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Abstract—this paper proposes a risk score computed from ul-
trasound data that correlates to plaque activity. It has the twofold
purpose of detecting symptomatic plaques and estimating the like-
lihood of the asymptomatic lesion to become symptomatic. The
proposed ultrasonographic activity index (UAI) relies on the plaque
active profile, which is a combination of the most discriminate ul-
trasound parameter associated with symptoms. These features are
extracted by the automatic algorithm and also by the physician
from the ultrasound images and from some transformations on
it, such as monogenic decomposition, which is a novelty in this
clinical problem. This information is used to compute a risk score
from the conditional probabilities of either symptomatic or asymp-
tomatic groups. Symptom detection performance is evaluated on
a transversal dataset of 146 plaques, where UAI obtained 83.5%
accuracy, 84.1% sensitivity, and 83.7% specificity. Performance
is also assessed on a longitudinal study of 112 plaques, where UAI
shows a significant improvement over the gold standard degree of
stenosis, demonstrating higher power at predicting which asymp-
tomatic plaques developed symptoms in an average follow-up of
ten months. Results suggest that this score could have a positive
impact on early stroke prevention and treatment planning.

Index Terms—Atherosclerotic carotid disease, computer-aided
detection and diagnosis, machine learning, pattern recognition
and classification, probabilistic and statistical methods, risk score,
receiver–operator curve (ROC) analysis, ultrasound, vessels.

I. INTRODUCTION

CAROTID bifurcations are prone to develop atherosclerotic
plaques that reduce blood flow and are vulnerable to rup-

ture or to break-away causing embolization. The atherosclerotic
disease of the carotid is responsible for one-third of acute cere-
brovascular events, hence, it has a major clinical, social, and
economical impact.

A stable carotid plaque is usually benign, but a vulnerable
carotid plaque has high risk of stroke. A correct characterization
of the disease is then vital to help identifying and assigning vul-
nerable plaques to surgery. Here, medical information from the
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plaque as well as clinical information from the patient are used to
access the stability of the plaque and quantify risk of symptoms.

The degree of stenosis (DS)—arterial lumen narrowing—is
considered the most important feature for determining plaque
vulnerability. This measure, together with other patient infor-
mation such as age, health, and clinical history are used to
subjectively decide upon endarterectomy. But this data alone
provide uncertain benefits in asymptomatic and moderate ob-
struction cases [1], potentially submitting the patient to unnec-
essary surgery risks. This clearly motivates the need for new,
more accurate, strategies for plaque risk prediction.

The inexpensive, wide availability, noninvasive, nonionizing
nature of Ultrasound (US) make this image modality a suitable
and practical method to asses carotid disease via real-time visu-
alization and interpretation of the carotid plaque. Although DS
and blood flow measures are the standard for US atherosclerotic
disease assessment, several recently proposed methods show the
benefit of using morphological information.

In one of the earlier textural works [2], the influence of ultra-
sonic carotid plaque morphology on the incidence of ipsilateral
hemispheric symptoms was studied on 96 plaques of which 25
are positive (P ) for symptoms and 71 are negative (N ). Other
authors also showed [3] how simple ultrasound analysis can
have a good correlation with symptoms and histological analy-
sis. Pedro et al. [4], [5] correlated echostructural characteristics
of carotid plaques with neurological symptoms and cerebral
infarcts in 105 plaques, and proposed the activity index (AI)
method. Seabra et al. [6] developed this approach further by
incorporating several textural features and a Bayesian classifi-
cation method and proposing an enhanced AI.

Wijeyaratne et al. studied [7] the discriminative sensitivity
of a multiple cross-sectional analysis using gray scale median
(GSM) and GSM heterogeneity on 74 plaques (41N , 33P ).
Some studies [8], [9] incorporated laws’ textural features in
their classification, while [8] also explore textural local binary
patterns obtaining 83% accuracy. Different neurological symp-
toms were also correlated with specific textural parameters [10].

