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Abstract—Estimation of time-varying and sparse channels is
a topic that has attracted considerable interest lately, espe-
cially for underwater acoustic communication. In the context
of multicarrier transmission, several important questions remain
unanswered: i) should pilots be placed in clusters as for time-
varying, non-sparse channels, or randomly dispersed between the
data as common in the Compressive Sensing literature; ii) as pilot
and data subcarriers cannot be perfectly separated at the receiver
due to intercarrier interference (ICI) should channel estimation
be based on observations corresponding to pilot subcarriers
only, or can the data subcarriers be used to practically extract
additional information about the channel; and iii) how does the
performance vary with the number of pilot symbols? We use
data recorded at the recent CalCom’10 experiment to investigate
these questions. We find that a sufficient number of adjacent
observations is required to estimate the ICI, which can either
be achieved by a pilot design that uses clustered pilots, or by
using data subcarriers as additional observations. When using
data subcarriers as observations, the effect of the unknown data
should be modeled as increased noise. Finally, by varying the
number of pilot subcarriers, we can trade off error performance
for data rate.

Index Terms—Pilot-aided transmission, sparse channel estima-
tion, basis pursuit, orthogonal matching pursuit, multicarrier
transmission

I. INTRODUCTION

Underwater acoustic (UWA) channels are characterized by
large delay spread and significant Doppler effects, qualify-
ing UWA channels as doubly (time- and frequency-) spread
channels. While the large delay spread motivates multicarrier
transmission schemes that can use efficient frequency domain
equalization (see, e.g., [1]–[3]), the significant Doppler spread
will lead to loss of orthogonality between the subcarriers.
Early multicarrier receiver designs ignored that the loss of
orthogonality between the subcarriers would lead to intercar-
rier interference (ICI) [1]–[3], but now it is largely agreed that
estimating and equalizing the ICI (or at least some of it) leads
to significant performance improvement [4]–[7]. Unfortunately
to estimate the ICI, e.g., using a basis expansion model (BEM)
[6], [8], the number of unknown parameters explodes.

Although it has been recognized for a long time that UWA
channels are sparse [9], so far most work to take advantage
of this fact has focused only on reconstructing channels in the
delay domain [3], [10]–[12]. It turns out that estimating the
channel both in delay and Doppler dimension with sufficient

accuracy is challenging even when using known transmitted
signals [13], or needs increased pilot overhead [4].

The existing literature on pilot-assisted channel estimation
is extensive see, e.g., the overview in [14]. For multicarrier
transmission across time-invariant channels, it is well-known
that equi-distantly spaced pilots are optimal under various
criteria [14]. The challenges in pilot design for multicarrier
transmission over time-varying channels are two-fold:

1) Sets of adjacent observations are needed to estimate the
ICI coefficients.

2) Keeping pilot and data symbols orthogonal at the re-
ceiver is challenging due to the ICI.

For non-sparse channel estimation, equi-distantly spaced
blocks of pilot symbols are therefore considered optimum
under most BEMs see, e.g., [15], [16] and references therein.
On the other hand, no consensus exists on whether pilots and
data should be kept orthogonal at all cost; while in some
works guard zeros are inserted around the pilots [15], in others
the ICI caused by the unknown data symbols is treated as
additional noise for purposes of channel estimation [16].

In existing work on sparse channel estimation for multicar-
rier transmission over time-varying channels various ad-hoc
pilot schemes were reported. While in [17], [18] pilot symbols
were placed on randomly selected subcarriers, in [4], [7] a
pilot design was used that consisted of equi-distantly spaced
blocks, where the block size alternated between a single pilot
tone and groups of five pilots. In all cases the ICI between the
pilot subcarriers was used to estimate the time-varying nature
of the channel [4], [7], [17], [18], but the ICI between data and
pilot subcarriers was neglected. Without guard zeros, ICI from
the unknown data symbols is perceived as (some) additional
noise on pilot subcarriers, but ICI originating from the known
pilot symbols makes data subcarriers potential observations —
although very noisy, due to the unknown data symbols.

