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Geometric compensation applied to 
image analysis of cell populations 
with morphological variability: a 
new role for a classical concept
Joana Figueiredo  1,2, Isabel Rodrigues3, João Ribeiro3, Maria Sofia Fernandes1,2,3, 
Soraia Melo1,2,4, Bárbara Sousa1,2, Joana Paredes1,2,4, Raquel Seruca1,2,4 & João M. Sanches3

Immunofluorescence is the gold standard technique to determine the level and spatial distribution of 
fluorescent-tagged molecules. However, quantitative analysis of fluorescence microscopy images faces 
crucial challenges such as morphologic variability within cells. In this work, we developed an analytical 
strategy to deal with cell shape and size variability that is based on an elastic geometric alignment 
algorithm. Firstly, synthetic images mimicking cell populations with morphological variability were 
used to test and optimize the algorithm, under controlled conditions. We have computed expression 
profiles specifically assessing cell-cell interactions (IN profiles) and profiles focusing on the distribution 
of a marker throughout the intracellular space of single cells (RD profiles). To experimentally validate 
our analytical pipeline, we have used real images of cell cultures stained for E-cadherin, tubulin and a 
mitochondria dye, selected as prototypes of membrane, cytoplasmic and organelle-specific markers. 
The results demonstrated that our algorithm is able to generate a detailed quantitative report and a 
faithful representation of a large panel of molecules, distributed in distinct cellular compartments, 
independently of cell’s morphological features. This is a simple end-user method that can be widely 
explored in research and diagnostic labs to unravel protein regulation mechanisms or identify protein 
expression patterns associated with disease.

Immunofluorescence (IF) microscopy is a widely used technique that uses fluorescent-labelled markers to vis-
ualize the distribution of proteins, glycoproteins and other molecular targets in intracellular structures, at the 
cellular level or at the tissue level1,2. In the last years, different approaches have been developed to extract quan-
titative features from IF images and, in this way, to better understand the most complex cellular mechanisms3,4. 
Image acquisition modalities, such as time-lapse microscopy, confocal laser scanning microscopy (CLSM) and 
spinning disk microscopy can offer quantitative analysis of a target protein; nonetheless, those techniques rely on 
measurements of total fluorochrome intensity, regardless of its distribution in an image or in a selected region5–7.

Recently, we have developed a bioimaging tool to assess the patterns of expression of CDH1 germline missense 
variants associated to a cancer syndrome8. In that approach, the major analytical challenge was related to the het-
erogeneous morphology of cells in IF images. In fact, within the same cell population, it is possible to identify cells 
with very different shapes and sizes due to DNA replication error/mutations, epigenetic alterations, independent 
clonal evolution or different cell cycle stages9,10.

Different morphological features will give rise to a high variability in the expression profiles, impairing the 
extraction of a representative overview/map of a particular target within a heterogeneous cell population. To 
overcome this constraint on endogenous cell-to-cell differences, we developed a geometric compensation model 
specific for in situ IF applications. Geometric compensation is a common procedure in several image analysis 
modalities, and typically consists on the estimation of rigid or non-rigid transformations to make the objects 
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under alignment as similar as possible in terms of shape and size11–14. This technique is essential for image recon-
struction and fusion by improving the resolution of the raw data and increasing image analysis accuracy11–14.

In this report, we describe an analytical pipeline which includes the extraction of internuclear (IN) and radial 
(RD) fluorescence profiles, and their accurate alignment. Specifically, the method applies a Bayesian non-rigid 
alignment algorithm and an automatic outlier rejection strategy to a large number of individual profiles, mini-
mizing the undesired effect of size and shape variability within the cell population. In this way, the algorithm gen-
erates a final profile which is a distorted version of an ideal unknown profile, representative of all cells analysed 
within an IF image.

To experimentally validate our strategy, we applied this new algorithm to IF images of real cell cultures stained 
with E-cadherin, a key cell-cell adhesion molecule; tubulin, a major component of the eukaryotic cytoskeleton; 
and Mitotracker that labels mitochondria, which are complex cytoplasmic organelles responsible for the gen-
eration of energy in cells15–20. Altogether, prototype markers of membrane, cytoplasmic and organelle-specific 
moieties, representative of distinct cellular compartments, were incorporated in our validation.