The range of classifiers employed in this area is also con-
siderable, with support vector machine (SVM) classifiers being
some of the most used and successful. Kyriacou et al. used
[11] SVM on multilevel binary and gray scale morphological
features on 274 plaques (137N , 137P ) to obtain an average ac-
curacy of 73.7%; while Tsiaparas et al. used [12] SVM to com-
pare the discriminative power of the dual-tree complex wavelet,
the finite ridgelet and the fast discrete curvelet transforms, to
access plaque symptoms on 20 plaques (9N , 11P ) obtain-
ing an accuracy of 84, 9%. Modular neural network composed
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of self-organizing map classifiers have been used with an av-
erage accuracy of 73.1% on 230 plaques using ten textural
features [13].

It is our belief that to obtain an accurate characterization of
the vulnerable plaque, one should consider a supervised features
space that takes into account the plaque structure and appearance
as judge by experienced physicians, together with morpholog-
ical and textural computed automatically from the ultrasound
image. We also believe that ultrasound speckle [14] can provide
useful information for tissue characterization, although most
studies filter and discard it as noise [15], [16].

This paper introduces a score for plaque diagnosis, which
combines discriminant clinical and image based features. For the
latter, we make use of echo-morphological and textural descrip-
tors by decomposing the B-mode ultrasound imaging (BUS)
image into noiseless and speckle image components, accord-
ing to [14]. In this method, the echogenic (intensity) contents
are estimated on the despeckle image, while the spatial texture
arrangement is retained on the speckle image.

Although this study is a progression of several other publica-
tions, appropriately cited in this text, this paper introduces two
main novelties with respect to the state of the art: 1) textural
characterization of the plaque from features based on the mono-
genic description of the speckle field and 2) a new weighted
linear discriminant classifier, where the prior importance of the
features are taken into account and coded in the weights. It
is shown that the proposed method outperforms the previous
scores described in the literature mainly due to the increased
ability of the monogenic approach to capture the textural fea-
tures of the plaque.

In this paper, the proposed score is used on a dataset from
a transversal study to detect symptomatic versus asymptomatic
plaques. The method’s robustness and its prediction power is
also assessed on a dataset from a longitudinal study conducted
in asymptomatic subjects.

II. MATERIALS AND METHODS

In this section, the data used in this study are described and
characterized and the method approach is presented.

A. Data

This study includes two datasets.
Dataset A is a transversal (cross sectional) study of 146

carotid bifurcation plaques obtained from 99 patients, 75 males,
and 24 females, with an average age of 68 years (41–88). Dataset
contains 44 symptomatic (P ) and 102 asymptomatic plaques
(N ) with an average DS of 65% and 44%, respectively. Patients
were observed through a medical consultation at Cardiovascular
Institute of Lisbon and at the Department of Vascular Surgery,
Lisbon Academic Medical Center. The examination included an
assessment with color-flow Duplex-scan of both carotids, per-
formed with ATL-HDI 3000 or 5000 scanner (Philips Medical
Systems, Bothell, WA, USA). Equipment setup included 5–12
MHz broadband linear-array transducer, 60-dB dynamic range
and postprocessing linear maps. Image acquisition included the
most representative longitudinal cut in color and B-mode as

selected by the medical expert (L. M. Pedro) who performed
the studies.

A plaque was considered P when amaurosis fugax (AF) or
focal (transitory, reversible, or established) cerebral events in
the carotid territory occurred in the previous six months.

Dataset B is a longitudinal study from the asymptomatic
carotid stenosis and risk study [17] with 112 asymptomatic
plaques with DS > 50%. The DS distribution as an aver-
age value of 75%(50 − 99) and the number of plaques with
DS > 70% is 80. Patients were followed for possible occur-
rence of symptoms for a mean time interval of 37.1 weeks. At
the end of the study, 13 out of 112 patients (11.6%) had devel-
oped symptoms (three AF, six transient ischemic attacks, four
strokes).

