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Abstract—Localization of underwater acoustic (UWA) sources
using observed signals is a popular research topic that has many
potential applications, both military and civilian (e.g., navigation
of underwater vehicles, mine hunting, marine mammal studies).
This work adopts an inverse problem framework where the
temporal and spatial structure of multipath observed at an
array of sensors deployed in an ocean waveguide is exploited
to determine the source position. The proposed method aims at
deriving useful spatial information as side information from high-
frequency signals used for underwater acoustic communication.
The approach involves several steps: (i) estimating channel
responses and segmenting wavefronts to recover the temporal
and spatial structure of multipath arrivals at the receiver array;
(ii) computing a coarse source position estimate with no a
priori knowledge of its location and only crude environmen-
tal information; (iii) refining the source location using model-
based tomographic methods that match observed vs. predicted
wavefront arrival patterns across the array through ray tracing.
The Coarse Source Localization (CSL) scheme uses an algorithm
for free-space localization based on time differences of arrival,
and several modifications are discussed to adapt it to non-
homogeneous underwater waveguides. The ensuing Model-Based
Source Localization (MBSL) scheme uses an iterative linearized
least-squares algorithm and benefits from the good accuracy of
CSL to attain very fast convergence and avoid local extrema of its
multimodal cost function. The algorithms are tested in simulation
and using experimental data (CALCOM’10) for high-frequency
transmissions at ranges from 200 m to 1 km.

I. INTRODUCTION

Localizing an underwater acoustic source from signals
received at an array of hydrophones has been a subject of
intense research for several years, and finds many military and
civilian applications. The underwater medium poses significant
challenges to localization due to the complexity of sound
propagation resulting from the nonhomogeneous sound speed,
multiple interactions with the sea surface and bottom, and
Doppler-induced compression or expansion of signals [1].
Much of the published work on underwater source localization
is concerned with low-frequency sources, where interactions
with poorly-characterized bottom sediment layers make for a
difficult estimation problem. Matched-field processing (MFP),

which uses forward computer models of sound propagation
in ocean waveguides to predict pressure field values at the
receiver hydrophones, has been quite sucessful at accurately
and consistently localizing sources at frequencies up to several
hundreds of Hz even in environments with strong refraction,
strong bottom interactions, or markedly non-flat bathymetry
[2].

There are far fewer reported experiments of source localiza-
tion using high-frequency acoustic signals, on the order of 10
kHz. One of the reasons for this is that state-of-the-art MFP-
type methods are sensitive to environmental uncertainties or
fluctuations, and these have an increasingly larger impact as
acoustic wavelengths decrease. Yet, working at higher frequen-
cies makes it possible to use arrays with smaller apertures, and
the ambient noise level in most environments tends to be lower
[3]. Moreover, operating at such high frequencies is necessary,
e.g., when processing some marine mammal sounds.

Our envisioned application aims at extracting position infor-
mation from received communications signals whose frequen-
cies are on the order of tens of kHz, where full-field inversion
methods are of limited use both due to large modeling un-
certainties and high required computational loads. There are
several reasons why this goal, which calls for robust processing
methods, might be useful in practice:

• To provide a clearer picture of the difficulties involved
in a given spatial configuration of the acoustic link. This
could serve as a basis for tuning the receiver architecture
(e.g., the filters used in equalization) to a particular
ensemble of expected channel impulse responses.

• To supply useful oceanographic information about the
environment at no extra cost.

• To provide useful localization information to be incorpo-
rated into the navigation system of a vehicle in which the
receiver is mounted.

In [4], [5] several interesting applications are described for the
type of techniques developed here that build upon and expand
the sophisticated capabilities of modern underwater modems,



e.g., improved localization of submerged airplane black boxes,
or GPS-type positioning for AUVs.

