2 norms in (11). Figure 9a provides the estimation error
as a function of different source speeds (from 0 to 3 m/s), for
horizontal (range) and vertical (depth) velocity components
separately. Figure 9b presents the same criterion as a function
of communication range for constant horizontal speed of 2 m/s
and vertical speed of 1 m/s (varying communication range
from 200 m to 2 km). As expected, the horizontal velocity
component is more accurately estimated, as in the chosen
geometric configurations it has a dominant contribution to the
observed Doppler shifts. In all cases less than 10% estimation
error for horizontal speed and a maximum of 15% error in
vertical speed are observed.

To assess the proposed approach for velocity estimation of
the acoustic source in 3D, several cases with various array-
source configurations are considered. Figure 10 presents the
top view of the channel for all cases with the same structure as
in 8a. The red and blue vectors respectively define the actual
and estimated velocity vectors. Unlike the presented results
for 3D localization, in addition to the dependency on channel
configuration and communication ranges, speed estimation
errors also depend on the direction of the velocity vector of
the transmitter. The actual and estimated velocity vectors and
the error for each case are presented in Table I. As the results
illustrate, for various cases in 3D, the speed estimation error
is highly dependent on the projection of the velocity vector
on arrays-source paths. In an ideal case, we achieved 5%
estimation error, which is related to the first case. The worse
possible combination for velocity estimation is demonstrated
in case 6, with 72% estimation error. Regardless of the channel
configuration, in all cases, the vertical component of the

Fig. 10: Evaluation of the velocity estimation for a moving
acoustic transmitter in 3D using simulation data for various
channel configuration. Top view of the channel with two linear
receiver arrays located at (0, 200) and (0, -200), defined by
by green circles. Red and blue vectors respectively define the
actual and estimated velocity vector.

velocity vector is detectable with reasonable estimation error.

VIII. CONCLUSION

This work evaluates the performance of previously proposed
acoustic source localization and speed estimation in 3D using
two linear receiver arrays. This is intended as a contribution to
the development of high-frequency tomographic methods that
can be used to extract useful environmental information from
communication signals, in addition to the digital messages
themselves.



TABLE I: 3D velocity vector estimation error for different
channel configurations.

Case No. Actual Velocity Estimated Velocity Estimation
Vector (m/s) Vector (m/s) Error (%)

Case 1 V=(0, 1.5, 1) Vest=(0, 1.57, 0.92) 5 %
Case 2 V=(0, -2, 1) Vest=(-0.21, -1.68, 1.09) 18 %
Case 3 V=(1, 1.5, 1) Vest=(0, 1.54, 1.08) 49 %
Case 4 V=(2.5, 0, 1) Vest=(2.68, -0.10, 1.14) 8 %
Case 5 V=(-1, -1, 1) Vest=(-1.19, -0.32, 1.15) 41 %
Case 6 V=(1, 0, 1) Vest=(0, -0.18, 0.94) 72 %

The 3D localization approach relies on matching predicted
and observed arrivals in channel responses obtained at two
arrays of receivers. The first part of the localization scheme,
termed “coarse source localization”, tries to provide a good
initial point for source position to be used for the second step,
“model based source localization”. The results presented in
the paper demonstrate that the proposed 3D-CSL method is
quite accurate and can be employed as a stand-alone estimator
over short communication ranges (below 600 m), or when
only a rough source position estimate is needed. In order to
have a more accurate estimation when reliable environmental
information is available, especially for longer communication
ranges, the MBSL method can be used.

The methods were successfully tested using simulated data
for 2D and 3D configurations for different communication
ranges and varying relative speed. In simulation, MBSL con-
verged to within 1 m of the true source position in as few as 2
iterations. However, MBSL is more computationally complex
than CSL, as it involves running a ray trace at each iteration.
The estimation error for both CSL and MBSL depends on the
configuration of the receiver array and the acoustic transmitter.

In addition, as a part of this work, the sensitivity of
the MBSL to environmental mismatches such as deviations
in measured SSP, bathymetry and receiver array position is
assessed. As the results demonstrate, MBSL estimation errors
present a predominantly linear trend in response to deviations
in sound speed and depth profiles. Besides we can infer that
for reasonable mismatches in model inputs, the system output
remains in an acceptable region.

The improvement of several processing blocks in our to-
mographic scheme, e.g., accounting for the strong correlation
of channel responses across space to improve the overall esti-
mation efficiency, or introducing some amplitude information
in the CSL and MBSL localization schemes to account for
the higher reliability of propagation delays estimated from
stronger wavefronts, will be evaluated in future work.
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