Results
Extraction of synthetic expression profiles. In imaging analysis, cellular morphological heterogeneity 
is a major challenge that needs to be addressed to obtain an accurate quantitative map of a tagged molecule in a 
cell population. Herein, we took advantage of an alignment algorithm to minimize the variability of synthetic and 
real fluorescence profiles, demonstrating the accuracy of our approach to achieve a typical picture and a precise 
expression profile of proteins in the populations analysed.

To achieve our goal, the strategy applied involved a number of specific steps. First, cells composing synthetic 
images mimicking heterogeneous cultures/tissues were automatically selected and connected using a bioimaging 
tool previously developed by our group (Fig. 1A,B)21. The algorithm generates a nucleus-nucleus network rep-
resenting cell distribution across the image, in which the nodes are the geometric centres of the cell nuclei and 
the edges represent the neighbouring relation between them. The Delaunay tessellation algorithm automatically 
groups neighbour nodes in three element clusters (triangles), minimizing their total area and eccentricity. The 
networks are independent of the non-regular distribution of cells and avoid the need of repetitive and predictive 
patterns to define a neighbouring system. Noteworthy, for an accurate intensity mapping, cells should be conflu-
ent in a way that only neighbouring/adjacent cells are associated in triplets, forming a contiguous diagram. The 
presence of empty space between cells could lead to an erroneous interpretation of the data.

The connections retrieved from this networking process were then used to extract IN and RD profiles from 
cell pairs and individual cells, respectively. As showed in Fig. 1C, IN profiles consist of a set of quasi-parallel seg-
ments around the main axis linking the geometrical centres of two neighbour nuclei and measure fluorescence 
intensities occurring between two contiguous cells. This output is of particular relevance to evaluate proteins 
located at the plasma membrane or in specific cellular organelles.

In order to extract IN profiles, we have considered the diameters of the nuclei perpendicular to the IN axis, 
linking both geometric centres of the nuclei and their interceptions with the nuclei, xA, xB, yA and yB, where 
x, y 2∈  . The starting and ending points, xi and yi, of the ith straight line/profile within the beam are the 
following:
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Here, j 0 m 1i= − . mi is the length of the ith profile, which is typically the distance between the geometric 
centres of the nuclei, cA and cB, = −m c ci A B . Since the IN distances were different from pair to pair of cells and 
the next step was to package them in a single N × M matrix, where N is the total number of profiles and M is the 
length of them, an interpolation procedure with bi-cubic functions was performed over each extracted profile to 
normalize their length to M samples.

In contrast, RD profiles were designed to capture the intensity pattern throughout the cytoplasm of a single 
cell (Fig. 1D) and could be very useful for the analysis of cytoplasmic proteins. Indeed, the RD profiles correspond 
to a set of m equi-spaced angular profiles anchored at the centres of the nuclei. The length of each profile within 
the set depends on the neighbouring configuration in the vicinity of the cell. As shown in Fig. 1D, an interpolation 
spline passing by the adjacent cells defines the limit and the length of each profile. Further, as described for IN 
profiles, the different lengths of RD profiles were normalized using a bi-cubic interpolation operation, allowing 
the packaging of all profiles (from all cells) in a N × M matrix. Here, M is the normalized length of the profiles, 

=N N mc  is the total number of RD profiles and Nc is the number of cells in the image.
The intensity of the jth pixel from the ith profile, extracted from the kth cell, is G(pi(j)) where .G( ) is the image 

intensity at the location
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Here, j 0 r 1 ri i= − .  is the length of the ith profile, which corresponds to the distance from the centre of the cell 
to the interception of the corresponding radius vector (Fig. 1D) with the spline that passes through the cell 
centroids.

As demonstrated in Fig. 1E,F, IN and RD original maps were successfully obtained from synthetic IF images 
following this pipeline. However, their huge irregularity prevents obtaining a clear picture of the expression pat-
tern represented in the original image.