As described in the following sections, our localization
criteria rely on matching observed and predicted propagation
delays, in the same spirit of classical travel-time tomography,
which predates full-field methods [1]. This is motivated by
the common belief that it is possible to predict the delay
“skeleton” of the acoustic field with reasonable accuracy at
such frequencies, but the same cannot be said of pressure
field values, given the extent of environmental uncertainties
relative to the acoustic wavelength [3]. In this setting, common
distortions that are highly disruptive of communication signals,
such as extensive intersymbol interference due to multipath
propagation in ocean waveguides, or Doppler compression due
to motion at the receiver, transmitter, or sea surface [6] turn
out to be beneficial, as they embed environmental information
(“fingerprinting”) into signals that can be exploited to improve
the localization accuracy. For example, the physical receiver
array can be expanded into a vertical stack of virtual array im-
ages associated with the various sound propagation paths, thus
increasing the effective aperture and reducing the localization
error.

Our high-frequency source localization approach comprises
the following steps:

1) Estimation of channel responses
2) Segmentation of wavefronts
3) Coarse source localization (CSL)
4) Model-based wavefront matching (MBSL)

Steps 1–2 aim to retrieve the delay structure of multipath
arrivals at the receiver array, whereas 3–4 use that information
to compute source position estimates. Figure 1 provides an
overview of the proposed source localization approach. The
“UWA Channel Estimator” block employs `2−`1 Basis Pursuit
(SpaRSA or TwIST algorithms) as a tool for estimating time-
varying UWA channel responses (specifically, the parameters
of delay-Doppler spread functions). By segmenting the ob-
served impinging wavefronts from channel estimation, relative
arrival time delays, with respect to the topmost hydrophone
in the array, are computed. Knowing these time-differences
of arrival (TDOA) and the UWA channel properties (such
as hydrophone positions, sound speed profile, and bottom
bathymetry) the “coarse source localization” block calculates
an approximate source position in one or two iterations.
The basic CSL algorithm we use is designed for free-space
propagation, and we invoke it iteratively to perform fine
adjustments of time delays to account for bending of rays and
non-homogeneous sound speed based on the previous source
estimate. These adjustments are carried out by the “ray length
calculator” block in the figure. Finally, the source position
is refined by the “model-based source localization” block,
which uses a ray tracer as a forward model. The performances
of various components shown in the figure are evaluated
in simulation and using real data from the CALCOM’10
experiment conducted in Faro, Portugal, in June 2010.

The receiver array used in our experimental data (and
simulations) consists of 16 hydrophones with 4 m spacing,

vertically suspended from a buoy. The acoustic source is
deployed at a depth of about 10 m, and towed from a support
ship. Source-receiver ranges vary from about 200 m to 1 km.
Although we only examine the localization performance for a
single vertical receiver array, our methods could be used for
other array configurations and for multiple arrays as well. In
the latter case, localizing a source placed within the convex
hull spanned by a set of deployed arrays would likely lead to
better accuracy in both localization algorithms (CSL/MBSL),
particularly in terms of range.

The paper is organized as follows. Section II briefly de-
scribes the `2 − `1 Basis Pursuit methods used for channel
response estimation. The Radon transform, Hough transform,
and Fourier transform are introduced in Section III as meth-
ods for detecting and segmenting wavefronts from channel
estimates. Coarse localization of UWA sources from TDOA
measurements is described in Section IV. In Section V, the
source position is derived by matching observed wavefronts
with those predicted by an UWA channel simulator. Section
VI provides numerical results on coarse and model-based
source localization using both simulated and real data. Finally,
Section VII outlines the main conclusions and points out
directions for future research.

Notation: Superscripts (·)T , (·)H stand for transpose and
conjugate transpose (hermitian), respectively. `p norms are
denoted by

∥∥·∥∥
p
, and `2 is assumed when the argument p

is omitted.

