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1. Introduction 
In the past two decades, liver diseases such as Fatty Liver Dis- 

ease (FLD) are repeatedly listed as leading causes of liver related 
death in US among adults aged 45–54 years [1] . The deposition of 
fat in liver cells is called steatosis. Metabolic syndrome, consump- 
tion of alcohol, and obesity due to insulin resistance are some of 
the causes for FLD [1,2] . NAFLD is a frequent cause of chronic liver 
diseases, making up 19–46% of all liver diseases in the western 
world [2] . 

Several studies have been conducted for FLD tissue character- 
ization. Lamb et al., [3] used dual energy CT (DECT) based tech- 
nique for classification Computed Tomography (CT) liver images. 
Guo et al. [4] used neural networks for classification of Magnetic 
Resonance Imaging (MRI) liver images. Suri et al. [5] designed a 
computer aided liver data classifier for Ultrasound in 2012. They 
used Decision Tree [6] , a machine learning (ML) method for the 
classification leading to an accuracy of 93.3%. In 2016, under the 
same class of Symtosis TM (Global Biomedical Technologies, Inc., 
Roseville, CA, USA), Suri et al. [7] proposed Levenberg-Marquardt 
back propagation neural network (BPNN) [8] classifier, that gave 
an accuracy of 97.6%. Often, the FLD US images are hypoechoic pre- 
venting statistical classifiers to reach 100% accuracy. One of the at- 
tributing causes is the lack of appropriate tissue characterization 
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features for the varying disease characteristics. Further, the cross- 
validation protocols require several trials per combination during 
training, proving to be time consuming. Finally, the tissue-based 
feature maps are applied to entire region of interest picking up er- 
roneous maps which lowers the efficiency of the ML systems. 

Convolution neural networks recently became active in classi- 
fication framework [9] . An example of CNN model can be seen in 
Fig. 1 . In CNN, a series of convolutions (top purple triangles point- 
ing south), rectilinear unit (ReLu) and pooling operations (bottom 
purple triangles pointing north) are applied for feature detection. A 
convolution operation is a weighted average operation of a convo- 
lution filter with an input image. A ReLu, which is often performed 
with convolution, performs the task of rectification of outputs of 
convolution to reduce the likelihood of the gradient to vanish. 
Pooling is done for down sampling of input data. We have started 
to see the role of CNN in several worldly applications buffered with 
optimization techniques [10] . 

In this paper, we applied a Deep Learning (DL) technique for 
detection of hypoechoic FLD and stratification of normal and ab- 
normal US liver images under the class of Symtosis TM . In here, our 
focus is on characterization of US liver images as normal or abnor- 
mal (FLD afflicted). This is the first study of its kind that presents a 
foremost comprehensive comparison of three ML-based classifica- 
tion methodologies: namely, support vector machines (SVM) [11] , 
extreme learning machines (ELM) [12] and DL CNN model. Further, 
in this study, we additionally investigate a specialized operation 
called inception. The inception operation integrates different types 
of convolutions using dimensionality reduction principle followed 
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Fig 1. The basic Deep Learning CNN model. 
by concatenation of these different convolution pipelines thereby 
reducing the computational cost of the DL liver Symtosis TM sys- 
tem. Inception leads to an increased depth of DL. The increased 
depth allows the system to extract higher level features resulting 
in greater accuracy of the system. Lastly, we explore GPU-based 
framework in our DL-based application for tissue characterization 
and risk assessment. The AUC obtained from ROC analysis for SVM, 
ELM and DL are: 0.79, 0.92 and 1.0 leading to perfect accuracy of 
100% using the K10 cross-validation protocol for optimized US liver 
images. The global architecture of the DL model is given in Fig. 2 . 
The US liver images are border stripped optimized for best DL 
stratification accuracy which becomes the basis for all data anal- 
ysis. Further, our system has been validated using biometric facial 
data. 

The layout of the paper is as follows. Section 2 describes patient 
demographics and acquisition while Section 3 discusses methodol- 
ogy for DL-based Symtosis TM system and two other conventional 
classification algorithms. The results, performance evaluation and 
discussion are presented in Sections 4 –6 , respectively. Finally, our 
proposed study concludes in section 7 . 
2. Patient demographics and acquisition 

A total of 63 patients were selected from the Gastroenterology 
Department of the Santa Maria Hospital (ethics approval granted), 
in Lisbon, Portugal [13] , also used in our previous study [5,7] . The 
US images were acquired using CX_c 50 (Philips Medical Systems) 
in DICOM (Digital Imaging and Communications in Medicine) for- 
mat. The scanner images were 8 bits a pixel resolution consisting 
of 1024 × 1024 sizes. The US scanner was equipped with curved 
array transducer C5-1. This consisted of 160 piezoelectric elements 
with a resonant frequency of 1–5 MHz. Out of the 63 patients, 36 
patients were diagnosed with FLD and rest 27 patients were diag- 
nosed as normal. The US images of normal and fatty livers were 
acquired by expert operators with US equipment in the hospital 
facility. The resulting images were annotated as normal and abnor- 
mal depending upon the indicators obtained from the biopsy re- 

ports from laboratory. These annotated images formed the Ground 
Truth (GT) or gold standard for our experiment. 