B. Methods

In this section, we describe how the risk score is built. The fol-
lowing method is also implemented as a computer-aided diag-
nosis (CAD) standalone software, which consists in an updated
version of [18].

1) Preprocessing: Small regions at the lumen and adventitia
areas are identified in the BUS images by the physician for image
normalization purposes. In this procedure, the image intensity
is linearly rescaled setting the median intensity (gray values) of
these areas to 5 and 190, respectively. The plaque is segmented
by the clinical expert using the provided interface, resulting in
one or more regions of interest (ROIs). The original envelope
radio frequency (RF) image of the ROI is retrieved by reverting
[14] the nonlinear compression performed by the ultrasound
equipment. This decompression operation is important for the
following preprocessing steps, but it is also useful to compensate
for the acquisition and equipment parameters variability.

Here, we decompose the envelope ROI image (see Fig. 1) into
a despeckled image (Λ = {ηi,j}), carrying information about
the local tissue echogenicity, and a speckle field (Γ = γi,j ), re-
lated to the structure and the characteristic pattern of the tissue
using the method in [19]. This multiplicative decomposition is
supported by the understanding that US speckle is known to de-
pend on the intrinsic acoustic properties of tissues [20]. Different
tissues, with their textural variation, are composed of elements
with different refractive indexes, that cause propagating sound
waves to scatter differently. This differentiation is here explored
for texture analysis purposes.

All of these preprocessing steps are sketched in Fig. 2.
2) Feature Extraction: A total of 212 features were con-

sidered (see overview in Fig. 2) in this paper. 5 of them are
extracted by the physician upon visual inspection of the images,
such as DS and surface disruption. The remaining 155 features
are computed automatically from the preprocessed images. The
preprocessing steps as well as a subset of these features are de-
scribed in [6]. Here, an extended set of features is used such as
described next:

1) BUS morphological features provided by an experi-
mented physician during BUS examination. The five-
element vector of morphological parameters include: 1)
evidence of plaque disruption, defined by an interruption
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Fig. 1. Decomposition example of Bmode into speckle (η) and despeckle fields and the monogenic decomposition of η into magnitude, phase angle, and phase
orientation, using three levels of detail.

Fig. 2. Scheme of the postprocessing steps applied to the BUS image repre-
senting the carotid plaque and the features extracted from them. Rectangular
gray: automatic methods; round-shaped gray: semi automatic methods; rectan-
gular white: internal outputs; dark gray: features.

in the echogenic surface of the plaque; 2) presence of
echogenic cap, identified as an equivalent of a thick fi-
brous cap and characterized by an echogenic line over
the visible structure of the plaque; 3) the DS, quanti-
fied using cross-sectional area measurement combined
with hemodynamic assessment; 4) plaque echo-structure
appearance, where uniform plaques are defined as ho-
mogeneous as opposed to heterogeneous plaques; and

5) location of the echolucent region in heterogeneous
lesions (central or juxta-luminal), identified as a dark
region inside the plaque.

2) Histogram features extracted from the histogram of nor-
malized pixel intensities inside the plaque. A total of 13
histogram features are estimated, including the mean and
median gray values (GSM), percentage of pixels with
gray value lower than 40 (PP40) [4], standard deviation
of gray values, kurtosis, skewness, energy, and entropy,
10, 25, 50, 75, and 90 percentiles.

3) Rayleigh Mixture Model (RMM) features are extracted
from the modeling of plaque echo-morphology con-
tents by a mixture of Rayleigh distributions according
with [21]. A 13-element maximum feature vector is ob-
tained consisting of up to six mixture coefficients and six
Rayleigh parameters plus the effective nonnull number
of RMM coefficients.