II. CHANNEL RESPONSE ESTIMATION

This section briefly introduces the methods used for esti-
mating the responses of time-varying UWA channels using
`2−`1 basis pursuit. UWA channels can be considered as time-
varying linear systems [6] and we characterize them by their
Delay-Doppler Spread Functions (DDSF), which have many
adjustable parameters but are often very sparse. Specifically,
the channel model for (complex baseband) input x(t) and
output y(t) is

y(t) =
∫∫

R2
U(τ, ν)x(t− τ)ej2πν(t−τ) dτdν, (1)

where U(τ, ν) denotes one value of the DDSF in the delay-
Doppler plane, and has the interpretation of a scatterer that
creates at the receiver a replica of the transmitted signal with
propagation delay τ and Doppler shift ν [7]. In practice we
use a sampled version of (1).

We build upon our earlier work on sparse channel estimation
through basis pursuit methods [8] to estimate such channels
using a mixed `2 − `1 fitting criterion. Specifically, given a
portion of an observed packet (stacked in vector y), whose
content is known (i.e., containing training data or a marker
waveform, whose samples make up a suitable regressor vector
in each line of data matrix X), at each receiver we solve for
the vector of DDSF coefficients, u, as follows:

min
u

1
2

∥∥y −Xu
∥∥2

2
+ τ

∥∥u∥∥
1
, (2)



Fig. 1. Block diagram of the proposed high-frequency UWA source localization approach. Given the hydrophone positions, sound speed profile, sea floor
bathymetry, and measured arrivals times of multipath components at each hydrophone, the “coarse source localization” block computes an approximate source
location by solving a trilateration-type optimization problem. This approximate position will be the initial point for the “model-based source localization”
block. Relative travel time delays for all the hydrophones are obtained from the observed response to a known transmission in the “UWA channel estimator”
block.

The first term (`2) quantifies the least-squares (LS) fit
between observed and predicted channel responses, whereas
the second one (`1) is a sparsity promoting regularizer that
drives to zero channel coefficients whose contribution to
improve the LS fit is small. The parameter τ controls the
degree of sparseness in the solution. We solve (2) using
the numerically efficient TwIST algorithm (Two-Step Iterative
Shrinkage-Thresholding) [9] or SpaRSA (Sparse Reconstruc-
tion by Separable Approximation) [10]. For more details on
the algorithms and their performance characterization see [8],
[11].

III. SEGMENTATION OF WAVEFRONTS

Once a sparse “skeleton” of the acoustic field is available,
i.e., a sparse representation of channel coefficients as a func-
tion of delay and receiver depth, we segment it to detect
wavefronts impinging upon the vertical receiver array and
classify them (direct arrival, surface and bottom bounces, etc.).
Our ultimate goal is to detect and classify individual multipath
arrivals in estimated channel responses at each sensor for
subsequent source localization steps, but we find it easier and
more reliable to exploit the spatial dimension, detecting instead
the distinctive delay patterns of wavefronts across the whole
array.

The wavefront detection method is incoherent, given our
assumption on the near-unpredictability of channel response
coefficients, and consists of accumulating the energy of es-
timated coefficients across a set of lines in the delay-depth
plane (Fig. 2). This amounts to assuming that wavefronts are
planar (which is quite accurate in our experimental data, with
the possible exception of the direct arrival), and performing a
grid search over a candidate set of slopes and delays to locate

them. Note that the plane wave approximation is only possible
because a purely energetic criterion is used for detection.
Even in the absence of random variations, complex amplitudes
across wavefronts do not necessarily conform to a plane wave
model at the operating ranges of interest.

The signatures of wavefronts could be detected across the
full delay-Doppler-depth plane to retrieve not only their delay
signatures but also the Doppler shifts that are related to the
source-receiver relative velocity. As this would lead to high
computational complexity for our approach based on grid
search, we choose to project the DDSF coefficients onto the
delay-depth plane, averaging Um(τ, ν) for the m-th sensor
and delay τ across all values of the Doppler shift ν. A
simple parametrization for a delay-depth planar wavefront
contains the angle of arrival relative to the array axis, φ,
and the reference delay at the topmost sensor. For a uniform
linear array the candidate delay at the m-th sensor for this
hypothetical wavefront would be

