
Sequential observer selection for source localization
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Abstract—Identifying the source of network diffusion is an
important task in applications such as epidemics management
and understanding the trend propagation over social networks.
As observing each node carries a cost, we study the problem of
sequential selection of observed nodes from two aspects: which
nodes to observe such that the source is localized with the lowest
cost, and for a pre-specified number of time-steps, which nodes
to observe such that the resulting number of possible source
candidates is the lowest. We show that both problems can be
framed, under a simple propagation scenario, as dynamic pro-
graming with imperfect state knowledge. The proposed approach
is optimal, but computationally intensive, hence we propose
two simple greedy strategies. Using adaptive submodularity, we
provide performance guarantees for one greedy algorithm. We
evaluate the proposed approaches through simulation.

Index Terms—network theory, source localization, dynamic
programming, adaptive submodularity

I. INTRODUCTION

Propagation of different phenomena over networks can be
modeled as network diffusion. Examples vary from spreading
of viruses in human populations to information diffusion in
social networks. The tasks of understanding the origin of dis-
ease, curbing infections, or determining influential individuals,
all rely on source localization [1]–[6].

Source localization can be performed based on the times
when nodes became ”infected”. However, due to network size,
limited resources and privacy issues, the infection times cannot
be observed for all the nodes [2], [3], [6]. The choice of the
observed nodes, denoted as the observers, strongly influences
the performance of the source estimator and thus selecting
the most informative subset becomes an important task. The
performance of high-degree nodes is compared to randomly
selected nodes through simulation in [2]. Selection strategies,
based on different centrality measures, are experimentally
evaluated in [6]. In [7], the problem of finding the smallest
subset of observers to achieve correct source localization,
under a simple deterministic propagation model, is formulated
as the problem of finding the smallest resolving set. In a
random setting, the Chernoff distance is used as a metric in
[8] to select observers that yield the lowest source localization
error, when incubation times are modeled as exponential noise.
In all the previously discussed strategies, all observers were
selected at the same time. In this paper, we analyze the
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selection strategy when nodes are chosen dynamically, as the
current observer is selected based on the infection times of the
previous observers. This might be useful, for example, when
a person who initiated a certain trend over a social network
should be identified. Then the choice of which blog or site
should be examined to help track this person is made after
reading the previous site, as the newly acquired information
is used to narrow down the search.

In order to theoretically analyze the problem to gain insight
for more realistic scenarios, we apply a simple propagation
model where the infection times correspond to the nodes’
graph distances to the unknown source. We examine the
dynamic selection problem from two perspectives. First, we
wish to find a selection strategy such that the source can be
unambiguously localized with the smallest cost. The second
problem we analyze is when the the number of nodes that
can be observed is predefined and we look at the strategy that
would result with the smallest number of source candidates.
We show that both these problems can be optimally solved
using dynamic programming with imperfect state knowledge.
However, since most networks of interest are very large,
the computation cost of the optimal approach is prohibitive.
Hence, we propose two efficient approximation strategies and
illustrate their performance using small examples. Using adap-
tive submodularity, we can show that one proposed approxima-
tion algorithm has near-optimal performance guarantees [9].

II. MODEL SETUP AND PROBLEM STATEMENT

We assume a widely accepted Susceptible-Infected propa-
gation model, where once a node is infected (informed), it
remains as such [1], [2], [4]. Initially, there is only a single
infected/informed node in the network, the source node. At a
known time, assumed 0, the source node initiates the network
diffusion, modeling the scenarios when some known exter-
nal event triggers propagation. We will assume the network
to be a connected and undirected graph, as infections and
rumors spread through contact and ties which are typically
bidirectional. We adopt a simple model of diffusion where,
once a node is infected at t − 1, in the next time instant
t, where t is a discrete time index, it will infect all of its
neighbors, with probability 1. Then, the time of infection of a
node corresponds to its graph distance to the unknown source
node. Monitoring nodes is costly in terms of resources, time
and effort, hence, only a subset of nodes can be observed and
the source is identified using the infection times of observed
nodes. A network of n nodes is represented using a graph



G = {V, E}, where V = {1, . . . , n} is the set of nodes and
E is the set of edges. The distance between two nodes i and
j, d(i, j), in a connected graph is the number of edges in
the shortest path between them. If O ⊆ V denotes the set of
nodes {o1, . . . , op}, then d(i, O) is the p-vector of distances
[d(i, o1), . . . , d(i, op)]

T . In [7], it was shown that any source
can be unambiguously identified only if the set of observers
forms a resolving set. In a resolving set of nodes O, we have
d(i, O) 6= d(j,O) for any two different nodes i, j ∈ V [10].
Finding a resolving set of minimum cardinality is NP hard
for a general graph, and the value of minimum cardinality is
known as the metric dimension.