4) Rayleigh features extracted from the Γ field consist on
average theoretical estimators of the Rayleigh distribu-
tion, whose parameters are given by the pixels on the
despeckled [19] image, which form the plaque. The
Rayleigh features include the mean µΓ = γi,j

√
π
2 , me-

dian υΓ = γi,j

√
2 log(2), variance σΓ = γi,j

√
4−π

2 of
Rayleigh values, and percentage of pixels with Rayleigh
value lower than 40 PP40Γ = 100 − exp

(
− 402

2 γ i , j
2

)

5) Texture features involve the study of the spatial distri-
bution of gray levels inside the plaque region extracted
from the speckle image [19]. These features are estimated
from gray level co-occurrence matrices (GLCM) autore-
gressive (AR) models, Wavelet models, and monogenic
signals.
The elements, qd,θ (i, j) of the GLCMs [22] are the rel-
ative occurrence frequencies, P (i, j|d, θ), of intensity
pairs (i, j) of neighboring pixels at distance d and an-
gle θ. 16 GCL images are computed for d = {1, 2, 3, 4}
and θ = {0, 45, 90, 135}. The following four features are
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extracted from these 16 GLCM’s leading to a 64 length
feature vector:

Contrast :
∑

i,j

|i − j|2 · qd,θ (i, j)

Correlation :
∑

i,j

(i − µi)(j − µj ) · qd,θ (i, j)
σi · σj

Energy
∑

i,j

qd,θ (i, j)2

Homogeneity
∑

i,j

qd,θ (i, j)
1 + |i + j|

µk and σk , with k = i, j are the mean and standard de-
viation, respectively, of pixel value in the k direction.
Here, Contrast measures the local variations in the
GLCM, while Correlation gives the joint probability oc-
currence of the specified pixel pairs. The Energy provides
the sum of squared elements in the GLCM, and finally,
Homogeneity measures the closeness of the distribution
of elements in the GLCM to the GLCM diagonal.
Additionally a first-order 2-D AR model is used to
describe the spatial correlation between pixels. In this
model, each pixel from the speckle field (η) is expressed
as the following linear combination:

ηi,j =
∑

n,m

an,m ηi−m,j−n + εi,j (1)

where (n,m) ∈ {(0, 1); (1, 0); (1, 1)}. an,m are the AR
coefficients to be estimated and εi,j are the residues.
Plaque texture is also studied using multilevel 2-D wave-
let decomposition and monogenic decomposition signal
analysis.

(6) Wavelets are used to decompose the speckle image (η)
into four levels, resulting in 12 detail and one approxi-
mation images. Here, the energies of these fields are used
as textural features.
Energy, mean, and AR 2-D coefficients (1) features are
extracted from each of these images, resulting in the total
of 65 textural features.
Monogenic features are obtained by decomposing the
speckle image (η) in the monogenic signal framework
[23]. In this framework, a Riesz transform, a 2-D gen-
eralization of the 1-D Hilbert transform [24], allows the
decomposition of the input image into three components:
magnitude, phase angle, and phase orientation. Here, we
set the decomposition parameters to the following default
values proposed by Felsberg: 1) minimum wavelength of
4 pixels; 2) scaling factor of 2 between successive filters;
3) 0.65 of ratio for the standard deviation of the Gaussian
describing the log Gabor filter’s transfer function in the
frequency domain to the filter centre frequency.
This decomposition is performed on three band-pass fil-
tered versions of the speckle image allowing for a multi-
scale analysis (see Fig. 1).
Energy, mean, and AR 2-D coefficients feature (same as
extracted for wavelets decomposition) are extracted from

TABLE I
LIST OF OVERALL COMPARED FEATURE SELECTION METHODS

AND THE RESULTANT FINAL ACCURACY IN %

Feature selection method Accurracy

Sequential Floating Forward [25], 84%
minimum Redundancy Maximum Relevance [26]
particle swarm optimization [27], 81%
Plus-l-takeaway-r [28] 79%
Genetic algorithm [27] 78%
Rough set theory [27]
Backward feature selection [28] 76%
Branch and bound [28] 72%
Forward feature selection [28] 68%

the monogenic components of each of the three levels of
details, resulting in the total of 45 textural features.
In the end, each plaque is described by a feature vector
x of 5 (Clinical) + 13 (Histogram) + 13 (RMM) + 4
(Rayleigh) + 177 (Texture) = 212 features.