Figure 1. Profiling internuclear (IN) and radial (RD) expression in heterogeneous cell populations. (A) 
Synthetic image mimicking cellular heterogeneity, concerning size and morphology. (B) Automatic selection 
and networking of cells through nuclei segmentation and calculation of their geometric centroids. Arrowhead 
represents IN profiles and arrow corresponds to RD analysis. (C) IN profiles capture signal intensities occurring 
between two contiguous cells. (D) RD profiles encompass fluorescence patterns that spread from a nucleus 
centroid and cover the total area of a single cell. (E,F) IN and RD intensity maps, respectively, obtained from the 
original synthetic image presented in (A).
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Alignment of synthetic profiles and image reconstruction. IN and RD profile maps obtained in the 
previous step are composed by stacks of profiles extracted from different cells and pairs of cells, with different 
sizes and shapes. Therefore, the panel of profiles is highly heterogeneous and, as expected, it is not possible to 
directly extract their typical protein distribution.

To overcome the variability of IN and RD maps, a geometric compensation method was developed (Fig. 2A), 
assuming that all profiles within each map are distorted versions of an unknown ideal profile that is representative 
of the protein distribution in the whole cell population.

For that purpose, we established an N × M matrix with =Y y{ }i j,  representing the map of profiles and 
=X x{ }i j,  holding the same dimensions of Y. The matrix contains the normalized locations of the intensities, yi,j, 

along the profiles, where x [0, 1]i j, ∈ . Importantly, the distance between cells is not constant, so the length of the 
extracted profiles may be different, especially in the case of IN profiles. Therefore, profiles were interpolated, using 

Figure 2. Geometrically compensated profiles reproduce signal patterning of synthetic images. (A) Strategy 
for geometric alignment. An iteration model of intensity’s adjustment was applied to each profile from the 
intensity map, imposing a tension regularization term and, simultaneously, a similarity driven force. (B,C) non-
compensated and compensated IN maps, respectively, extracted from the same synthetic image. (B’,C’) Mean 
and standard deviation (SD) of non-aligned and aligned IN profiles. (B”) and (C”) 3D overviews of all extracted 
IN profiles. (B”’,C”’) Virtual cell pairs illustrating signal distribution in non-aligned and aligned IN profiles. A 
similar analysis is presented in panels D and E for the corresponding non-compensated and compensated RD 
profiles. a.u., arbitrary units.
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a bi-cubic interpolation function, and converted into N length vectors suitable to be packed side-by-side in the 
matrix Y.

Matrix X contains the initial locations of the observations, xi,j, that we have assumed to be evenly distributed 
in the interval [0, 1] according to = −x i N/( 1)i j,  with = … −i N0, , 1. Each N length column of Y, yj, was also 
assumed to be a distorted and non-uniformly sampled version of an ideal continuous profile, representative of the 
entire population, Ω →f x R( ): , where Ω = [0, 1].

The distortion of each profile was described by the unknown monotonic function gj(x). The algorithm is based 
on the adjustment of the initial locations of the observations, xi,j, in order to estimate de inverse of gj(x) and, con-
sequently, the real locations of the observations, x g x( )i j j i j,

1
,

⁎ = − .
The ideal profile is, thus, a finite dimension continuous function, f(x, c), where c c{ }k=  is a vector of coeffi-

cients to be calculated. The estimation of c, as well as the compensated locations, = −x g x( )i j j i j,
1

,
⁎ , were formulated 

according the following optimization problem:

X arg E X Yc c[ , ] min ( , , ) (4)c X,
⁎ =

Here the energy function to be minimized is composed by three terms:

= + +E X Y E X Y E E Xc c c( , , ) ( , , ) ( ) ( ) (5)Y c X

the data fidelity term EY; the regularization term for c, Ec; and the prior term for the observed locations, EX. This 
equation will induce similarity between neighbouring profiles within the map and, consequently, the alignment 
and geometric compensation of the profiles. A number of assumptions need to be highlighted and include:

Ideal Profile. The unknown function that describes the ideal profile to be estimated is assumed to be a finite 
dimension continuous function described by a linear combination of L ideal interpolation functions, 

x sinc x k( ) ( / )kφ ∆= −  with L( 1) 1∆ = − −  and = … −.k L0, 1, ,
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Here, x x x x( ) { ( ), ( ), , ( )}L
T

0 1 1φ φ φ φ= … −  is an L length column vector containing the interpolation functions 
computed at location x, and c c cc { , , , }L

T
0 1 1= … −  is an unknown L length column vector of coefficients that 

needs to be estimated.
Because the IN profiles describe the typical intensity distributed from the cell A to the cell B, which is the same 

from B to A, the vector c should be symmetric by imposing Pcc = , where c is a (L/2) length vector and P is the 
following L × (L/2) matrix
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The ideal profile can be described as following

f x x Pc( ) ( ) (8)Tφ=

Noteworthy, the IN ideal profile undergo symmetry constraints, using P as defined in (7), while the RD ideal 
profile is not subjected to symmetry constraint, P = IL, where IL is the L × L identity matrix.