In order to observe a node i, a cost c(i) is incurred. We
wish to sequentially select nodes to localize the source at
the lowest cost. This cost can reflect the time-steps needed
for source localization, in which case the cost is equal for
all the nodes, or it can differ between nodes, as more effort
is required for accessing certain nodes. A source s can be
unambiguously identified by an observer set O if and only if
d(s,O) 6= d(i, O), for all nodes i ∈ V, i 6= s. However, as the
identity of node s is unknown, the goal is to find a strategy
π that minimizes the expected cost, for all possible sources
s ∈ V . We formulate the problem of determining the strategy
π that maps the infection times of previous observers to the
choice of the next observer as

min
π

Es [c (O (π))]

subject to d(O (π) , s) 6= d(O (π) , i), ∀s ∈ V, s 6= i, (1)

where O (π) is the set of observers selected according to
strategy π and c(O (π)) is the sum of costs of all nodes in the
set. Let tinf be a vector of observed infection times. We denote
with S(O) = {s1, ..., sl} a set of source candidates after a set
O has been observed, i.e., S(O) = {s : d(O, s) = tinf}. It
is important to note that the members of set O are selected
one at a time, and the selection stops when S(O) = {s}, i.e.,
there is only a single source candidate. The order by which
the nodes are selected influences the total cost c(O), as for
different sequences of observers the stopping criterion might
be met at different times, thereby incurring different total cost.

On the other hand, sometimes actions need to be taken after
a pre-specified number of time steps T , equal to the number of
sequentially chosen observers, even if there is some ambiguity
in the source identity. Then the goal is to find a strategy π
for observer selection such that the expected ambiguity is the
lowest, i.e., the expected number of source candidates is the
smallest. The problem can be stated as follows

min
π

Es|S (O (π))|

subject to |O (π)| ≤ T, (2)

where again the expectation refers to all the possible sources.

III. DYNAMIC SELECTION STRATEGIES

Stochastic dynamic programming is an optimization
methodology for problems where information becomes avail-
able sequentially, and after new information becomes avail-

able, a certain action is selected [11]. The state of the system
corresponds to the identity of the source. Each node has
a certain probability of being the source, encoded as the
prior distribution over the nodes. When prior is not available,
these are set to 1/N . The identity of the source cannot be
directly observed, and instead the distances to it are known.
We will model the available information about the source as
the identity of the nodes that have the same distance vector
to the selected observers. We denote as Sk = {s1, . . . , sl} the
source candidates after k nodes have been observed. Figure
1b shows an analysis of resulting source candidates for all
possible observer sequences, when the source is node 1 and
the network is as shown on 1a. At the beginning of each time-
step k, the information vector based on which the subsequent
action is taken is Ik = (o1, . . . , ok−1, Sk−1). The selection
of observer ok represents the action that is taken at time step
k. Depending on the different sequences of selected observers,
the goal might be reached at different time-steps. If the source
is identified at the end of time-step k, i.e., |Sk| = 1, we set
the cost g of each subsequent action to 0, i.e., gl(ol = i) = 0,
for l > k and ∀i ∈ V . Until the source is identified, the cost
of selecting each node i is its cost c(i), i.e., gl(ol = i) = c(i),
for l ≤ k, if the source is identified in the k−th step. We set
the number of time steps equal to the resolving number of
the graph, r. The resolving number is the minimum number
p such that every p-subset of V is a resolving set of G [12].
Unlike metric dimension, it can be determined in polynomial
time. After r time-steps, every observer sequence results in a
single source candidate, and there is no need to analyze longer
sequences. The terminal cost for all sequences is set to 0. The
tail cost Jr(Ir) for the last step is calculated as [11]

Jr(Ir) = min
or∈V

[Es {gr(or)|Ir, or}] , (3)

where the expectation is taken over all the possible sources s ∈
V . For each possible information vector Ir, which contains all

(a) An example network (b) Observation diagram
when node 1 is the source

Fig. 1: Analysis of source candidates (b) for a network shown in
(a). The source candidates are shown given that the true source is
node 1. Red arrows and numbers on (b) represent the nodes selected
for observation, while the ovals show the resulting source candidates,
with some self-loops omitted. For example, if node 4 is selected as the
first observer, the source is exactly determined, as S({4}) = {1},
while selecting the sequence of observers 5, 2, 3 results in source
candidates 1, 4, since S({5, 2, 3}) = {1, 4}. The metric dimension
of the network is 2, while the resolving number is 4.