The liver has a small left lobe (in the epigastric area) and a 
large right lobe (in the right hypochondrium. The right liver is the 
major liver part, we use scanned image of the right lobe liver. In 
the US image of a normal liver, the echogenic intensity of liver 
parenchyma and kidney cortex is similar whereas in the US im- 
age of a steatotic liver, there is an increased echogenic intensity 
of the liver parenchyma which is clearly brighter than the kidney 
cortex [14,15] . A region of interest (ROI) of 128 × 128 pixels along 
the medial axis was extracted from each image. The original liver 
images are shown in Fig. 3 . The top row shows 4 normal and bot- 
tom row shows 4 abnormal images consisting of hypoechoic and 
hyperechoic tissue regions. 
3. Methodology 

The basic architecture of DL using CNN was earlier shown in 
Fig. 1 , where low level features (deck of cards) were converted into 
high level features (single layered, interpretable by humans) during 
the neural network (NN)-based learning process [16] . CNNs apply 
multiple layers of convolution and pooling to learn this deck of 
features derived from original image. The first challenge in a basic 
CNN model is the memorization of the NN leading to over fitting 
the input data and lowering the classification accuracy. This is due 
to a combination of non-optimized number of hidden layers, type 
of cross-validation protocol and type of convolution deck created. 
The second challenge arises due to the requirement of more num- 
ber of layers, since these layers provide the power to the design of 
the feature maps which in turn leads to separability of the classes. 
However, this increases the computational complexity of the DL 
system. The solution to the first challenge is the introduction of a 
“dropout” strategy, thereby using a limited number of hidden lay- 
ers (weights) and this can be adapted randomly. The solution to 
the second problem is introduction of an “inception model” whose 
ultimate role is to reduce the computational cost. These two archi- 
tectural inclusions to the basic CNN form our model for liver dis- 
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Fig 2. DL-based Symtosis TM system. 

Fig 3. Normal liver images (top row) and abnormal liver images (bottom row). 
ease stratification provides the fundamental novelty of our system. 
This architecture is shown in Fig. 4 . This DL architecture shows two 
sets of convolution, nine inceptions, five pooling, one dropout, one 
linear and one softmax (binary classifier) cascaded layer. 
3.1. Risk stratification model using tissue characterization 

The basic model for risk stratification can be characterized us- 
ing the conventional approaches of the literature as developed by 

Suri and his team and has been applied to lung [17] , liver [5] , pros- 
trate [18] or ovarian [19] diseases. 

It is observed that FLD images show both kinds of echogenic in- 
tensities: hypo and hyper, thus making them harder to detect and 
stratify. The most fundamental difference between our current ap- 
proach and the previous machine learning paradigms is the adap- 
tation of DL-based feature extraction, feature reduction and train- 
ing of large number of NN-weights (over the order of one million), 
unlike the conventional approach, that uses support vector ma- 
chine (SVM) for training the derived greyscale features. This can 
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Fig 4. The CNN model showing convolution, pooling, inception, linear and softmax layers. 
be seen in Fig. 5 . To be more explicit, since DL requires a large 
number of features due to convolutions, one requires operating the 
process of embedded feature extraction (due to convolution, pool- 
ing and ReLu) in the region of interest that purely contains the tis- 
sue information and no redundant background non-tissue region 
or noise. 

We thus use a stripping protocol that removes the background 
information. Followed by this cropping procedure, the current 
paradigm uses the same cross-validation (CV) protocol (so-called 
K -fold cross validations: K = 2, 3, 5 and 10) as conventional ma- 
chine learning system does. K2 cross-validation protocol divides 
the data into two parts. There are two rounds for training/testing 
for each combination that is, one part for training and other part 
for testing. Similarly, K3 divides the data into three parts say A, 
B and C. One part among them is selected for testing and other 
two parts are combined for training. Likewise in K2 , three rounds 
of training/testing takes place for each combination. This same 
concept is applied for K5 and K10 cross validation. . Suri’s group 
has spanned application of Machine Learning in different organs 
such as Carotid [20] , Coronary [21] , Liver [7,22] , Breast [23,24] , and 
Prostate [25] . No matter how many types of classes (or stages or 
grades) of liver disease exists, it is definitely possible to classify 
such disease types as long as the corresponding ground truth infor- 
mation for these class types (stages of liver diseases) is available. 
This was recently demonstrated by Suri’s group using Bayesian 
Classifier for skin disease classification for four different types of 
classes adapted [26] . 
3.2. Building blocks of CNN 

The fundamental building blocks of CNN architecture consists 
of: convolution, pooling, rectified linear unit (ReLu), dropout, fully 
connected layer and softmax (already presented in Fig. 4 ). In con- 
volution, different convolution filters (kernels) are applied to origi- 
nal images to obtain features, also known as feature maps. Further 
discussion on CNN can found in Appendix A.1 . 