Data fidelity term. The common used additive white Gaussian noise (AWGN) model22 leads to the following 
data fidelity term

∑ω= −E X Y f x yc( , , ) ( ( ) )
(9)

Y
i j

i j i j i j
,

, , ,
2

where ωi,j are outlier indicators,

{1 valid observation
0 outlier (10)

ω =

The indicators are adaptively computed along the iterative process of estimation. In case the distance of jth 
profile to the current estimation of f(x), || − ||f x y( )j j 2

2, is larger than a given threshold, the indicators corre-
sponding to that column are set to zero, ωi,j = 0 with ≤ ≤ −i N0 1. Hence, the profile is classified as an outlier 
and is not used to estimate f(x). However, its location, xj, is still updated and, in future iterations, it can be 
re-classified as valid data and be included in the estimation of f(x).
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From the models commonly used to describe intensities in fluorescence images, the Poisson distribution 
model was preferred, as the data is obtained with photon-limited and counting-based image acquisition processes, 
where a small amount of detected radiation and a huge optical/electronics amplification is involved23. Further, 
assuming the independence between observations, the data fidelity term is symmetric of the log-likelihood 
function

E Y P y f x
p y f y

c c
c

(x, , ) log ( ( , ))
log ( ( , ))

(11)

Y

i j
i j i j

,
, ,∑

= − |

= − |

where p y f x c( ( , ))|  is the Poisson distribution p y f x f x y e( ( )) ( ( ) / !)y f x( )| = − , with parameter f(x, c), resulting in the 
following data fidelity term:

( ) ( )E Y f x y f xcx , , ( ) log ( )
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Function regularization. The solution of (4) that defines the function f(x, c), representing the ideal population 
profile, was regularized using a quadratic penalty term to force smoothness of f(x) defined in (6),
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Locations regularization. The optimization of the data fidelity term (11) concerning the observation locations, 
xi,j, is an ill-posed problem that also needs to be regularized. A trivial solution would be the collapsing of all loca-
tions at the same point. So, to avoid that, the limits were kept fixed (not updated) – x0,j = 0 and xN-1,j = 1 – and 
a regularization term was introduced by imposing a tension force between the neighbouring locations in each 
profile
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Here, Tr denotes the Trace operator and ψN is the N × N, as defined in (14) and demonstrated in Fig. 2A. At the 
end, the overall energy to be minimized is the following

E X Y E X Y Tr X Xc c c c( , , ) ( , , ) [ ] (18)Y
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T

Nβ= + α ψ + ψ

Optimization: The vectors of coefficients, c, as well as the location of the observations = xX { }i j,  were esti-
mated along an iterative process. Further, the steps for the minimization of a global energy function E(X, c, Y), 
alternate regarding c and X until a stopping criterion is met,

E X Yc cargmin ( , , ) (19)
t t

c

1 =+

X E X Ycarg min ( , , ) (20)t
X

t1 1=+ +

The minimization step (19) is performed by solving ∇ =E X Yc( , , ) 0t
c . For gradient computation purposes, the 

data fidelity terms (9) and (12) can be defined as follows

E X Y y yc c c( , , ) ( (x) ) ( (x) ) (21)Y
T T T∑ φ= φ − −
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Here, = =vect X xx ( ) { }k  is the vectorization of matrix X, φ(x) is an L × NM matrix where each column contains 
the vectors φ(xk), and σ ω γ∑ = ={ } { }i j i j i j, , ,  is an NM × NM diagonal matrix with