τm(τ, φ) = τ + (m− 1)
d

c
sinφ, (3)

where d is the intersensor separation and c is the mean sound
speed. Conceptually, we evaluate the wavefront energy metric
for these parameters, J(τ, φ), as

J(τ, φ) =
M∑
m=1

∣∣Um(τm, ·)
∣∣ . (4)

In practice, we examine different possibilities for handling the
interpolation along the delay variable that is implicit in (3)–
(4) when working with a discretized DDSF. In one approach
we Fourier transform Um(τ, ·) along the τ variable, replac-
ing time-domain delaying in (4) with products by complex



Fig. 2. (a) Arrival time delay vs. Hydrophone depth. (b) Radon transform
of the top image. Each peak is related to a wavefront in the upper image.

exponentials in the frequency domain, then sum along the
depth dimension and inverse Fourier transform to get J .
This makes it simple to evaluate the metric J in parallel
for multiple candidate wavefronts with the same slope φ but
different delays. In a similar vein, we consider alternative
approaches based on the Radon and Hough transforms, which
are commonly used to detect lines in images. Since the Hough
Transform basically is implementable on binary images, it
provides weaker results compared to those obtained by Fourier
and Radon transforms.

The cost function (4) varies smoothly and contains peaks
near the true set of wavefronts, but their widely-varying am-
plitudes preclude a simple thresholding operation to determine
the wavefront parameters. We therefore resort to the following
successive cancellation approach to sequentially detect wave-
fronts [12]:

1) Find the maximum of (4) and store the corresponding
wavefront parameters.

2) Remove the effect of the detected wavefront by applying
a zero mask to Um(τ, ·) in a narrow strip along the
wavefront direction/delay.

3) Recompute the energy metric for the masked DDSF and
return to step 1 until the residual energy is sufficiently
low.

Once labeled wavefronts are available, the corresponding
delays across the array can be readily and reliably regenerated.
Labelling of detected wavefronts is currently semi-automatic,
and will be improved in future work.

IV. COARSE SOURCE LOCALIZATION (CSL)

The method presented in this section provides a good
initial estimate of the source position, which is needed for
model-based localization when multiple maxima/minima exist
in the associated cost function that matches observed vs.
predicted TDOA values. The method builds upon a localization
algorithm for free-space propagation based on TDOA, which
we modify to include some of the effects present in ocean
waveguides.

Locating a source from range measurements to known spa-
tial reference points is a classic problem in several fields, and
has received much attention in ocean applications, including
active/passive sonar and beacon-aided navigation. For cooper-
ative scenarios where source/receiver clocks are synchronous
and transmit times are known, or the source operates in
(receiver-initiated) transponder mode so that round-trip-times
are readily available, localization can be based on absolute
ranges. A common criterion is to maximize the likelihood
(ML) under a Gaussian noise assumption or, equivalently,

min
xs

M∑
m=1

(
∥∥xs − sm

∥∥− dm)2, (5)

where xs and sm denote the positions of the unknown source
and the m-th sensor, and dm is the absolute distance between
them [13]. In many other cases, including our experimental
setup, transmit times are unknown. One possibility for lo-
calizing such sources is to match time differences of arrival
between a given sensor and a reference sensor (equivalently,
range differences between the sensors). In a Gaussian ML
approach each term in the summation of (5) would be replaced
by (

∥∥xs − sm
∥∥−∥∥xs∥∥)−dm, where dm is now the measured

difference between the range from the source to sensor sm,
and the range from the source to the reference sensor, located
at the origin of the coordinate system. The method we use
is presented in [13], and matches squared range differences
according to the cost function

min
xs

M∑
m=1

(∥∥xs − sm
∥∥2 − (dm +

∥∥xs∥∥)2
)2
. (6)

By doing so, (6) may be recast as the minimization of a
quadratic function subject to a quadratic constraint and a
linear constraint. Surprisingly, an efficient iterative algorithm



is proposed in [13] to find a global minimum of (6), even
though, in general, this problem is not convex. This is an
extremely useful property, as it eliminates issues related to
convergence towards local extrema that commonly affect ML-
type algorithms.