In this work, we want to compare the random selection
of pilot subcarriers as motivated by the compressive sensing
literature [19], [20] with the systematic use of pilot blocks
in regular intervals as seen in non-sparse channel estimation
of time-varying channels. Furthermore, we are interested in
how to address the ICI between data and pilot subcarriers.
We do not consider the use of guard zeros, as it decreases
spectral efficiency, but we focus on whether data symbol
carrying subcarriers should be used as observations in channel
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estimation, as they also contain ICI originating from the pilot
symbols. Finally, we study the performance under varying
amounts of pilot overhead. Specifically, we are looking for an
optimum tradeoff between using more pilots or a more robust
modulation scheme, to achieve the highest spectral efficiency.

We base our study on data recorded during the Calibration
and Communications Sea Trial 2010 (CalCom’10), which
was conducted about 30 km south of the port of Vilamoura,
Portugal, on June 21–25, 2010. For sparse channel estimation
we consider both orthogonal matching pursuit (OMP) and
basis pursuit (BP) as in [4], [7]. We find the following:

• When limiting the observations to pilot subcarriers, the
systematic approach that uses clusters of pilot subcarriers
outperforms the approach that places pilot subcarriers
randomly.

• When using all observations in channel reconstruction
BP suffers from the additionally introduced noise, while
OMP can take advantage of the additional observations
under an appropriate stopping criteria.

• Using “observation masking”, i.e., where observations
based on pilot subcarriers are weighted more heavily than
observations based on data subcarriers, both OMP and BP
perform well, almost irrespectively of the chosen pilot
pattern.

The rest of this paper is organized as follows. In Section II
we specify the signal model, and in Section III we review
sparse channel estimation. Then we first study various pilot
designs in Section IV; in Section V we investigate if data
subcarriers can be practically used as additional observations
in channel estimation; and lastly we show some results on
varying pilot overhead in Section VI. We conclude in Sec-
tion VII.

II. SIGNAL MODEL

A. Cyclic-Prefix OFDM

We consider cyclic-prefix (CP) orthogonal frequency divi-
sion multiplexing (OFDM); let T denote the OFDM symbol
duration and TCP the length of the CP. The total duration of
one OFDM block is T ′ = T +TCP and the subcarrier spacing
is 1/T . The kth subcarrier is at frequency

fk = fc + k/T, k = −K/2, . . . ,K/2 − 1, (1)

where fc is the carrier frequency and K subcarriers are used,
so that the nominal bandwidth is B = K/T . Let s[k] denote
the information symbol to be transmitted on the kth subcarrier,
chosen from a constellation like quadrature phase shift keying
(QPSK) or quadrature amplitude modulation (QAM). The non-
overlapping sets of active subcarriers SA and null subcarriers
SN satisfy SA ∪ SN = {−K/2, . . . ,K/2 − 1}; the null
subcarriers are used to facilitate Doppler compensation at the
receiver [2], [21], and protect the band edges. A transmitted
OFDM block in passband is given by

x̃(t) = 2Re

{[

∑

k∈SA

s[k]ej2π k
T

t

]

ej2πfct

}

, t ∈ [−TCP, T ].

(2)

TABLE I
OFDM SIGNAL SPECIFICATIONS FOR CALCOM’10 EXPERIMENT.

symbol length T 491.52 ms

cyclic prefix Tcp 48 ms

block length T ′ 539.52 ms

no. subcarriers K 4096
subcarrier spacing 1/T 2.0345 Hz

baseband sampling rate B 8.33 kHz

carrier frequency fc 12 kHz

band protection NP 128

no. null subcarriers |SN | 48 + 2 × 128
no. active subcarriers |SA| 3792

effective bandwidth Beff 7.8125 kHz

TABLE II
DATA RATES USED IN CALCOM’10 EXPERIMENT.

pilot overhead QPSK 16-QAM

1/8 pilots 6.28 kbit/s

1/4 pilots 5.27 kbit/s 10.5 kbit/s

1/2 pilots 3.59 kbit/s 7.18 kbit/s

The parameters used in the CalCom’10 experiment are listed
in Table I. While the baseband sampling rate is B = 8.33 kHz,
factoring in the guard bands of NP = 128 null subcarriers
at each band edge, the effectively used bandwidth is only
Beff = 7.8125 kHz. Including also the 48 null subcarriers
spread evenly among the active subcarriers, the total number
of null subcarriers is |SN | = 304, leaving |SA| = 3792 active
subcarriers to carry data and pilot symbols. We consider both
QPSK and 16-QAM; OFDM blocks are encoded separately
with a convolutional code of rate 1/2 (constraint length 9),
and pilot overheads of 1/8, 1/4, or 1/2, leading to the data
rates shown in Table II.