The DL architecture table is described in next subsection. The 
data flow within the system is shown in Fig. 6 . It is a 22-layered 
(see Table 1 , column labelled as Depth) DL architecture for classifi- 
cation of US liver images and this consist of: convolution, pooling, 
inception, dropout, linear and softmax. The US liver images are fed 
into the DL architecture for computing the training weights which 
are then fed to test data to obtain the final accuracy values using 
softmax layer. The description and of each layer of DL’s data flow is 
given in Table 1 . In the table, #1 × 1 refers to the number of 1 × 1 
convolutions applied to the input for dimensionality reduction. Re- 
duce # 3 × 3 by 1 × 1 convolution filter means application of 1 × 1 
convolution filters prior to the application of number of 3 × 3 con- 

volution filter. Similarly, it implies for “Reduce # 5 × 5”. The reduce 
pool number refers to the number of 1 × 1 convolutions applied 
after pooling operations for dimensionality reduction. The last col- 
umn shows the number of parameters or weights that are to be 
trained. The application of 1 × 1 convolutions for dimensionality 
reduction in a layer increases its depth by one. The application of 
inception within the DL architecture allows integration of convolu- 
tion filters of different sizes into one single inception layer. A brief 
description of DL architecture can be found in Appendix A.2 . 
4. Results 

The results of the risk stratification can be characterized by 
evaluating the final accuracy of the DL system and comparing it to 
other conventional machine learning systems (SVM and ELM) using 
the class of Symtosis TM system discussed in Fig. 2 . There are two 
components to be demonstrated in the results: (i) optimization of 
the image size for background removal and (ii) understanding the 
effect of the data size on the three learning methods. 
4.1. Image optimization for three learning methods 

It is critical to ensure that we remove the background informa- 
tion prior to estimating the accuracy on the test data using the 
cross-validation approach as presented in Fig. 5 . Border stripping 
was therefore applied to the US liver images to remove the back- 
ground ensuring that the region of interest only has the tissue re- 
gion. Feeding these cropped images to the Symtosis TM system and 
running the SVM/ELM/DL architectures using K10 CV protocol, we 
observe the stratification accuracies as: SVM: 82%, ELM: 92% and 
DL: 100%. The optimization curve between percentages of border 
stripping vs. accuracy for 63 patients is shown in Fig. 7 . It shows 
highest accuracy for 15% stripping of the background region corre- 
sponding to K10 cross-validation protocol. The analogous accuracy 
bar chart is given in Fig. 8 . Our observation showed that SVM and 
ELM is less sensitive to background information compared to DL. 
One possible reason is over-fitting in the DL scenario unlike SVM 
and ELM that reaches its optimal values in the first run and no 
iterations are involved. Second possible justification is quick gen- 
eralization and retaining that generalization, unlike DL that first 
memorizes and then falls to generalization. The corresponding bar 
chart for 15% stripped images for all three strategies can be seen 
in Fig. 8 , marked as (a), (b) and (c), correspondingly for SVM, ELM 
and DL learning architecture. The average accuracy, AUC, sensi- 
tivity, specificity and PPV values for K10 cross validation for 15% 
stripped US liver images are shown in Table 2 . The results show 
100% accuracy, sensitivity, specificity and PPV values for DL, which 
is better than SVM and ELM. The AUC value is perfect 1.0 which is 
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Fig 5. DL tissue characterization system using Symtosis TM . 
Table 1 
DL architecture table showing different layers. 

SN ∗ Type Patch size/ 
stride Output Size Depth # ∗∗ 1 × 1 Reduce #3 × 3 

CF ∗ by 1 × 1CF # 3 × 3 
Conv. Reduce #5 × 5 

CF by 1 × 1CF # ∗∗ 5 × 5 
Conv. Reduce 

Pool Number of 
Weights 

1 Convolution 7 × 7/2 112 × 112 × 64 1 – – – – – – 2.7 × 10 3 
2 Max Pool 3 × 3/2 56 × 56 × 64 0 – – – – – –

3 Convolution 3 × 3/1 56 × 56 × 192 2 – 64 192 – – – 112 × 10 3 
4 Max Pool 3 × 3/2 28 × 28 × 192 0 – – – – – – –

5 Inception (3a) – 28 × 28 × 256 2 64 96 128 16 32 32 159 × 10 3 
6 Inception (3b) – 28 × 28 × 480 2 128 128 192 32 96 64 380 × 10 3 
7 Max Pool 3 × 3/2 14 × 14 × 480 0 – – – – – – –

8 Inception (4a) – 14 × 14 × 512 2 192 96 208 16 48 64 364 × 10 3 
9 Inception (4b) – 14 × 14 × 512 2 160 112 224 24 64 64 437 × 10 3 
10 Inception (4c) – 14 × 14 × 512 2 128 128 256 24 64 64 463 × 10 3 
11 Inception (4d) – 14 × 14 × 528 2 112 144 288 32 64 64 580 × 10 3 
12 Inception (4e) – 14 × 14 × 832 2 256 160 320 32 128 128 840 × 10 3 
13 Max Pool 3 × 3/2 7 × 7 × 832 0 – – – – – – –

14 Inception (5a) – 7 × 7 × 832 2 256 160 320 32 128 128 1072 × 10 3 
15 Inception (5b) – 7 × 7 × 1024 2 384 192 384 48 128 128 1388 × 10 3 
16 Avg. Pool 7 × 7/1 1 × 1 × 1024 0 – – – – – – –

17 Dropout −40% 1 × 1 × 1024 0 – – – – – – –

18 Linear – 1 × 1 × 10 0 0 1 – – – – – – 10 0 0 × 10 3 
19 Softmax – 1 × 1 × 2 0 – – – – – – –

∗SN: Serial Number; ∗∗#: Number of; CF: convolution filter 
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Fig 6. Data flow in DL architecture. 
Table 2 
Comparative performance of three learning architectures using K10 cross-validation protocol: SVM vs. ELM vs. DL. 