As the source localization method in [13] assumes free-
space propagation, some adaptations are needed to account for
the presence of multiple wavefronts in an ocean waveguide.
We adopt the image method [1] to replace the physical array
embedded in the waveguide with multiple virtual images in
free space, associated with surface and bottom reflections, and
then apply the method of [13] to determine the source position,
as depicted in Fig. 3. To derive range differences from the
source to the array hydrophones, the wavefront segmentation
methods described in Section III are first used to estimate
delay differences. Detecting wavefronts as a whole across the
array provides much more robust detection and classification
performance than would be possible by independently pro-
cessing individual hydrophone signals. Multiplying theses time
delays, τm, by an average sound speed, cm, provides distance
differences to plug into (6), dm = cmτm. We measure all
delays relative to the earliest arrival (direct path) in the topmost
hydrophone.

In UWA channels, due to changes in physical properties
such as water temperature, density, salinity, or hydrostatic
pressure, acoustic waves propagate with different speed at
different depths. This non-homogeneous characteristic should
be accounted for when computing range-differences for each
hydrophone. Denoting by c(z) the sound speed as a function
of depth, its mean between the source depth, zs, and each
hydrophone at depth zm is a more accurate approximation to
be applied in equation (6) than a global mean velocity,

cm =
1

zm − zs

∫ zm

zs

c(z) dz. (7)

Since the source position is unknown, the CSL technique can
be used iteratively to gradually refine the mean velocities
in (7). In the first iteration a single global average sound
speed is used to compute an initial source position, and in
subsequent iterations the most recent estimate zs is used in
(7). Similarly to the receiver array, the sound speed profile
(SSP) is expanded into surface and bottom-reflected images for
computing averages according to (7), with the understanding
that zm may denote either the depth of an actual sensor or that
of one of its reflected images. This is shown in Figure 4c).

A. Compensating for Sloped Bathymetry in CSL

The basic CSL method depicted in Figure 3 assumes flat
(horizontal) bathymetry. In real scenarios it could have any
shape, and is better approximated by piecewise-linear seg-
ments. For a single segment (constant slope) the modifications
relative to the horizontal case are minor, and amount to re-
flecting bottom-interacting hydrophone images along the new
normal, as depicted in Figure 4. For practical mild slopes the
error is negligible if the sequence of reflected SSPs is still built
under the assumption of flat bottom located at approximately

Fig. 3. Decomposition of the physical array into virtual surface and bottom-
reflected images. Each arrival is matched to the propagation delay between
the source and the associated image hydrophone.

the average bottom depth for the operating area of interest.
Note that a sloping bottom induces a non-linear expanded
array shape and, in theory, endows it with the ability to resolve
the left-right ambiguity for source location.

With multiple piecewise-linear bottom segments an iterative
scheme is needed to determine the appropriate normal for each
bottom reflection based on the current source position estimate.
All the results presented in this paper approximate the bottom
with a single sloped line.

B. Compensating for Acoustic Ray Bending

Acoustic rays do not travel along straight paths due to
variations in sound speed, whereas the basic CSL criterion (6)
is built under the assumption that travel times are proportional
to Euclidean distance (i.e., straight paths, constant speed). The
CSL method should account for changes in mean sound speed
when translating TDOAs into range differences, as discussed
in Section IV, but also for the departure of ray trajectories from
the straight line assumption. For compensating either of these
distortions we resort to iterative processing, using the previous
source position estimate to determine the required corrections,



Fig. 4. (a) Physical array and its surface, bottom, surface-bottom and bottom-surface reflections with sloped bathymetry. The source is represented by a
square on the right side. (b) Range differences to each hydrophone, relative to the source-to-reference range (topmost physical hydrophone). (c) Expanded
sound speed profile for surface, bottom, surface-bottom and bottom-surface reflections.

and then recomputing those coordinates. Our results suggest
that only two CSL iterations are enough to reach a solution
with sufficiently good quality to initialize the model-based
localization scheme described in Section V.