γ =





+( )
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f x

1
1/ 2 ( ) Poisson (22)

i j
i j

,
,

ωi,j are the outlier indicators (as defined above) and = − 10 6 is a small constant to prevent division by zero. The 
minimization step (19) is then performed:
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This allows the generation of the following recursion
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where xt is the current estimate of x.
By including the symmetry constraint (8) used in the IN profiles, the following coefficients can be obtained
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Subsequently, the minimization step (20), where the observation locations are updated, is applied by solving 
the following equation:
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and the term Ωxj
t represents a vector of the sum/average x x xi j i j i j1, , 1,+ +− +  for each column profile xj. This 

equation is driven directly from (26).
As demonstrated in the Fig. 2B,C, this compensation strategy originates IN maps showing an almost con-

stant horizontal invariant pattern of fluorescence that represents high levels of protein expression at the mem-
brane and lower levels homogenously distributed at the cell cytoplasm. Confirming this observation, we verified 
that the maximum fluorescence intensity occurs at IN position 50 (Fig. 2C’), which corresponds to the plasma 
membrane shared between two contiguous cells (Fig. 2C”’). Further, when compared with the non-compensated 
IN profile, the compensated profile presents a smaller variance at each position and a higher sharpness of the 
peak (Fig. 2B’,B”,C’ and C”), demonstrating a significant improvement in image interpretation and quantitative 
analysis.

Regarding RD profiles, we verified that these maps can capture more efficiently protein distribution along the 
cell cytoplasm, which is not evaluated with IN profiling only (Fig. 2C”,E”). In fact, RD profiles were able to acquire 
the fluorescence signal into the full extent of a cell, revealing low levels of the marker inside the cell and its accu-
mulation in cell periphery (Fig. 2E”,E”’).

These results indicate that the application of the alignment pipeline generates a rigorous profiling of image 
signals that can be statistically examined and virtually represented.

Algorithm validation in IF images of heterogeneous cell populations stained for membrane, 
cytoplasmic and mitochondria markers. To experimentally validate our analytical pipeline, we used real 
in situ immunofluorescence images of cell cultures stained for E-cadherin, tubulin and mitochondria, which were 
selected as the prototypes of membrane, cytoplasmic and organelle-specific markers15–18.

In Fig. 3A, a cell culture showing E-cadherin membranous expression is presented. In this cell popula-
tion, non-aligned profiles yield intense E-cadherin peaks randomly distributed in the cytoplasm, precluding 
true meaningful conclusions about protein status, namely its mapping and level of expression (Supplementary 
Fig. S1). Nonetheless, after geometric compensation, the analysis of IN maps revealed a strong intensity peak 
at the cell-cell junction (87,69 a.u. at IN position 50), in accordance with E-cadherin normal appearance and 
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adhesive functional role (Fig. 3B). In addition, besides the membrane expression of the protein, compensated 
RD maps also detect the presence of lower E-cadherin levels diffusely distributed in the cytoplasm (Fig. 3C). This 
cytoplasmic protein fraction corresponds to the E-cadherin that is continuously being synthesised, recycled and 
degraded by mechanisms of protein trafficking that occur in several cytoplasmic organelles/structures, namely 
endoplasmic reticulum, golgi complex and endosomes24–26. Geometric compensation was also determinant for in 
situ image analysis of cytoplasmic and organelle specific proteins. For tubulin, a cytoskeleton component, it was 
possible to reveal a continuous increase in fluorescence from the position 20 till its maximum at the position 46, 
and a symmetric pattern between the positions 55 and 81 (Fig. 3D,E). Notably, at the position 50 that corresponds 
to the cell membrane, the protein level is reduced. This result is a precise overview of the IF image presented: a 
massive network is extended from the nucleus till a membrane-close region, where it polymerizes and accumu-
lates. Indeed, microtubules are known to be present at the cytoplasma but not at the membrane18. The assessment 
of RD expression further confirmed these observations (Fig. 3F).

Regarding the mitochondria staining, the algorithm depicts a specific perinuclear expression pattern, either by 
IN or RD profiling (Fig. 3G–I). As showed in the dynamic IN and RD overviews, signals with maximum fluores-
cence intensities of 67,75 a.u. or 66,11 a.u. were restricted to a particular region of the cytoplasm that corresponds 
to positions 35 or 66 from the IN map (Fig. 3H,I). The remaining profile positions display much lower mean 
intensities (around 20 a.u.).

Overall, with this algorithm, we are able to achieve a precise and quantitative representation of the IF images 
of either membrane, cytoplasmic or organelle-specific markers, even in cases of highly heterogeneous cell cul-
tures, such as those of cancer cells.