Classifier Type Average ACC ∗ (%) Average Sensitivity (%) Average Specificity (%) Average PPV (%) Average AUC 
SVM 82.08 64.21 93.56 86.31 0.79 
ELM 92.22 93.33 90.83 84.58 0.92 
DL 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 1.00 

Fig 7. Accuracy vs. percentage strip of background borders in liver scans. The accu- 
racy was computed using K10 protocol in SVM (a), ELM (b) and DL (c) frameworks. 

greater than SVM and ELM values. It is observed from our experi- 
ments that Deep Learning shows robust performance to noise dur- 
ing the cropping protocol. The cropping function is applied to re- 
move background noise information. It is seen that Deep Learning 
shows 100% accuracy at 15% cropping of border zones. However, 
a further increase in cropping removes FLD information from liver 
which results in drop of accuracy leading to optimized cropping 
value. These further shows that tissue information of FLD is not al- 
ways centralized in images. Further, we think the inception model 
really yields effective results when the border cropping region is 
15%. This is due to the same rationale that tissue is best repre- 
sented here and noise characteristics are least. Note that these ad- 
vanced features do not exist in the conventional machine learning 
system like SVM or ELM, however the optimized values are de- 
picted with less prominence. 
4.2. Effect of data size on stratification accuracy using K -fold 
cross-validations 

The effect of data size during the training and testing is impor- 
tant to understand in the DL framework and to compare against 
the SVM and ELM strategies. Using the four set of cross-validation 
sets ( K2, K3, K5 , and K10 ), the Symtosis TM system was executed by 
following the strategy of Fig. 5 . The results are shown in Fig. 9 . 
As can be seen in the figure, the DL out performs SVM and ELM 
architectures in terms of accuracy. 
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Fig 8. Bar chart of optimized accuracies for SVM, ELM and DL systems using K10 protocol. 

Fig 9. Bar chart for accuracy vs. type of CV protocol ( K2, K3, K5 and K10 ) for three sets of risk stratification strategies (SVM, ELM and DL). 
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Table 3 
Mean feature values for normal and abnormal liver patients. 

ELM/SVM DL 
Abnormal Mean Abnormal Liver Values SD ∗ Abnormal Abnormal Mean Abnormal Liver Values SD Abnormal 
Gabor 0.50 0 0 0.5063 Deep Features 0.2593 0.2469 
GLRM 0.2954 0.2584 
GLCM 0.4860 0.2865 
Normal Mean Normal Liver Values SD Normal Normal Mean Normal Liver Values SD Normal 
Gabor 0.4617 0.3799 Deep Features 0.2849 0.2462 
GLRM 0.3214 0.3962 
GLCM 0.5037 0.2839 

∗SD: Standard Deviation. 
Table 4 
Liver segregation index. 

Classifier Liver Segregation Index (LSI) (%) 
Gabor GLRM GLCM 

ELM SVM 7.65 8.81 3.66 
DL Deep Learning Features 

9.86 
4.3. Stratification analysis using “Liver Segregation Index”

It is important to understand how Symtosis TM class of features 
behave in the three sets of paradigms, i.e. , SVM, ELM and DL. 
The basic idea here to compute the features, normalize them and 
compute the index which can appreciate the difference between 
the normal and abnormal liver patients. We defined this index 
as: Liver Segregation Index (LSI) and is mathematically given as: 
LSI = | µNor −µAbnor | 

µNor × 100 , where µNor and µAbnor are the mean of 
normal and abnormal grayscale tissue features and is given as: 
µNor = ∑ P Nor 

j=1 ∑ N 
i =1 x j i 

P Nor × N ; µAbnor = ∑ P Abnor 
j=1 ∑ N 

i =1 x j i 
P Abnor × N (1) 

where, P Nor and P Abnor indicates total number of normal and abnor- 
mal patients, where N represents the total number of features. The 
results of the mean value of the features using three strategies for 
the normal and abnormal classes are given in Table 3 . The corre- 
sponding LSI values are shown in Table 4 . Note that there is there 
is a significance difference between DL vs. ELM/SVM architectures. 
Note that SVM/ELM uses Gabor, GLRM and GLCM feature maps [5] . 
The details of Gabor, GLRM and GLCM is given in Appendix C . This 
separation in the feature map is another justification of higher ac- 
curacy in DL compared to ELM and SVM. 

It is clearly seen from Table 4 that deep feature LSI values are 
higher than ML feature LSI values. The plot for LSI (%) vs. deep fea- 
tures is given in Fig. 10 (i). It is seen that LSI values increases grad- 
ually (arrow (a)) till the total number features reaches 800 (arrow 
(b)) and thereafter increases sharply (arrow (c)). 
5. Performance evaluation: ROC, reliability and timing analysis 

The DL architecture is evaluated using K2, K3, K5 and K10 cross- 
validations protocols against SVM and ELM. In Section 5.1 we dis- 
cuss ROC analysis. Further, the Section 5.2 shows reliability anal- 
ysis for different K-fold cross-validations and Section 5.3 presents 
timing analysis. 
5.1. ROC analysis 

The ROC curve for SVM, ELM and DL is shown in Fig. 10 (ii). The 
ROC curve for SVM, ELM and DL are shown as (a), (b) and (c). Our 

observations show that area under the curve (AUC) for DL rela- 
tively improved compared to SVM and ELM. 
5.2. Reliability analysis 

Reliability Analysis is performed for SVM, ELM and DL for all K - 
fold cross validations. The reliability index ζN L (%) is formulated as: 
ζN L ( % ) = (1 − µN L 