B. Underwater Acoustic Channel Model

The general time-varying multipath channel model com-
monly considered in UWA communications is,

h(τ ; t) =
∑

p

Ap(t)δ
(

τ − τp(t)
)

. (3)

As in [4], [7], we assume that for the duration of one
OFDM block the path amplitudes are approximately constant
Ap(t) ≈ Ap, and that the delays can be modeled as linearly
time-varying,

h(τ ; t) =
∑

p

Apδ
(

τ − (τp − apt)
)

. (4)

Each arrival is thus characterized by an initial delay, τp, and
rate-of-change, ap; alternatively, the Doppler shift fD,p =
apfc may be used (which assumes a narrowband signal at fc).
The parameters are assumed constant for the duration of one
OFDM block, T ′, and independent across blocks for purposes
of channel estimation.

An example of a channel observed at the CalCom’10 exper-
iment is shown in Fig. 1. The plots are created by correlating
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Fig. 1. Estimates of a channel response h(τ ; t) recorded at the CalCom’10 experiment; while the time-invariant estimate correlates the received signal only
with different delays, the time-varying estimate additionally uses possible (wideband) Doppler shifts.

a received OFDM block with delayed and/or Doppler scaled
versions of itself. Clearly the channel has a sparse structure,
and the degree of time variation measured in terms of Doppler
frequency is significant with respect to the OFDM block length
fD,max × T ≈ 0.5.

C. Receiver Processing

According to the channel model in (4), the received signal
is

ỹ(t) = x̃(t) # h(τ ; t) + ṽ(t), (5)

=
∑

p

Apx̃
(

(1 + ap)t − τp

)

+ ṽ(t) (6)

where ṽ(t) is the ambient noise. The signal is downconverted,
then (over-) sampled and fed into an FFT block, including
narrowband Doppler compensation ε (see [21] or [2] and
references therein); the mth FFT output can be calculated as,

zm =
1

T

∫ T

0
ỹ(t)e−j2π(fc+ε)te−j2π m

T
t dt, (7)

=
∑

k∈SA

H[m, k]s[k] + vm. (8)

OFDM subcarriers lose their orthogonality due to Doppler
effects caused by the time-varying channel, leading to inter-
carrier interference (ICI), where coefficient H[m, k] specifies
the contribution of the kth subcarrier to the mth FFT output.

Collecting the ICI coefficients into a matrix H, and the zm,
s[k], and vm into vectors z, s, and v, respectively, we can
rewrite (8) as

z = Hs + v. (9)

If the channel were time-invariant, the matrix H would
be diagonal. In time-varying channels with limited Doppler
spread, H is often considered to be block-diagonal, or at least
approximately so [15], [16].

D. Characterization of ICI

Based on the channel model in (4), and assuming that the
delay spread is contained within the CP, 0 ≤ τp ≤ TCP, the

ICI coefficients can be calculated as,

H[m, k] =
∑

p

Ape
−j2πfcτp

︸ ︷︷ ︸

ξp

exp

(

−j2π
k

T
τp

)

×
1

T

∫ T

0
exp

(

j2π
k − m + ap(k + fcT ) − εT

T
t

)

dt

︸ ︷︷ ︸

%m,k(ap,ε)

=
∑

p

ξp e−j2π k
T

τp'm,k(ap, ε). (10)

The integral constituting the 'm,k(ap, ε) can be identified as
the (inverse) Fourier transform of the rectangular receiver
window implicitly used in the CP-OFDM receiver at frequency

ωm,k(a, ε) =
k − m + a(k + fcT ) − εT

T
, (11)

hence

'm,k(a, ε) = sinc (ωm,k(a, ε)T ) ejπωm,k(a,ε)T . (12)

Clearly for |k − m| ' 1 (and a ( 1) the coefficients
'm,k(ap, ε) will be very small, justifying the assumption of
an approximately block-diagonal matrix.

Defining the diagonal matrix Λ(τ) with kth element

[Λ(τ)]k,k = e−j2π k
T

τ , (13)

and the mixing matrix Γ(a, ε) with (m, k)th element

[Γ(a, ε)]m,k = 'm,k(a, ε), (14)

we can use the following vector/matrix notation

H =
∑

p

ξpΓ(ap, ε)Λ(τp), (15)

which is equivalent to the zero-padded (ZP) OFDM formula-
tion in [4], [7], but the matrices depending on delays, τp, and
Doppler rate, ap, have swapped order.