Figure 3. Method applicability in real immunofluorescence images of membrane, cytoplasmic and organelle-
specific markers. (A) Immunofluorescence showing E-cadherin localization (green staining) in heterogeneous 
epithelial cells. Nuclei were counterstained with DAPI (blue). (B) E-cadherin IN profiles were extracted and 
geometrically compensated to evaluate protein distribution along contiguous cells. Compensated average 
intensity in each internuclear position ± SD and its corresponding IN compensated map are presented in the 
linear graph. 3D graph showing the overview of all extracted profiles upon compensation. Virtual cell pair 
construction based on IN compensated profiles. (C) Average of E-cadherin compensated RD profiles ± SD and 
its map are presented in the linear graph. Polar plot of all compensated RD profiles. 2D virtual cell illustrating 
E-cadherin distribution in the cell population. (D) Tubulin is stained in red and nuclei are marked in blue.  
(E) Average and map of tubulin IN compensated profiles. 3D graphical representation of IN compensated 
profiles and its virtual cell pair. (F) Average of tubulin RD profiles ± SD. Dynamic overview of all compensated 
RD profiles and its virtual illustration. (G) Mitochondria staining in red and nuclei marked in blue. (H) Average 
and map of mitochondria IN compensated profiles. 3D graph of IN compensated profiles and its virtual 
representation. (I) Mitochondria radial analysis including RD profiles mean ± SD. Overview of all compensated 
profiles and the respective virtual cell. a.u., arbitrary units.
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Discussion
Despite all the advances in the bioimaging field, immunofluorescence remains the technique of choice to deter-
mine the level and the spatial and temporal changes of fluorescent-tagged molecules2,27. In the last years, an 
increased number of imaging methods have emerged, offering new possibilities to visualize and quantify fluores-
cent signals and allowing their dissemination in scientific research and clinical practice3,27. However, although 
major progress was achieved, the quantitative analysis of in situ cell fluorescence images still faces important 
limitations, being the morphologic variability within cell populations a major one3,4.

Cell morphologic variance/heterogeneity can result from a plethora of molecular events, such as changes in 
DNA sequence and status, distinct intercellular signalling, different cell cycle stages or altered cell behaviour9,10. 
Indeed, the size and the morphology of a cell can change abruptly upon acquisition of a DNA mutation or upon 
modulation of a single protein28,29.

In this work, we designed an analytical strategy to deal with cell shape and size variability that is based on a 
geometric compensation algorithm. With our approach, we were able to normalize cell size to a constant frame, and 
extract intensity profiles independently of cell morphological features. Ultimately, expression maps were generated 
reproducing an accurate level and a precise pattern of the target protein, in both synthetic and real cell cultures.

As a first step, we have computed two types of expression profiles, one focusing on cell-cell interactions (IN 
profiles) and the other directed to the distribution of a marker throughout the intracellular space of a single cell 
(RD profiles). The algorithm was shown to be successful in the extraction of both profile-types, nevertheless, 
their map compilation displayed scattered and undefined patterns of expression, which do not represent the typ-
ical profile of the cell population analysed. Therefore, an alignment model based on a geometric compensation 
algorithm was developed. By applying a classical image registration and alignment strategy, we set up a geometric 
compensation algorithm that detects common objects and reorient them in a way that corresponding data is 
paired12,30. This method enforced a controlled normalization of intensity maps and revealed a final set of compen-
sated profiles from which we can estimate the ideal distribution of the protein in the internuclear or radial axes. At 
the end, a compensated map epitomizing the pattern observed in the original synthetic image was produced. In 
fact, the benefits of registration procedures have been demonstrated in diverse medical software by improving the 
visual or quantitative interpretation of the results from magnetic resonance image (MRI), ultrasound, positron 
emission tomography (PET), single photon emission computed tomography (SPECT) or magnetic resonance 
spectroscopy (MRS)12,31.

Subsequently, immunofluorescence of E-cadherin, tubulin and mitochondria was used to validate the appli-
cability of our protocol in images of real cell cultures. Given that E-cadherin is the most important protein for 
the establishment and maintenance of cell-cell adhesion in epithelial tissues, it constitutes a classical example of 
a molecule strongly expressed at the plasma membrane15,16. In contrast, tubulin is the basic structure of micro-
tubules, a major cytoskeletal component and, therefore, the prototype of an abundant cytoplasmic protein32. The 
performance of the algorithm was also tested in images of well-defined subcellular compartments, such as mito-
chondria, which is the organelle responsible for the cell energetic supply19.