σN L 
)

× 100 (2) 
where, µN L is the mean accuracy and σN L represents the standard 
deviation of all accuracies for N L liver images. The bar chart of re- 
liability analysis is shown in Fig. 11 . The chart clearly shows that 
the DL architecture is more reliable than SVM and ELM. 
5.3. Timing analysis 

The timing analysis of DL architecture with SVM and ELM is 
given in Table 5 . It is seen that average training time and testing 
time of DL architecture is slower than SVM and ELM. Further, we 
compute the product of classification accuracy and testing time as 
PE-index for evaluating the composite performance (5th column in 
Table 5 ). 
6. Discussion 

The focus of this study was FLD or hepatic steatosis classifica- 
tion using a class of Symtosis TM , a DL-based strategy along with 
benchmarking against SVM and ELM paradigms. The characteri- 
zation of FLD has been attempted using conventional ML-based 
techniques such as SVM [11] , BPNN [8] , PNN [27] , FC [28] and DT 
[6] . The hypoechoic nature of the liver FLD US images has always 
posed a challenge in detection and stratification by conventional 
ML-based methodologies. The ML techniques applied for FLD de- 
tection and risk stratification using US have limitations in comput- 
ing feature maps thereby limiting the accuracy. Further, ML algo- 
rithms are suited for smaller data sets where dynamic fitting is not 
required [5,29–33] . In here DL was applied for FLD detection and 
stratification. The Symtosis TM system is validated using biometric 
facial dataset that gave an accuracy of [34,35] (see Appendix B ). 
6.1. Benchmarking 

There are hardly any DL-based applications for liver detection 
and risk stratification. We therefore have decided to benchmark 
our DL-strategy with latest ML paradigms applied to US imaging. 
The results of our benchmarking are presented in Table 6 . It is im- 
portant to see that the ML strategies applied to US such as liver, 
thyroid, ovarian primarily came from couple of major groups. The 
crux in this table is the column 5 which shows the feature maps 
adapted in their ML-based techniques. These features were mainly 
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Fig 10. (i) LSI (%) vs. number of features using DL framework. (ii) ROC curve for SVM (a), ELM (b) and DL (c) ( K = 10). 

Fig 11. Bar chart for reliability index for different K -fold ( K2, K3, K5 and K10 ) cross validation schemes for three set (SVM, ELM and DL) of learning methods. 
Table 5 
Timing analysis. 

SN Type of Classifier Avg. Train Time (ms ∗) Avg. Test Time (ms) PE-Index Test 
1 SVM 0.029016 0.002262 0.188269 
2 ELM 0.007020 0.001560 0.143868 
3 DL 1.300937 0.002476 0.247600 

∗ms: milliseconds. 
Table 6 
Benchmarking table (in chronological order). 

SN Reference Disease Data set No. of Samples Feature Extraction Type of Classifier Accuracy (%) 
1 Acharya et al. [5] (2012) FLD ∗ liver US images 100 HOS ∗ , Texture & DWT ∗ DT ∗ 93.3 
2 Acharya et al. [36] (2014) HT ∗ thyroid US images 526 Wavelet Transform FC ∗ 84.6 
3 Acharya et al. [19] (2014) OC ∗ transvaginal US images 2600 HIM ∗ , Gabor & Entropies PNN ∗ 99.8 
4 Saba et al. [7] (2016) FLD liver US images 62 Harlick, Fourier & Gabor BPNN ∗ 97.6 
5 Liu et al. [37] (2017) LC ∗ liver US images 91 DET ∗ + T-CNN ∗ SVM ∗ 89.2 
6 Proposed method FLD liver US images 63 CNN ∗ Softmax 100.0 

∗FLD: Fatty Liver Disease; LC: Liver Cirrhosis; OC: Ovarian Cancer; HT: Hashimoto Thyroiditis; CNN: Convolution Neural Networks; T-CNN: Trained CNN; DET: 
Detection of Liver Capsule; HIM: Hu’s invariant moments; HOS: High Order Spectra; DWT: Wavelet Packet Decomposition; SVM: Support Vector Machine; 
BPNN: Back Propagation Neural Network; PNN: Probabilistic Neural Network; FC: Fuzzy Classifier; DT: Decision Tree 
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Fig 12. Inception layer showing dimensionality reduction and concatenation process utilized in the DL architecture. 
texture, wavelet transform, Gabor, Fourier types and higher order 
spectra (HOS). 

Suri and his team (in 2012) [5] achieved an accuracy of liver 
stratification of 93.3% using a combination of features such as: high 
order spectra, texture and wavelet packet decomposition feature 
while using decision tree (DT) classifier. A similar approach using 
fuzzy classifier and also using wavelet transform based feature was 
again attempted in 2014 by Suri and his team [36] , and yielded 
an accuracy of 84.6% on thyroid US images. A closer application 
of Suri and his team’s work [19] was using a neural network ap- 
proach on ovarian US images using a combination of Hu’s invari- 
ant moments, Gabor and entropy based features using probabilistic 
neural network classifier leading an accuracy of 99.8%. More re- 
cently, Suri and his team (2016) [7] presented a back propagation 
neural network classifier for liver US that used features such as 
Harlick, Fourier and Gabor leading to an accuracy of 97.6%. More 
recently, Liu et al. [37] used a combination of liver capsule detec- 
tion technique and trained CNN model for feature extraction, and 
used SVM as classifier to achieve accuracy of 89.2%. We are in the 
same space as CNN with stronger and encouraging results nearly 
reaching 100%, even with a smaller data size of 63 subjects. The 
CNN showed high AUC value of 1.0 for K10 cross validation as clas- 
sification accuracy reached 100%. 
6.2. Strengths and weakness 