C. Feature Scaling and Selection

The set of C total features are organized by columns in a
R × C matrix D = {di,j}, where rows correspond to plaques.

Nonbinary features are normalized to the maximum range of
[0, 1] according to

Φ (di,j ) =
(

1 + e
−

d i , j −µ j
σ j

)−1

(2)

where µj and σj are the mean and standard deviation, respec-
tively, of jth column of D. This transformation removes the
influence of the dynamic range of each featured in final classi-
fication. The binary features are not normalized since they are
already in the same range.

Feature selection was performed to reduce the number of
features to less than 5% of the total number of samples on the
training dataset A, in order to avoid over fitting.

This procedure is performed in two steps. 1) A preselection
based on the discriminative power of each feature and 2) a
finer selection with the Pudil sequential floating forward feature
selection (SFFS) [25], selected after a comparison test of several
feature selection methods (see Table I).

Step 1 is required to reduce the computational burden of
step 2. In this step, an hypothesis testing is used for determining
if the statistical properties of a given feature significantly differ
from the P and N classes, by means of the Mann–Whitney
U − test [29] that performs a two-sided rank sum test. We select
the features with p − value, α < 0.05 (probability of rejecting
the null hypothesis) resulting in 49 of the starting 212 features.

In step 2, a linear Bayes normal classifier [30] with no regu-
larization is used as the wrapped criteria, with a maximum limit
of seven features, less than 5% of C.

D. Ultrasonic Activity Index Measure

From the selected features, a single probabilistic measure
is devised for plaque characterization. This real valued score,
scaled from 0 to 100, is correlated with plaque activity [5]
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TABLE II
FEATURES SELECTED IN ORDER OF THEIR SFFS INCLUSION, THEIR
MAN–WHITNEY P-VALUE, AND THE CORRESPONDENT WEIGHTING

VARIABLE υ (SEE SECTION D)

Name p-value (α) υ

Surface Disruption 8.7E-12 0.38
DS 2.8E-8 0.26
a(1, 1) AR parameter from

the third-level 2.9E-2 0.05
monogenic energy response

Intensity correlation to d = 3, θ = 90 9.3E-3 0.07
neighbor of the speckle GLCM

Intensity contrast to d = 1, θ = 0 1.5E-2 0.06
neighbor of the speckle GLCM

a(1, 1) AR parameter from
the first-level monogenic 5.6E-3 0.08
phase orientation response

Intensity contrast to d = 2, θ = 45 9.0E-3 0.07
neighbor of the speckle GLCM

and allows for a relative measure of disease severity. Resuming
the proposed ultrasonic activity index (UAI) can be seen as a
modification of a Bayesian classifier, with multivariate variable
distribution and with a new weighting approach.

UAI(x) = G(Λ(x)) (3)

where G(.) is a logistic function, Λ(x) is the Bayes Factor, and
x = {b, r} is a vector of C = m + n selected features with
m binary components (b ∈ {0, 1}m ) and n real components
(r ∈ Rn ) normalized by (2).

Λ(x) = lP (x) − lN (x) (4)

is the Bayes factor associated with the binary classification pro-
cess into N and P classes. lτ (x) = − log [p(x|ωτ )] is the sym-
metric of the log-likelihood function, τ = N,P and p(x|ωτ )
can be interpreted as the probability of a sample described by
feature vector x to belong to a group whose features are de-
scribed by ωτ .