For all the markers analysed, the method was successful. The results demonstrated that our strategy enables 
an accurate quantification and mapping of membrane, cytoplasmic and organelle-specific proteins. Upon length 
normalization and stacking of fluorescent profiles together in columns, we were able to recognize high protein 
expression in the middle position of the E-cadherin profile – in accordance with its normal membrane appear-
ance. For tubulin, a clearly distinct phenotype could be noticed: increasing fluorescence levels along the cell 
cytoplasm till membrane-proximal regions, without any site-specific preference. Indeed, it is well-known that the 
cytoskeleton is extended all over the cell and it polymerizes close to the plasma membrane, sustaining cell shape 
and connecting all intracellular organelles by a dynamic network18,32. In contrast, in the case of mitochondria 
tracking, a sharp and intense peak is observed specifically in perinuclear positions, supporting its specialized and 
local metabolic function19,20. Overall, we demonstrate that this method is suitable to a large panel of molecules 
distributed in very distinct cellular compartments.

Although the protocol yields a homogenous view of the cell population analysed, cell lines presenting different 
protein distribution patterns (mixed populations) can be evaluated in a single-cell based approach. Given that 
each centroid (nucleus centre) composing the triangular network is numbered, its corresponding data can be 
easily identified and extracted. As so, instead of using mean values of the whole population, we are able to analyze 
each cell clone separately.

Most of the available methods for quantification of immunofluorescence images evaluate total intensity or 
number of pixels present in the fluorochrome channel, disregarding the expression profile of the target protein 
along the distinct subcellular compartments. Nevertheless, the recognition of abnormal patterns of expression 
can provide valuable information for research and for diagnostic purposes. For example, if a protein that is nor-
mally expressed at the membrane is being accumulated at the cytoplasm, as a result of trafficking deregulation 
mechanisms, the fluorescence levels can be the same although its pattern can be remarkably different and indic-
ative of protein dysfunction33. In the last years, different bioimaging tools have been developed in an attempt 
to profile cell surface and intracellular markers along different cellular compartments34,35. Mosaliganti and col-
leagues engineered an automated method to first reconstruct membrane signals and then segment out cells from 
3D membranes for quantification36. Still, the approach requires labelling of membrane boundaries and is only 
suitable for cell surface proteins36. Another protocol generates a coupled multidimensional representation of 
spatial distribution for nuclear and membrane-bound proteins in a process highly dependent on nuclear and 
membrane segmentation, as well as on the continuity of fluorescent signals along cell surface boundaries37. For 
the tracking of protein translocation between intracellular compartments, a system based on the average fluores-
cence changes over time was developed, using the variance instead of the raw fluorescence38. The tool allows the 
detection of a change in a compartment, even if the total amount of the dye remains unchanged but this strategy 
is limited to comparative analysis with an initial image38. In general, variation in background, signal discontinuity, 
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non-uniformity in the width and strength of the signal, in addition to cellular morphological heterogeneity con-
stitute major issues hampering successful analyses34,35,37. To overcome these limitations, cell segmentation pro-
cedures are usually required, increasing the complexity of the protocols and hindering their implementation and 
acceptance by biologists34–36.

To the best of our knowledge, this is the first description of a pipeline for imaging analysis, using a geometric 
alignment strategy, to investigate protein phenotypic signatures. Importantly, our computational method copes 
with cell-to-cell morphological differences, avoiding complex segmentation procedures or the need of continu-
ous readouts of fluorescent signals. In summary, we propose a novel application of geometric compensation for 
a robust and automatic quantitative expression analysis (level and mapping) of either membrane or cytoplasmic 
proteins. This is a simple end-user method that can be widely explored in research and diagnostic labs to unravel 
protein regulation mechanisms or identify protein expression patterns associated with disease.