In general, the length of a curve between two abscissae a
and b is given by the line integral

l =
∫ b

a

√
1 +

(
df

dx

)2

dx. (8)

Using (8) we can derive the following expression for comput-
ing acoustic ray lengths between an acoustic source at depth
zs and a hydrophone at depth zm

l =
∫ zm

zs

√
1

1− (ρc(z))2
dz, (9)

where ρ denotes the ray parameter, which remains constant
along the ray and is related to the grazing angle, θ, as [1],
[14]

ρ =
cos θ(z)
c(z)

. (10)

The problem of determining the ray parameters of eigenrays
linking the source and each hydrophone (or, equivalently, a
single eigenray linking the source and each hydrophone image)
is coupled with determining the ray trajectories themselves. An
iterative scheme described in [14] can be used to efficiently
compute eigenrays, starting with initial straight estimates con-
necting the acoustic source and the receivers. Alternatively, an
acoustic simulator based on ray tracing can be used to compute

eigenrays, from which the ray parameters are readily obtained
from (10) based on the known departure or arrival angles and
depths.

When zs ≈ zm, so that θ(z) ≈ 0, we face a problem of
numerical ill-conditioning in (9) trying to integrate a function
with large values over a small interval. A change of variables
can be used to express (9) as an integral between the source
and receiver ranges with an integrand function taking on
smaller values

l =
∫ rm

rs

1
ρc
(
z(r)

) dr. (11)

Compared to (9), the numerical properties of (11) are much
more favorable for the predominantly horizontal propagation
scenarios of interest to our work.

Once the ray length l and the Euclidean distance r =∥∥xs − sm
∥∥ are available we compute the scaled TDOA as

τ ′m = τm
r
l to be used in the CSL algorithm. This compensa-

tion procedure is more effective at ranges on the order of 1
km and higher, where ray bending becomes significant.

V. MODEL-BASED WAVEFRONT MATCHING

The final processing step refines the source position, pre-
viously estimated by CSL, using a realistic model-based
approach to match the predicted vs. observed pattern of wave-
fronts impinging upon the array. The method is conceptually
similar to the one proposed in [15] to match the direct path and
surface reflection, linearizing the propagation delays to attain a
quadratic cost function that is easy to minimize. However, we



consider more wavefronts (Direct, Surface, Bottom, Surface-
Bottom and Bottom Surface paths) than the two used in [15],
which effectively increases the spatial aperture of the array and
leads to better estimation accuracy by improving the shape of
the cost function at the minimum point.

Our cost function penalizes the Euclidean norm of predicted
vs. observed TDOA differences for all hydrophones and wave-
fronts. Specifically, we iteratively solve

min
xs

f(xs) =
∥∥τ − τ̂ (xs)

∥∥2
, (12)

where τ denotes the vector of actual TDOAs, obtained by
segmenting and classifying the observed wavefronts as de-
scribed in Section III, and τ̂ (xs) is the corresponding vector
of TDOAs obtained from the acoustic ray tracer for a source
located at xs.

To iteratively solve the nonlinear least-squares problem
defined in (12) we need to compute partial derivatives of time
delays with respect to acoustic source depth, zs, and range,
rs. We use the following results from [14]

∂τ

∂zs
=

√
1−

(
ρc(zs)

)2
c(zs)

,
∂τ

∂rs
= ρ, (13)

to obtain a first-order approximation of τ̂ (xs) in (12) around
the current source position estimate xs,k as

τ̂ k(xs)
∆= τ̂ (xs,k) +Dτ̂ (xs,k)(xs − xs,k), (14)

where Dτ̂ (xs,k) denotes the Jacobian matrix. For M sensors
and N wavefronts τ̂ ∈ RMN and Dτ̂ ∈ RMN×2. In each
iteration of the minimization algorithm we update the current
source position estimate by solving the linear LS problem

xs,k+1 = arg min
xs

∥∥τ − τ̂ k(xs)
∥∥2
. (15)

Note that (15) resembles a maximization-minimization (MM)
iteration for (12) [16], although the norm in (15) does not
constitute a true majorization function for the original f(xs)
at point xs,k. Despite the lack of convergence guarantees, in
practice we have observed fast and robust convergence of (15).