E. Equalization & Decoding

After the channel has been estimated as Ĥ (which is dis-
cussed in detail next), minimum mean-square error (MMSE)
equalization is applied,

ŝ =
(

ĤHĤ + N0IK

)−1
ĤHz, (16)

where we assumed that the noise is white with power N0.
As in UWA communications receiver arrays are common,
this is also the stage where symbol estimates are combined,
e.g., using maximum-ratio combining (MRC). For reasons of
receiver complexity, the channel estimate Ĥ is approximated
as a strictly banded matrix as in [4], [7], with D = 5 off-
diagonals on each side. The MMSE estimate of s is used to
generate soft-input for error correction as described in [22].

III. SPARSE CHANNEL ESTIMATION

A. Sparse Basis

As in [4], [7], to apply sparse reconstruction algorithms we
discretize the delay and Doppler domain as follows:

τp ∈
{

T

αK
,

2T

αK
, . . . , TCP

}

(17)

aq ∈ {−amax,−amax + ∆a, . . . , amax} (18)

Where the number of delay steps are Nτ = TCP/(T/αK)
and Doppler steps Na = 2amax/(∆a) + 1; we will denote
the path weight that corresponds to a path with delay τp and
rate-of-change aq as ξp,q. With this we can write the channel
model as

H =
Nτ∑

p=1

Na∑

q=1

ξp,qΓ(aq, ε)Λ(τp), (19)

where most ξp,q will be close to zero. The channel model
in (19) is not a basis expansion model (BEM) itself, but
when assuming a narrowband signal, it reduces to the complex
exponential basis expansion model (CE-BEM).

B. Selecting Observations

In all of [4], [7], [17], [18], only FFT outputs are used in
channel estimation that correspond to pilot symbols. There-
fore, we define the set of pilot subcarriers as SP and the re-
maining active subcarriers as data subcarriers SD, accordingly
SD = SA \ SP . We define the vector of pilot tones p,

[p]k =

{

s[k] k ∈ SP

0 k ∈ SN ∪ SD,
(20)

and the vector of data symbols d,

[d]k =

{

s[k] k ∈ SD

0 k ∈ SN ∪ SP .
(21)

Clearly s = p + d.
If there are M = |SP | pilot symbols we define the

M × K selection matrix S that selects the elements in z that
correspond to non-zero entries in p,

[S]m,k =

{

1 k ∈ SP , m = |{k′ ∈ SP | k′ ≤ k}|
0 otherwise.

(22)

Given the model in (19) and assuming the vector s is fully
known, the received signal z has a sparse representation as,

zS = Sz ≈
Nτ∑

p=1

Na∑

q=1

ξp,qSΓ(aq, ε)Λ(τp)p + Sv. (23)

The approximation is that the ICI from the data symbols in d

is negligible,

SΓ(aq, ε)Λ(τp)d ≈ 0 ∀p, q, (24)

which amounts to approximating the matrix Γ(aq, ε) as diag-
onal, since Λ(τp) is already diagonal, and SDd = 0 for any
diagonal matrix D.

C. Sparse Reconstruction

As in [4], [7], [17], [18] the channel coefficients ξp,q are
estimated using the following linear model,

zS = ASx + w (25)

AS = S
[

Γ(a1, ε)Λ(τ1)p · · · Γ(aNa
, ε)Λ(τNτ

)p
]

(26)

x =
[

ξ1,1 · · · ξNτ ,Na

]T
(27)

which is (approximately) independent of the unknown data
vector d. The noise vector w = Sv had of length M . We
indicate the dependence of the observations on the selection
matrix S as AS. As sparse reconstruction algorithms we
consider orthogonal matching pursuit (OMP) [23] and basis
pursuit (BP) [24] as in [4], [7].

Finally the channel estimate Ĥ is reconstructed from the
path weight estimates ξ̂p,q according to (19). After outlining
the general signal design and receiver structure, we will
compare various pilot placement patterns SP and observation
selection matrices S.