The power of decomposition of images into small patches and 
then extracting larger deck of features maps allows neural net- 
works to learn, generalize and accurately stratify the FLD disease. 
This DL-based strategy can span the network from single layer to 
as large as 22 ensuring selection of refined features by computing 
millions of weights in dynamic our framework. Such a model pro- 
vides inherent strength in classification paradigm. Such a model 
provides inherent strength in a classification paradigm. The ap- 
plication of inception layer as shown in Fig. 12 further strength- 
ens the CNN model by concatenating several convolution, Relu and 
pooling operations in a single layer using the concept of dimen- 
sionality reduction (explained in Appendix A.3 ). This leads to in- 
crease in depth without increase in computational cost in the pro- 
posed DL model. Further due to dimensionality reduction com- 

bined with concatenation power of the inception model, when im- 
plemented in GPU framework, the DL-based strategy offers diverse 
applications and extendibility. 

In spite of the above distinguishing and unique benefits, there 
are some challenges that needs to be addressed over time. There is 
always a price to pay for higher accuracy and large number of neu- 
ral network layers. Since it is handling millions of shared weights, 
the systems takes longer convergence time unlike ELM, which only 
has single layer. The DL system is needed to be validated using 
transfer learning [38] i.e. , training DL in one dataset and testing in 
another to reach generalization. Even though, our solution provides 
nearly 100% accuracy and results are encouraging, it requires more 
work for ensuring that these evolving architectures are stabilized, 
robust, fast and generalized. 
7. Conclusion 

We showed a DL-based Symtosis TM system for liver ultrasound 
tissue characterization and risk stratification of normal and abnor- 
mal liver images which possesses both hyper- and hypoechoic in- 
tensities. Our DL-based Symtosis TM system uses inception model 
for dimensionality reduction and speed of our DL network without 
increasing computational costs. The images have been optimized 
by removing background from the original liver images by strip- 
ping the border. Our results demonstrate a flawless accuracy by 
using 15% background removal. The liver data set has been cross- 
validated ( K2, K3, K5 and K10 protocols) and compared with con- 
ventional ML techniques such as: SVM and ELM. Further, the re- 
sults from our experiment shows that our DL-based Symtosis TM 
system is reliable and stable compared to SVM and ELM across all 
cross validations. The features extracted from ML techniques and 
our DL-based Symtosis TM system show significant increase of liver 
segregation index for DL features compared to ML-based features. 
The system was validated using two class facial biometric data sets 
universally available. 
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Appendix A. Convolution Neural Network, DL and Inception 
Layer 
A1. Convolution Neural Network 

Convolution Neural Networks [16] have ability to decompose 
images into feature maps generating like a deck of cards represent- 
ing the feature maps which can then be fed into limited layered 
neural networks for training. Mathematically, basic convolution can 
be represented as: 
g ( x, y ) = I ( x, y ) ! w ( x, y ) = m 

2 ∑ 
s = − m 

2 
m 
2 ∑ 

t= − m 
2 I ( x + s, y + t ) × w ( x, y ) 

(A1) 
Whereas image I is convolved with kernel w, yielding an 

output g , ! represents the convolution operation. The convolution 
is basically sum of all products between image I and kernel w , rep- 
resented by Eq. (A1) , where the kernel is represented as a vector 
of size m × m and is shown for the point locations (x, y) , while s 
and t are the dummy variables. 

The ReLu is a simple operation where all negative pixel values 
in the feature map are set to zero using the maximization oper- 
ation: f ( x ) = max (0, x ), where, x is a unit in the feature map. It 
is like a comparator where the current value is being compared 
against 0 or a threshold value. This is also called ramp function 
and is analogous to half-wave rectification in electrical engineer- 
ing. It is applied in CNNs to reduce the likelihood of the gradient 
to vanish. In our experiment, ReLu is implicitly combined with the 
convolution layer. The pooling reduces the dimensionality of each 
feature map but retaining the most important information i.e., max 
pooling and average pooling. Pooling is done to simplify the output 
from CNN. During dropout, reduction of over fitting takes place. At 
each training stage, individual nodes are either removed from the 
CNN with probability of "1- p " or kept with random probability p , 
so that a reduced network is left. The layers of DL architecture con- 
sisting of weights (parameters) to be trained are counted for depth 
calculation. Finally, the softmax loss is used for predicting a single 
class of L mutually exclusive classes: 
δ
(
z j ) = e z j 

∑ L 
l=1 e z l for j = 1 , 2 , . . . , L (A2) 

where, δ represents the loss and z is an L -dimensional class vector. 
It takes a vector of arbitrary real-valued scores and squashes it to 
a vector of values between zero and one that sums to one. In here, 
we see that class label of an instance is determined by maximum 
δ value among L number of δ values. 
A2. DL a rchitecture 

The DL CNN architecture applied for US liver FLD detection and 
stratification is shown in Table 1 . The most important part of this 
DL architecture is the application of inception layer that allows 
merging several convolutions and pooling operations into a single 
layer. Inception Model in the GPU framework was the sole con- 
tributor for higher performance. It does so by the application of 
dimensionality reduction using 1 × 1 convolutions. The inception 
layer allows the increasing of the depth of DL architecture with- 
out significant rise in computational cost. 