preceding sequences of r−1 observers and the resulting source
candidates of each sequence, the optimal cost (3) is evaluated,
and the observer that achieves this cost is selected as the last
observer. For the preceding observers k = 1, . . . , r − 1, the
tail cost is given as the solution of the optimization problem

Jk(Ik) = min
ok∈V

[Es {gk(ok) + Jk+1(Ik, ok, Sk)|Ik, ok}] . (4)

Now the tail cost at time k not only includes the cost of
selecting each node as the observer, but also the remaining
cost-to-go Jk+1. Again, for each possible information vector, a
node that minimizes the cost at step k is chosen as the optimal
observer. The information vector I1 is empty, as there is no
observation available for the selection of the first observer.
The obtained optimal sequences are of length r, but only the
k first nodes are of interest, where k is the first step for which
|Sk| = 1. The calculations (3) and (4) can be done off-line,
before the observer selection starts.

The value of the optimal cost J1 represents the total optimal
cost, an expected amount of resources that are spent to identify
the source without any uncertainty. If the cost of all the nodes
equals 1, the optimal cost is upper bounded by the metric
dimension. The reasoning is as follows: one selection strategy
could be observing the nodes that form a resolving set. With
this strategy, it is guaranteed that regardless of the source,
there would be no ambiguity after selection of such a set. Now,
equations (3) and (4) give an optimal solution which cannot
be larger than the solution produced by any other strategy.

In order to apply dynamic programming to optimally solve
optimization problem (2), we slightly modify the previously
described setup. Now, the horizon is set to T time-steps, and
different sequences of the same length have different terminal
cost. The cost is associated with the cardinality of the set of
candidates; the larger the set is, the larger the uncertainty, and
therefore, the T -th observer is selected as

JT (IT ) = min
oT∈V

[Es {|ST ||IT , oT }] . (5)

The remaining steps, k = 1, . . . , T − 1 do not add any
additional cost, as the objective is the smallest uncertainty after
all the steps have been taken. Hence the preceding tail-costs
only average over possible sources as follows

Jk(Ik) = min
ok∈V

[Es {Jk+1(Ik, ok, Sk)|Ik, ok}] . (6)

Again, these calculations can be completed before the
selection process starts. After the first node is selected, based
on its infection time, the subsequent observer is chosen as the
node that minimizes the cost J2, for the given information
vector. From (6) the obtained optimal cost, J1 represents an
expected number of node suspects after observing T observers.
The results of applying (4) and (6) to a network depicted in
Figure 1a is shown in Table I.

Even though dynamic programming leads to optimal solu-
tions, it is not a feasible strategy for larger networks. Problems
(1) and (2) are of combinatorial nature and there is an
exponential growth of computational and storage requirements
as the network size increases. Hence, we need to resort to

TABLE I: Expected cost for being selected as o1 for each node
of the network shown in Figure 1a evaluated with (4) and (6),
assuming all nodes have cost equal to 1 and T = 1. Optimal
J1 is the smallest such cost. For problem (1), the expected cost is
calculated as Es {1 + J2(o1, S1)|o1}, with J1 = 8/5 and any one
of the nodes 1, 2, 3 or 4 can be selected as the optimal first observer.
As for problem (2) when only one can be selected for observation,
the expected cost is Es {|S1||o1}, the optimal node is node 5, and
J1 = 9/5, i.e., on average there will be 9/5 source candidates after
observing the infection time of node 5.

Expected
cost of o1 for

Node
1 2 3 4 5

Problem (1) from (4) 8/5 8/5 8/5 8/5 9/5
Problem (2) from (6) 11/5 11/5 11/5 11/5 9/5

sub-optimal, yet more efficient, selection strategies. However,
we can reformulate (1) and (2) with uniform prior as an
adaptive stochastic optimization problem to take advantage
of guarantees available for its greedy approximate algorithms
which obtain near-optimal solutions [9].

Problem (1) can be cast as an Adaptive Stochastic Minimum
Cost Cover problem as follows

min
π

Es [c (O (π))]

subject to N−S (O (π)) ≥ N − 1, ∀s ∈ V, s 6= i, (7)

while (2) can be stated as Adaptive Stochastic Maximization

max
π

Es [N − |S (O (π))|]

subject to |O (π)| ≤ T. (8)

Adaptive submodular functions are a generalization of sub-
modular set functions to adaptive policies [9]. Whereas sub-
modularity means that the benefit of an item when added to a
set will not increase compared to adding the same item to its
subset, adaptive submodularity reflects that selecting an item
later in a sequence will not increase its expected marginal
benefit, where expectation is computed with respect to the
posterior probability given the current observations.