G is a monotonic function used to rescale Λ(x) into a maxi-
mum range of [0, 100]

G(y) = a . eb.ec . y

(5)

known as Gompertz function [31], where y ∈ ℜ, a = 100 is the
maximum asymptote, b sets the y displacement, and c sets the
growth rate. These parameters are estimated by fitting (5) to
the accumulated normalized UAI histogram obtained from the
training dataset. The rescaling method provides a more intuitive
evaluation of the plaque risk by the physician that typically
performs a diagnosis based on the DS ∈ [0 − 100].

We assume that the m binary components (b) of the feature
vector (x) are independent, while the n real components (r)
follow a multivariate Gaussian distribution

p(x|ωτ ) = p(r|ωτ ) · p(b|ωτ ) = N(µτ ,Στ ) ·
m∏

i=1

p (b(i)|ωτ )

(6)

where the last factors, evolving the binary features b(i), are
estimated as the relative frequency of the (ith) binary feature
value within class τ in the training dataset

p(b(i)|ωτ ) = fτ (i) · b(i) + (1 − fτ (i)) · (1 − b(i)) (7)

where fτ (i) is the relative frequency of positive value (b(i) = 1)
within class τ in the training dataset.

To take into account the influence of each binary feature
on the final score, we introduce in (7) a weighting variable
υb(i), described next, quantifying the relative importance of
each feature, such that

q(b(i)|ωτ ) = ϑτ (i)
[
fτ (i)υ b (i) · b(i)

+ (1 − fτ (i))υ b (i) · (1 − b(i))
] (8)

where ϑτ (i) = [fτ (i)υ b (i) + (1 − fτ (i))υ b (i) ]−1 is a normaliz-
ing factor to make q(b(i)|ωτ ) a true probability function.

Taking into consideration the binary nature of subset b, the
log of (8), to be used in the computation of (4), can be written
as

log [q(b(i)|ωτ )] = υb(i) · log [p(b(i)|ωτ )] + ∆τ (i) (9)

where ∆τ (i) is a constant.
The symmetric of the log of the first factor on (6), a multi-

variate Gaussian distribution, is

log[p(r|ωτ , µr , Σ̃r)] =
1
2
(r − µτ )T · Σ̃−1

τ · (r − µτ ) + K̃τ

(10)

where K̃τ = log[ 1√
(2π )n |Σ̃τ |

] is the Gaussian normalizing fac-

tor, µτ ∈ ℜn is the expectation vector for class τ , and Σ̃τ ∈
ℜn×n a weighted version of the covariance matrix (Στ ) for class
τ . This weighting of the covariance matrix narrows/widens the
Gaussian distribution changing its discriminative power and is
implemented as

Σ̃−1
τ =

(
Sτ WST

τ

)
(11)

where W = diag(υr) a diagonal matrix containing the weights
associated with relative importance of each real feature (r) and
Sτ is the principal square root matrix of the covariance matrix
inverse (Σ−1

τ ) obtained by the Cholesky decomposition [32]
such that Sτ ST

τ = Σ−1
τ .

By using (9) and (10), the log likelihood functions in (4) are
as follows:

lτ (x) =
1
2
(r − µτ )T · Sτ WST

τ · (r − µτ )

+
m∑

i=1

[ υb(i) · log (q(b(i)|ωτ )) ] + Cτ (12)

where Cτ combines all the constants from all terms.
Finally, the weighting factors (υ) used previously are

υ =
− log(α)

∑N
k=1

√
(− log(αk ))2

(13)
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TABLE III
PERFORMANCE RESULTS FOR DIFFERENT CRITERIA FOR SELECTING CUTOFF

VALUE(t) (IN %) FOR THE UAI SCORE ON DATASET A

Criteria Acc Sens Spec PPV NPV

max [Acc] 89.4 59.0 84.5 75.3 63.9
max [Gmean] 83.3 83.7 84.1 90.1 66.2
min [|Sens − Spec|] 83.5 84.1 83.7 91.2 65.4

changing the influence of both binary (υb) and real valued (υr)
features on the final score. This change is dependent on each
feature discriminative power (see Section II-C) given by the
Man–Whitney p-value (α).