The full iterative source localization procedure is as follows:
1) The UWA channel response is estimated using basis

pursuit method described in Section II.
2) Using wavefront segmentation methods from Section III,

the TDOA for each hydrophone and path is computed
(relative to the first arrival on the topmost hydrophone).

3) The initial guess for source position to be used in MBSL,
xs,0, is obtained by implementing the CSL scheme of
Section IV.

4) An acoustic channel model is used to predict the time
delays for the current source location estimate.

5) By computing the derivatives of time delay with respect
to the acoustic source depth and communication range
from (13), we linearize the delay function according to
(14) and obtain an updated source position by solving
the overdetermined linear LS problem (15).

(a)

(b)

Fig. 5. Simulation results for localization using CSL with flat bathymetry,
120 m depth. Hydrophones are placed at depths of 6 m to 66 m with 4 m
spacing. (a) Estimation error in source depth for different ranges. (b) Range
estimation error for different source depths.

6) Check whether the solution satisfies a stopping criterion
(e.g., marginal improvement in cost function or negligi-
ble change in estimated source position relative to the
previous iteration) and go back to step 4 if necessary.
Otherwise, the estimated source position is the final
output an the procedure is over.

VI. PERFORMANCE ASSESSMENT

In this section we evaluate the performances of CSL and
MBSL where time delays are extracted from QPSK packet
transmissions over simulated and real UWA channels.

A. Simulation Results

Simulation results were obtained using an online UWA
simulator developed by the University of Algarve1. The

1http://www.ua-net.eu/projects/simulator/



Fig. 6. Simulation results for localization using MBSL with flat bathymetry,
120 m depth. The plot shows the norm of the error vector between the
estimated and actual source positions.

transmitted signal is a QPSK packet at 2.4 kbaud, with 5.5
kHz carrier frequency, 4.5 kHz bandwidth, root-raised-cosine
(RRC) pulse shape (88% rolloff), and total duration 1 s. The
baseband received signal is sampled at 4 times the symbol rate,
fs = 9.6 kHz. The bottom is sandy (1600 m/s, 2 g/cm3, 0.8
dB/λ) and located at 120 m depth. A total of 16 hydrophones
are placed at 4 m intervals between 6 m and 66 m depths.
DDSFs are estimated using TwIST [9].

Figure 5a shows the errors of CSL in estimating the depth of
the acoustic source for three different horizontal ranges (300
m, 500 m and 900 m), as a function of the actual source depth
(varying from 5 m to 70 m). While the three error curves go
through zero for a source depth of about 15 m, it is clear
that, in general, larger depth estimation errors are obtained for
longer communication ranges.

Figure 5b shows similar results for range errors at three
different source depths as a function of the actual source range
(varying from 200 to 850 m). Unlike in Figure 5a, here no
obvious correlation seems to exist between the magnitude of
errors and the source depth. However, it is also clear that errors
increase with communication range. This is to be expected, as
the set of five selected wavefronts carry less information about
the source position as it moves further into the far-field of the
(expanded) receiver array. This more seriously affects range
estimates than depth estimates (range errors are one order of
magnitude larger), as the latter are computed along spatial
directions that better exploit the array directivity, thus leading
to less ambiguity.