The first convolution layer consists of 64 (7 × 7) filters, con- 
verting the image of size 229 × 229 image into (112 × 112) × 64 
feature maps (SN 1). Max pooling is applied to these 64 feature 

maps to down sample them into (56 × 56) × 64 feature maps (SN 
2). In here, 64 (1 × 1) convolutions are applied for dimension- 
ality reduction (SN 3). A total of (3 × 3), 192 convolution filters 
are applied on the down sampled images to convert them into 
(56 × 56) × 192 feature maps (SN 3). Then max pooling is applied 
again to convert the feature maps into 192 (28 × 28) feature maps 
(SN 4). Two layers of inception, 3a and 3b converts these feature 
maps into, 480 (28 × 28) feature maps (SN 5 and SN 6). Max pool- 
ing is applied again to convert them into 480 (14 × 14) feature 
maps (SN 7). Now, five layers of inception, 4a, 4b, 4c, 4d and 4e 
are applied to convert these into 832 (14 × 14) feature maps (SN 
8, 9, 10, 11 and 12, respectively). The images are down sampled 
using max pooling to convert them to 832 (7 × 7) feature maps 
(SN 13). Two layers of inception, namely 5a and 5b are applied to 
convert them into 1024 (7 × 7) feature maps (SN 14 and 15). Now, 
average pooling is applied to downs sample, these feature maps 
into 1024 (1 × 1) feature maps (SN 16). To prevent over-fitting, of 
the NN, 40% dropout is applied (SN 17). A linear layer is applied 
to adapt the feature maps into 10 0 0 (1 × 1) label sets (SN 18). A 
softmax classifier layer of size 2 (1 × 1) yields us the final classifi- 
cation labels (SN 19). Thus nearly 1 million weights are computed 
during the cascaded layer. 
A3. Inception l ayer 

The concept of an inception layer is to prevent the complex- 
ity pile up due to larger sized convolutions filters on large sized 
US liver images. This is time intensive with a 22 layered model. 
This is time expensive and challenging to handle the bulk of data. 
It is therefore necessary to rely on 1 × 1 convolution filters prior 
to application of larger sized convolutions. This can be thought as 
a dimensionality reduction paradigm, i.e., changing the large size 
deck (say 28 × 28 × 192) to smaller sized deck (say 28 × 28 × 16) 
using 16 convolutions filters of size 1 × 1 (as shown in Table 1 , SN 
5). The second benefit of inception layer is to prepare itself for the 
subsequent neural network layer by presenting the feature maps 
at one culmination point. This can be achieved by running differ- 
ent sized convolution filters and then concatenating them (as seen 
in the Fig. 12 ). The concept of concatenation is shown by append- 
ing the four types feature maps, i.e., coming via the paths: (a), (b), 
(c) and (d) like a linked list as one stack, all available for the next 
layer to use. Note that feature maps via path (a), (b), (c) and (d) are 
already dimensionality reduced using 1 × 1 convolution filters prior 
to concatenation. Thus, both, (i) benefits of reduction and (ii) single 
culmination point is being leveraged in inception layer. The dimen- 
sionality reduction numbers can be more appreciated by checking 
Table 1 , serial number (5) and (6). 
Appendix B. Scientific validation of deep learning systems 
using biometric facial data sets 

Scientific validation is always an integrated component of the 
system design. For validation, one needs to run another set of liver 
data sets whose results are known a priori . Since such a clinical 
data is hard to obtain, we use facial biometric data set to test the 
classification accuracy. Standardized well published facial database 
were adapted for our validation study. These databases are called 
Face94 [34] and Face95 [35] data bases. These databases have the 
two class biometric faces of males and female. Several publications 
are available in the literature who have demonstrated the usage of 
these two famous and standardized databases [39,40] . We there- 
fore decided to use these two standardized databases. 

We have conducted experiments to validate our results using 
Face94 and Face95 data set. The Face94 [34] data set consists 153 
individual images with various expressions and poses seated at a 
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Table B1 
Accuracy results using DL architecture on facial data sets. 

SN Data set # of Training Samples # of Testing Samples # of Classes # of Iterations Avg. Accuracy (%) 
1 Face94 620 160 ( ∼20%) 2 36,0 0 0 99.4 
2 Face95 1296 144 ( ∼10%) 72 30,0 0 0 96.1 

fixed distance from camera. There are 2 classes, male and female 
and total number of images are 780. 

Standardized face 95 data set 
The Face95 [35] data set consists 72 individual images with dif- 

ferent expressions and poses seated at a fixed distance from cam- 
era. There are 72 classes both male and female and total number 
of images are 1440. 

Classification accuracy on facial data sets 
The results of the Deep Learning tissue characterization sys- 

tem when applied on Face94 and Face95 data set can be seen in 
Table B1 . The accuracy results of the DL architecture using Face94 
and Face95 data sets are: 99.4% and 96.1%, respectively. Note that 
the DL architecture was adapted in a multi-class framework. These 
accuracy numbers indicate our compatibility against the accuracy 
numbers when the DL architecture was tried on the liver data sets, 
demonstrating the same range reaching the optimal results. We 
further want to emphasize that the ratio of the training to testing 
sample (testing was nearly 20% in Face94 and 10% in Face95) was 
lower in facial data sets compared to liver data sets, which further 
validates the ability to classify accurately. 
Appendix C. Feature extraction 
C.1. Haralick t exture (GLCM) 

GLCM calculates the following features shown Table C1 from 
the co-occurrence matrix calculated from the image. 
C.2. Run l ength t exture 

GRLM feature extraction algorithm calculate features from the 
run length matrix as shown in Table C2 . 