The transversal dataset A (see Section II-A) is used to es-
timate the relative frequencies (fτ (i)) in (9), the multivariate
parameters (µτ , Στ ) in (10), the weighting parameters (υ) in
(13), and the score scaling parameters (b and c) in (5).

E. AI Measure

The AI [5], used in this study for comparison purposes, is
based on the set of morphological measures extracted by medical
expert and the GSM and P40 histogram feature, all described
earlier in Section II-B2). In short terms, the AI is a stepwise
measure, scaled from 0 to 100, that consists on a linear sum of
the probabilities of each significant variable causing symptoms.

F. Classification

The classification strategy, based on any of the real valued
scores (DS, AI, and UAI), provides an estimation of the ob-
servation class (N or P ), τ̂ , according to the following simple
binary decision rule:

τ̂ =

⎧
⎨

⎩

P, if score(x) > t

N, otherwise
(14)

where t is a cutoff value that depends on optimal criteria [33].
Also, different criteria lead to different performance results (see
Table III). For example, t can be lowered to limit false negatives;
on the other hand if false positives are to be avoided, t should be
increased. This score, as it is designed, is based on information
obtained from US image of the carotid plaque. It is our belief that
this tool can be further adapted to incorporate extra variables
considered useful such as age, clinical history, surgery costs,
hereditary risk factors, etc.

III. EXPERIMENTAL RESULTS

In this section, the classification performance is accessed for
the three scores (DS, AI, and UAI) addressed and the results are
compared. As noted in Section II-A, we have two datasets used
for training and testing. The transversal dataset A, of higher
sample size, will be used to capture the plaque characteris-
tics (features) associated with the existence or nonexistence of
symptoms. The classifier trained and tested with dataset A, is
also tested on a second experiment, with the longitudinal dataset
B. Here, we access the predictive power of the classifier to

Fig. 3. ROC of the proposed score compared to the standard criteria (DS) and
the AI score. Threshold scores for each measure marked with circles. Legend
displays AUC for each measure. Point (0, 0) corresponds to highest scores and
point (1, 1) to lowest scores.

identify plaques that although asymptomatic at the acquisition
time developed symptoms afterwards in a time frame of ap-
proximately ten months. Considering the significant differences
between datasets, this last performance test also allows to access
the robustness of the tested methods.

The performance figures of merit used are accuracy (Acc),
sensitivity (Sens), specificity (Spec), and positive and negative
predictive value (PPV and NPV)1.

A. Classification Results

The classifier training (see Section II) is performed with a
leave-one-out cross-validation approach [30]. For overfitting
evaluation purposes only, an optimistic training is also per-
formed by using the full dataset.

The receiver–operator curve (ROC) [34] in Fig. 3 displays
the different behavior of DS, AI, UAI, and optimistic UAI. As
an overall performance metric, the area under the curve (AUC)
is also displayed.

Several optimal criterion to select cut-offs values [threshold
t on (14)] on the DS, AI, UAI scores were tested and the results
are in Table III. Among these, the common maximization of ac-
curacy, minimizing the Gmean (

√
Sens × Spec) and the chosen

simple criteria of the lowest difference between sensitivity and
specificity. The later criterion can be graphically represented by
intercepting the ROCs with the descending diagonal line (DDL)
as shown in Fig. 3. We adopted the threshold values provided

1TP = True Positives; TN = True Negatives; FP = False Posi-
tives; FN = False Negatives; Acc = TP+TN

TP+FN+TN+FP ; Sens = TP
TP+FN ;

Spec = TN
TN+FP ; PPV = TP

TP+FP ; NPV = TN
TN+FN .
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TABLE IV
PERFORMANCE RESULTS (IN %) FOR THE DS, AI, AND UAI ON DATASET A

Score AUC Acc Sens Spec PPV NPV

DS 79 74.7 75.0 74.5 87.3 55.9
AI 82 75.6 74.6 76.5 88.0 52.7
UAI 86 83.5 84.1 83.7 91.2 65.4
UAIs 1 80 75.3 74.9 77.5 88.2 53.1
UAIs 2 77 75.0 74.6 76.7 87.3 54.2
UAIs 3 82 76.1 75.2 77.1 88.5 53.6

Results for UAI operating on feature subsets (s) are also displayed: s1 —DS and surface
disruption; s2 —automatically extracted features; s3 —without monogenic features.