Materials and Methods
Cell culture. MKN28, MDA-MB-468 and CHO cells stably transfected with a vector encoding the wild 
type E-cadherin (as described previously)33 were cultured in RPMI, DMEM or α-MEM media (all from Gibco, 
Invitrogen), respectively, supplemented with 10% fetal bovine serum (HyClone, Perbio) and 1% penicillin/strep-
tomycin (Gibco, Invitrogen). CHO Ecad cells were maintained under antibiotic selection with 5 μg/ml blasticidin 
(Gibco, Invitrogen). All cell lines were grown at 37 °C and 5% CO2 humidified air.

Fluorescence staining. Cells were seeded on 6-well plates on top of glass coverslips and grown for 48 h, in 
order to reach 70% confluence. For E-cadherin immunofluorescence, fixation was performed in ice-cold meth-
anol for 20 minutes, while for tubulin, cells were fixed in 4% formaldehyde for 30 minutes. Cells fixed in for-
maldehyde were treated with 50 mM NH4Cl for 10 minutes, washed with phosphate buffered saline (PBS), and 
permeablilized with 0.2% Triton X-100 in PBS for 10 minutes. Blocking was performed in 5% bovine serum 
albumin (BSA) in PBS for 30 minutes, at room temperature. Cells were, subsequently, incubated with E-cadherin 
mouse monoclonal (1:300 dilution, BD Biosciences) or anti-α-tubulin (1:1000, Sigma) antibodies for 1 h30. The 
Alexa Fluor 488 goat anti-mouse or the Alexa Fluor 594 goat anti-mouse (both diluted 1:500, Invitrogen) were 
applied for 1h in the dark, as secondary antibodies. MitoSOX Red (1.5 µM, Molecular Probes) specifically target-
ing mitochondria-derived superoxide anion was applied at 37 °C for 30 minutes in live cells. In this case, fixation 
was performed thereafter in 4% formaldehyde. Coverslips were mounted on slides using Vectashield mount-
ing medium with DAPI (Vector Laboratories). Images were acquired on a Carl Zeiss Apotome Axiovert 200 M 
Fluorescence Microscope (Carl Zeiss, Jena, Germany) with an Axiocam HRm camera, and processed with the 
Zeiss Axion Vision 4.8 software.

Synthetic images generation. Synthetic images mimicking heterogenous cell populations were generated 
in Matlab R2015b version. Geometric shapes, such as circles or ellipses, and free draw tools from the toolbox were 
used to produce reference patterns that simulate reorganization and distribution of cell-like objects. Intensity, 
contrast and hue were adjusted in each image, and Poisson noise was added in order to obtain synthetic images 
resembling fluorescence microscopy pictures.

Nuclei segmentation and network generation. Denoising and nuclei segmentation were performed as 
previously described21. Images were first subjected to a pre-processing pipeline of contrast enhancement and 
adjustment of image intensities in order to diminish background and increase signal-to-noise ratios. Specifically, 
the Otsu method and the Moore-Neighbour tracing algorithm, modified by Jacob’s stopping criteria, were applied 
to each image for nucleus segmentation. In case of nuclei not properly segmented upon application of this proto-
col, nucleus manual fixation was performed using a computer-assisted mode. Nuclei geometric centre ( )υ  was 
computed and its definition enabled the establishment of a segment connecting two neighbouring nuclei (ε) and, 
thus, the creation of an undirected graph, υ εG( , ) by sequential association of other neighbours. A triangular 
network was designed using the Delaunay triangulation algorithm, which selects the mesh that maximizes the 
smaller angle of the triangles39. Highly obtuse triangles, with ϕ µ σ> +ϕ ϕ3k  or µ σϑ > +ϑ ϑ5k , were considered 
outliers and removed from the mesh.

Data analysis. Data analysis and scientific graphing was performed through Graph Pad Prism software ver-
sion 6.01 (Graph Pad Software, San Diego, CA) and Matlab R2015b.

Computational power and process estimation. The analyses were performed in a regular computer with 
an Intel(R) Core(TM) i3 CPU M370@ 2.40 GHz, 6.00 GB RAM, 64-bit operating system and Windows 10 Home 
version 1709. The extraction of internuclear and radial profiles took less than 1 minute per image while the align-
ment and can take 5–20 minutes per image, depending on the number of cells that is present in each image. For 
large scale image analysis, intensity profiles should be first extracted for all images. Subsequently, a batch of mat-files 
containing non-aligned profile maps is submitted together for alignment under similar prior parameters.
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