Table C2 
Features from gray level run length matrix. 

SN Features Description 
1 Short Run Emphasis (SRE) N a ∑ 

x =1 N b ∑ 
y =1 R ( x,y ) 

y 2 / N a ∑ 
x =1 N b ∑ 

x =1 R ( i, j ) 
2 Long Run Emphasis (LRE) N a ∑ 

x =1 N b ∑ 
x =1 j 2 R ( x, y ) / N a ∑ 

x =1 N b ∑ 
x =1 R ( x, y ) 

3 Gray level non uniformity N a ∑ 
x =1 ( N b ∑ 

x =1 R ( x, y ) 2 ) / N a ∑ 
x =1 N b ∑ 

y =1 R ( x, y ) 
4 Run length Non-uniformity (RLNU) N a ∑ 

x =1 ( N b ∑ 
x =1 R ( x, y ) 2 )/ N a ∑ 

x =1 N b ∑ 
x =1 R ( x, y ) 

5 Run Percentage (RP) N a ∑ 
x =1 N b ∑ 

x =1 R ( x,y ) 
S 

6 Low Gray-level Run Emphasis (LGRE) N a ∑ 
x =1 N b ∑ 

y =1 R ( x,y ) 
x 2 / N a ∑ 

x =1 N b ∑ 
x =1 R ( x, y ) 

7 High Gray-level Run Emphasis (HGRE) N a ∑ 
x =1 N b ∑ 

x =1 x 2 S( x, y ) / N a ∑ 
x =1 N b ∑ 

x =1 S( x, y ) 
C.3. Gabor-based d irectional f eatures 

Gabor filter is the combination of Gaussian and complex-plane 
wave edge detection filter. This combination tries to diminish the 
uncertainty in both spatial and frequency domains. The application 
of dilations and rotations of this function produce filters which 
helps in the alignment and scale-tunable edge and line detection. 
Gabor transform has an impulse response that can be represented 
by a sinusoidal wave (a plane wave for distinct frequency and 
aligned 2-D Gabor). The function is given as: 
f ( p, q ) = exp 

{ 
−1 

2 
[ (

p 
σp 

)2 
+ ( q 

σq 
)2 ] } 

exp [ j2 π ( V p + W q ) ] 
(C1) 

Table C1 
Features from gray level co-occurrence matrix. 

SN Features Description SN Features Description 
1 Contrast N−1 ∑ 

n =0 n 2 N ∑ 
i =0 N ∑ 

j=0 L ( i, j ) 11 Sum average 2 N ∑ 
i =2 i L x + y (i ) 

2 Autocorrelation N−1 ∑ 
i =0 N−1 ∑ 

j=0 ( i j ) L ( i, j ) 12 Sum entropy −
2 N ∑ 
i =2 i L x + y (i ) log L x + y (i ) 

3 Maximum probability N−1 ∑ 
i =0 N−1 ∑ 

j=0 max ( L ( i, j ) ) 13 Sum variance 2 N ∑ 
i =2 i − I sent 2 L x + y (i ) 

4 Dissimilarity N−1 ∑ 
i =0 N−1 ∑ 

j=0 | i − j | ( L ( i, j ) ) 14 Difference variance 2 N ∑ 
i =2 i − I sa v g 2 L x −y (i ) 

5 Homogeneity N−1 ∑ 
i =0 N−1 ∑ 

j=0 1 / (1 + (i − j) 2 )( L ( i, j ) ) 15 Difference entropy −
2 N ∑ 
i =2 i L x −y (i ) log L x −y (i ) 

6 Entropy N−1 ∑ 
i =0 N−1 ∑ 

j=0 L ( i, j ) logL ( i, j ) 16 Information correlation measure 1 HXY − HXY 1 / max ( Hx − Hy ) 
7 Energy N−1 ∑ 

i =0 N−1 ∑ 
j=0 L ( i, j ) 2 17 Information correlation measure 2 1 − ( e − 2 HXY 2 − HXY ) 1/2 

8 Correlation N−1 ∑ 
i =0 N−1 ∑ 

j=0 ( i, j ) L ( i, j ) 2 − µx µy / σx σy 18 Sum Of Squares Variance m ∑ 
x =1 n ∑ 

y =1 f ( x, y ) 2 
9 Cluster shade N−1 ∑ 

i =0 N−1 ∑ 
j=0 ( ( i + j ) − µx µy ) 3 L ( i, j ) 19 Inverse Difference N−1 ∑ 

i =0 N−1 ∑ 
j=0 1 / (1 + | i − j | ( L ( i, j ) ) 

10 Variance N−1 ∑ 
i =0 N−1 ∑ 

j=0 ( i − µ) 2 log (L ( i, j ) 
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where, ( p, q ) represents the spatial-domain rectilinear coordinates, 
( V, W ) are the points that are the specific 2-D frequency of the 
complex sinusoid and ( σ p , σ q ) depict the spatial extent and band- 
width of f . 
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