Claim: For a uniform source prior, function f(s,O) =
N − |S(O)| is adaptive monotone and submodular.

We omit the proof due to space limitations.
Now, leveraging on the adaptive submodularity property of

function f , we apply a greedy approximation algorithm. Let
O = {o1, . . . , ok−1} be a set of nodes selected in the first k−1
steps and let Ik = (Ok−1, S(Ok−1)). Then, at the beginning
of time-step k, we choose the observer ok as

ok = argmax
o∈V

1

c(o)
E

s∈S(Ok−1)
[|S(Ok−1)| − |S(Ok−1 ∪ o)|Ik)] .

(9)
Hence, at each step an observer node is selected that min-
imizes the weighted expected number of source candidates,
where expectation is taken considering only the current source
candidates. The node weight is inversely proportional to
its cost. In order to solve (7), we repeat step (9) until
|S(Ok)| = 1. For problem (8), we repeat the selection step
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(b) Time required to solve (1)
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(c) Cost incurred for solving (1) by approximate algorithms
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(d) Number of source candidates after solving (2) for T = 2.

Fig. 2: The performance of dynamic programming and greedy approaches for solving (1) and (2).

a predefined number of times, setting c(o) = 1 for all the
nodes. Let c(πopt) denote the optimal cost of (7), and c(πg)
represent the expected cost achieved by strategy (9). Then
c(πg) ≤ c(πopt) (log (N(N − 1)) + 1) is guaranteed to hold
[9]. Also, let f(πoptk ) denote the optimal expected value of
(8) after k steps, and f(πgk) represent the expected value
achieved by strategy (9). Then the results in [9] guarantee
that f(πgk) ≥ (1− e−1)f(πoptk ).

We additionally propose a third strategy for observer se-
lection that at each step minimizes the maximum number of
possible source candidates. We denote as T cS(o) the nodes
of set S which are at distance c to node o, where c =
1, . . . , l, and l is the maximum such distance, i.e. T cS(o) =
{t : t ∈ S, d(o, t) = c} . Then, at the beginning of step k, with
Sk−1 defined as previously, observer ok is chosen as

ok = argmin
o∈V

c(o)max
c
|T cSk−1

(o)|. (10)

Unlike in the adaptive algorithm (9) where an observer is
selected that minimizes the weighted expected number of
source candidates, here at each step an observer is selected
based on the worst case scenario, by minimizing the weighted
highest possible number of source candidates.

To illustrate the merits of the proposed greedy approaches
we will be comparing their performance to a weighted random
selection that selects more costly nodes with less probability.
Specifically, this random selection that is used as a benchmark
at each step randomly selects a node i with normalized
probability p(i) inversely proportional to its cost, i.e., p(i) =
1
c(i)/

∑
j

1
c(j) .

IV. SIMULATION RESULTS

We illustrate the performances of the proposed approaches
for randomly generated small world networks. For each net-

work size, 100 realizations were considered, a uniform source
prior was used, and node costs were chosen randomly in the
range (0, 1). Figure 2a shows that for small networks, the
greedy approaches yield similar average cost for (1), signif-
icantly lower than the cost incurred with random selection,
and the gap between greedy performance and the optimal
solutions does not change much as the network size increases.
Figure 2b shows the corresponding average execution time,
which is, as expected, much higher for optimal solution. For
larger networks, we only show the cost attained by the greedy
approaches. Figure 2c shows that the greedy approaches again
have very similar performance, much lower that the random
selection and the gap between greedy and random selection
increases as the number of nodes increases. When the number
of observed nodes is set to 2, the greedy adaptive algorithm
(9) yields a slightly lower number of source candidates than
(10), with both not much higher than the optimal strategy for
(2), unlike the random selection, as shown in Figure 2d.

V. CONCLUSIONS

We analyzed the problem of sequential observer selection
for source localization from two perspectives: minimizing
the observation cost for unambiguous source localization and
minimizing the number of source candidates after observing
a prespecified number of nodes. We solve the problems
optimally with dynamic programming, which is not efficient
for large networks. We additionally propose two simple greedy
approaches with similar performances, both comparable to
optimal and significantly better than a weighted random selec-
tion. For one greedy approach we can show it has performance
guarantees under the framework of adaptive submodularity.
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