IV. COMPARISON OF PILOT DESIGNS

A. Considered Pilot Designs

a) Time-varying channel model: For non-sparse channel
estimation, it is well known that for time-invariant channels,
pilot designs with equi-distantly spaced pilot subcarriers are
optimal [14]. While for time-varying channels it is largely
agreed that equi-spaced clusters of equal size are optimal
under most BEMs [14]–[16]. For sparse channel estimation,
randomly placed pilots have been suggested in [17], [18], and
a systematic design that consists of alternating clusters and
single tones was considered in [4], [7]. We therefore compare
two pilot designs for estimation of sparse and time-varying
channels:

• Systematic: The pilot design used in [4], [7] places pilots
in equi-spaced clusters of alternating size.

• Random: As used in [17], [18], the pilot tones are chosen
randomly from the set of active subcarriers SA.

Each pilot design can be coupled with OMP or BP.
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Fig. 2. Performance comparison for different pilot designs for QPSK modulation and 1/4 pilot overhead, leading to 5.27 kbit/s; pilot designs systematic
and random assume a time-varying and sparse channel, while the uniform pilot design is based on a time-invariant channel model; least-squares is identical
to uniform, but uses a conventional least-squares estimator instead of the sparse channel estimators OMP/BP.

b) Time-invariant channel model: For comparison we
also consider channel estimators that approximate the channel
as time-invariant. The pilot design is then based on equi-
distantly spaced pilot subcarriers, and can be coupled with
sparse channel estimation or non-sparse channel estimation:

• Uniform: The pilots are placed equi-distant between the
data; OMP or BP can be used.

• Least-squares: For time-invariant and non-sparse chan-
nels, conventional least-squares channel estimation as,
e.g., in [2], is used; the pilot pattern is the same as
uniform.

For both the uniform and least-squares case, the channel
estimate Ĥ will be a diagonal matrix and demodulation in
(16) reduces to per-subcarrier equalization. The observation
model for all four cases is as in (23) and the matrix S only
selects FFT outputs that correspond to pilot subcarriers.

B. Experimental Results

The presented experimental results are based on data
recorded at the Calibration and Communications Sea Trial
2010 (CalCom’10), which was conducted about 30 km south
of the port of Vilamoura, Portugal, on June 21-25, 2010. The
water depth was approximately 100 m and the transmission
distance about 1 km.

Channel estimation, demodulation, and decoding is per-
formed for each OFDM block separately, and the considered
performance metric is block error rate (BLER), i.e., the
fraction of decoded OFDM blocks with one or more bit errors
after error correction. The considered data set consists of nine
transmissions of ten OFDM blocks at a time, leading to a
total amount of 90 OFDM blocks for QPSK and 16-QAM
each. Therefore, a BLER of less than 1/90 in plotted results
corresponds to error-free transmission, but is not plotted as
zero BLER due to logarithmic scale. The x-axis in plots refers
to multi-phone combining, where performance is increased by

incrementally combining phones in the receiver array, starting
from the topmost one at 6 m depth; the considered vertical
receiver array has a total of 16 hydrophones that are spaced
in 4 m increments.

Results for varying pilot designs are shown in Fig. 2; we
consider both OMP and BP recovery algorithms; the pilot
overhead is set to 1/4. For both recovery algorithms we find
that the systematic pilot design leads to the best performance.
As argued in [4], [7], we explain this with the need for
a sufficient amount of adjacent observations to estimate the
ICI. The random pilot placement will have some neighboring
or closely spaced pilots to observe the ICI, but the channel
estimation error seems to be larger. Comparing to the channel
estimators that approximate the channel as time-invariant,
there are significant gains, especially over the conventional
least-squares estimator

V. OBSERVATION MASKING

A. Data Subcarriers in Channel Estimation

Due to the ICI caused by time-varying channels, most or
all FFT outputs in z will be affected by both pilot tones and
unknown data. Although there are some approaches that jointly
estimate the channel and the data symbols (see references
in [14]), this usually leads to significantly more complex
receivers. When the matrix H is treated as strictly banded,
pilot and data can be decoupled by inserting guard bands of
null subcarriers [15], then only observations on subcarriers
corresponding to pilot symbols are used. Since the matrix
H is not strictly banded and the use of null subcarriers
wastes significant spectral resources, we focus on pilot designs
without guard bands. The key question we are interested in is:
Can the FFT outputs corresponding to data subcarriers be

used to improve channel estimation?
To test this, the selection matrix S in (22) is exchanged with

a generalized observation masking matrix. We consider three
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noise plus interference level improves the BP performance significantly; 1/4 pilots leads to 5.27 kbit/s.

cases:

• Pilots only: As before we assume that the ICI between
data and pilot subcarriers is negligible, only FFT outputs
that correspond to pilot subcarriers are used as observa-
tions and S is as defined in (22).