Figure 6 shows the norm of the source localization error
obtained by MBSL, with CSL initialization, as a function
of range (source depth is 30 m) after the first and second
iterations. As in CSL, errors grow larger as the communication
range increases. However, given the good initial point, MBSL
is able to drastically reduce the total source localization
error within 2 iterations. Note that there is no environmental
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Fig. 7. Sample channel response for CALCOM’10, showing strong direct
and surface reflected paths, and weaker bottom-interacting bounces.

mismatch in the ray tracer between data generation and
computation of predicted delays.

B. Experimental Results

The CALCOM’10 sea trial was conducted south of Faro,
Portugal, on June 22–24, 2010. The test area was approx-
imately 3 × 3 km2 at 36◦ 52’ N, 8◦ 3.8’ W, with bottom
sloping along the NE/SW direction from 100 to 200 m. Bottom
sediments at the site are silty, with an estimated compressional
sound propagation speed of 1550 m/s. The SSP in the water
column is downward refracting, decreasing from 1514 m/s at
the surface to 1507 m/s at 60 m, and remaining approximately
constant below that. The receiver was a vertical drifting array
with 16 uniformly-spaced hydrophones from 6 m to 66 m
depth. Communication ranges during the experiment varied
from about 300m to 3 km. The signals analyzed here were
transmitted using a Lubell LL-1424HP source at 10 m depth.

We focus on QPSK packets at 5.6 kbit/s, with 4.5 kHz
bandwidth, 5.5 kHz carrier frequency, root-raised cosine pulse
shapes (60% rolloff), and total duration 3 s. Each packet
is flanked by a pair of start/stop LFM markers for packet
synchronization and coarse Doppler compensation. The arrival
wavefront structure at the array is clearly visible, with strong
direct and surface reflected paths, and weaker bottom and
bottom-surface bounces. Figure 7 shows a sample response.

The estimation errors of CSL and MBSL for packets
transmitted at different ranges are shown in figure 8. Rather
than representing the norm of source position errors vectors,
which would not take into account GPS errors and other
positioning errors in our ground truth source location, we
chose to compute the normalized norm of the difference
between measured (i.e., segmented) and predicted TDOA
values 1

MN

∥∥τ − τ̂ (xs)
∥∥ (see (12)-(15) in Section V). From

the results we see that MBSL significantly improves upon the
CSL solution, even though the latter is already quite accurate.
As expected, the estimation error decreases in the second



iteration of MBSL, relative to the first one.

VII. CONCLUSION

A two-step UWA source localization approach was proposed
in this paper. In line with our previous work [8], this is in-
tended as a contribution to the development of high-frequency
tomographic methods that can be used to extract useful
environmental information from communication signals, in
addition to the digital messages themselves.

We have tested our algorithms in simulation for various
source ranges from 200 m to 1 km and depths from 5 m
to 70 m. The paper also includes performance results using
real data collected during the CALCOM’10 sea trial.

The first part of this scheme, termed “coarse source lo-
calization”, tries to provide a good initial point for source
position to be used for the second step, “model based source
localization”. The results presented in the paper demonstrate
that the proposed CSL method is quite accurate and can be
employed as a stand-alone estimator over short communication
ranges (say, below 500 m), or when only a rough source
position estimate is needed. The fact that it dispenses with
prior knowledge of the source location, and requires only
crude environmental knowledge in its simplest form, is very
appealing. In order to have a more accurate estimation when
reliable environmental information is available, especially for
longer communication ranges, the MBSL method can be used.
In simulation MBSL converged to within 1 m of the true
source position in as few as 2 iterations. However, MBSL
is more computationally complex than CSL, as it involves
running a ray trace at each iteration.

Future work will focus on streamlining and improving the
accuracy of CSL. This could be done by improving the ray
length computing block, so as to find robust ways to compute
the ray length without using a simulator. Another relevant
topic is to study the sensitivity of MBSL to environmental
mismatch, and evaluate alternative iterative algorithms besides
the linearized LS considered in [15], such as the Newton-
type BFGS [17]. We will also pursue the estimation of source
speeds in cases where we have moving sources, by including
observed Doppler shifts in our model-based techniques.
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