• All observations: We assume that the ICI is significant,
so all FFT outputs are used as observations, S = IK ;
the unknown data symbols are simply replaced with their
mean of zero, i.e., their effect on channel estimation is
neglected.

• Weighted: Again, all FFT outputs are used as observa-
tions, but the unknown data is treated as additional noise;
the observations are weighted to achieve a uniform noise
model with diagonal matrix S = W, as explained next.

B. Modeling Unknown Data

Without the selection matrix (23) becomes

z =
Nτ∑

p=1

Na∑

q=1

ξp,qΓ(aq, ε)Λ(τp) (p + d) + v. (28)

Using all FFT outputs as observations without any further
changes is equivalent to modeling the unknown vector d by
only its first moment E[d] = 0,

zI ≈
Nτ∑

p=1

Na∑

q=1

ξp,qΓ(aq, ε)Λ(τp)p + v. (29)

This leads to the following model

zI = AIx + v (30)

AI =
[

Γ(a1, ε)Λ(τ1)p · · · Γ(aNa
, ε)Λ(τNτ

)p
]

, (31)

where x and v remain as previously defined.

To model the unknown data symbols as additional noise
based on their second moment, we start with

z =
Nτ∑

p=1

Na∑

q=1

ξp,qΓ(aq, ε)Λ(τp)p + (Hd + v) . (32)

The new noise term now depends on the unknown channel
matrix H. To proceed, we disregard ICI caused by data
subcarriers and approximate the channel for this purpose as
H ≈ √

γIK , where γ is the average received signal power.
With this we can characterize the noise covariance as

Cov {Hd + v} = γDd + N0IK , (33)

where Dd is a diagonal matrix that accounts for the unknown
data symbols

[Dd]k,k =

{

1 k ∈ SD

0 k ∈ SN ∪ SP .
(34)

As the noise covariance matrix is kept diagonal by the
various assumptions and approximations, a white noise model
can be easily achieved by premultiplying with the diagonal
weighting matrix

[W]k,k =

{√
N0

γ+N0
k ∈ SD

1 k ∈ SN ∪ SP .
(35)

Accordingly, the linear model is

zW = AWx + W (Hd + v) (36)

AW = W
[

Γ(a1, ε)Λ(τ1)p · · · Γ(aNa
, ε)Λ(τNτ

)p
]

.
(37)



2 4 6 8 10 12 14 16

10
−2

10
−1

10
0

Block error rate (BLER) vs. number of phones

uniform

pilots only

all obs.

weighted

least-squares

Observation Masking Results for OMP, 16-QAM

2 4 6 8 10 12 14 16

10
−2

10
−1

10
0

Block error rate (BLER) vs. number of phones

uniform

pilots only

all obs.

weighted

least-
squares

Observation Masking Results for BP, 16-QAM

Fig. 4. Performance results for 16-QAM modulation, using some or all FFT outputs as observations; 1/4 randomly placed pilots lead to 10.5 kbit/s.
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16-QAM modulation 1/2 and 1/4 are used; all results are based on random pilot placement with with weighted observations.

C. Experimental Results

As we found that the random pilot placement suffered from
too few adjacent observations, we now focus on this pilot
design, but subcarriers corresponding to data subcarriers can
now be included in channel estimation. We show results in
Fig. 3 for QPSK data and in Fig. 4 for 16-QAM.

In the case of BP and QPSK modulation, we see that using
all active subcarriers as observations leads to some limited
improvement, while weighting the observations based on data
subcarriers relative to observations based on pilot subcarriers
gains significantly more. In contrast, for OMP both schemes
that use the data subcarriers as observations gain significantly
over using only pilot symbols. We explain this by the fact that
without weighting, the unknown data symbols will lead to a
large +2 reconstruction error; while BP is directly affected by
the +2 fit as part of its cost function, we configured OMP with

a stopping criterion that focuses on the decrease in its +2 fit,
which is relatively independent of its absolute value.

Considering the same setup with 16-QAM in Fig. 4, the
superiority of weighting observations is more pronounced.
Especially for BP, we found that the increased +2 error leads
to heavily biased channel estimates, i.e., the channel estimates
seemed to be scaled down, leading in turn to too large symbol
estimates. As QPSK is invariant with respect to scaling errors,
this was less pronounced in this case.

VI. PILOT OVERHEAD

Finally we present results based on varying the pilot over-
head with random pilot design and weighted observations. In
Fig. 5 we show performance results for all data rates listed
in Table II, comparing BP with OMP. Increasing the number
of pilots decreases the data rate, but improves the BLER
performance; to make up for the decreased number of data



symbols we can transmit more bits per symbol by switching
from QPSK to 16-QAM.

As can be seen in the results, the BLER performance
improves significantly when increasing the number of pilots.
Unfortunately, using only these two modulation schemes we
do not observe a tradeoff, since the achievable data rates and
BLER performance curves do not overlap. Still, it is interesting
to note that in time-varying channels adaptive modulation and
coding can include a third tradeoff by changing the number
of pilots. We explain this gradual performance tradeoff with
two facts: first, since pilots are scarce and the parameter
space of the channel is large it is not possible to disregard
channel estimation error with respect to BLER performance;
and second, since UWA channels are approximately sparse,
more pilots will lead to a less sparse estimate, revealing more
of the channel details and leading to a gradual decrease in
channel estimation error.

VII. CONCLUSION

In this paper, we have considered sparse channel estimation
for time-varying UWA channels using multicarrier transmis-
sion. Due to the time-variation the orthogonality between
subcarriers is lost, making it costly in terms of spectral
efficiency to use pilot designs that keep pilots and data symbols
fully orthogonal at the receiver. We found that observations on
adjacent subcarriers are required to estimate the time-varying
channel, which matches existing results for estimation of non-
sparse time-varying channels. This contradicts some early
notions that for sparse channel estimation, observations should
simply be placed randomly among the data. Furthermore,
when pilots and data symbols are not separated at the receiver,
we found that subcarriers corresponding to data symbols can
be used to observe the ICI caused by the neighboring pilot
subcarriers. In this case the effect of the unknown data symbols
should be modeled as additional colored noise, which is
especially needed for BP, while OMP seems to be less affected
by an unknown noise spectrum. Finally, we also considered
varying the number of pilots to improve BLER performance
at the cost of reduced data rate. We found that this leads
to an almost continuous tradeoff that can be included as an
additional dimension in any adaptive modulation and coding
approach.
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2007.

[9] M. Stojanovic and J. Preisig, “Underwater acoustic communication
channels: Propagation models and statistical characterization,” IEEE
Communications Magazine, vol. 47, no. 1, pp. 84–89, Jan. 2009.

[10] C. Carbonelli and U. Mitra, “A simple sparse channel estimator for
underwater acoustic channels,” in Proc. of MTS/IEEE OCEANS Conf.,
Vancouver, Canada, Oct. 2007.

[11] W. Li and J. C. Preisig, “Estimation of rapidly time-varying sparse
channels,” IEEE J. Ocean. Eng., vol. 32, no. 4, pp. 927–939, Oct. 2007.

[12] M. Stojanovic, “OFDM for underwater acoustic communications: Adap-
tive synchronization and sparse channel estimation,” in Proc. of Intl.
Conf. on Acoustics, Speech and Signal Proc., Las Vegas, NV, Apr. 2008.

[13] E. Zamanizadeh, J. Gomes, and J. Bioucas-Dias, “Identification and
matching of sparse delay-Doppler spread functions from high-frequency
communications signals,” in Proc. of MTS/IEEE OCEANS Conf., Seattle,
WA, Sep. 2010.

[14] L. Tong, B. M. Sadler, and M. Dong, “Pilot-assisted wireless trans-
missions: General model, design criteria, and signal processing,” IEEE
Signal Processing Magazine, vol. 21, no. 6, pp. 12–26, Nov. 2004.

[15] X. Ma, G. B. Giannakis, and S. Ohno, “Optimal training for block
transmissions over doubly-selective wireless fading channels,” IEEE
Trans. Signal Processing, vol. 51, no. 5, pp. 1351–1366, May 2003.

[16] Z. Tang, R. C. Cannizzaro, G. Leus, and P. Banelli, “Pilot-assisted time-
varying channel estimation for OFDM systems,” IEEE Trans. Signal
Processing, vol. 55, no. 5, pp. 2226–2238, May 2007.
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