Fig. 4. Normalized histogram of the UAI score for positive and negative
classes, in dataset A.

TABLE V
PERFORMANCE RESULTS OBTAINED WITH DS, AI, AND UAI

FOR LONGITUDINAL STUDY (DATASET B)

Score AUC Cutoff Acc Sens Spec PPV NPV

DS 65.0 > 63 35.3 92.3 29.2 14.5 96.5
AI 73.3 > 52 50.4 90.2 44.8 17.4 96.4
UAI 94.6 > 44 77.1 100 67.7 33.2 100

by the DDL criteria, due to performance and simplicity, leading
to the classification results on Table IV. The proposed method
is able to deal with unbalanced datasets, where high accuracies
are obtained simultaneously with high specificities and sensi-
tivities. When the data base is unbalanced accuracy may not be
an accurate measure of the classification procedure.

The features influence in the final UAI performance is not
directly proportional to their υ (13) weighting in the classifier.
To help assess this impact, Table IV also displays the UAI
performance operating on the following subsets of features (see
Table II): s1 includes only the features provided by the clinician
(DS and surface disruption); s2 includes only the automatically
computed features, i.e., all features excluding the ones in s1 ;
s3 includes all features that do not come from the monogenic
decomposition.

The discriminative power of the proposed UAI is also ac-
cessed visually in Fig. 4 by observing that the normalized his-
togram on the symptomatic (P ) and asymptomatic (N ) plaques
are well separated by means of the UAI.

Table V shows results for the second experiment, where the
classifier is trained with dataset A and tested with dataset B.

IV. DISCUSSION

Although it would be highly useful to compare our method
performance against results from the literature, having different
datasets, features, classification methods, and metrics makes
this comparison very difficult and not very meaningful. Still the
achieved performance is comparatively very interesting, and
more than justifies being currently used in the central surgical
cardiovascular center in Lisbon.

In this particular classification problem, generalization is a
central issue, because severe clinical consequences can result
from the decrease of performance. Therefore, we constraint the
maximum number of selected features to 5% of the sample size.
This upper bound corresponds to the lowest limit commonly
accepted in the literature ([5%, 20%]) to avoid overfitting.

The resulting set of selected features (see Table II) is com-
posed of two morphological features provided by the physician
(DS and existence of surface disruption) plus five image-bases
automatically extracted features, all of them encoding texture
information. Not surprisingly, the binary indicator of plaque
heterogeneity given by the physician is not selected in favor of
the computed textural features.

Also, although wavelet and monogenic features encode simi-
lar information, the automatic selection of the later indicates that
monogenic textural information might carry more asymptomatic
versus symptomatic discriminative power than wavelets.

Regarding optimal cutoff criteria selection, it should be noted
that sensitivity is of particular importance in this application.
While maximizing accuracy led to only 59% sensitivity, the
chosen criteria provides a significant increase in both sensitivity
and specificity for a reasonable tradeoff in accuracy (6%).

For purposes of classification, several classifiers, ensembles
of classifiers, and mixture of these ensembles were tested. In the
end, the advantage of using a probabilistic classification method
provided higher medical usefulness since the probability result
can be seen as an AI of the plaque [5]. This real value in the
[0, 100] interval allows medical doctors to have a relative idea
on disease severity for each patient, which is not provided by
classifiers that return a binary decision. In qualitative terms:
1) the lower the score in comparison with the threshold value
(tUAI=44), the higher the confidence in classifying it as asymp-
tomatic and 2) the higher the score in comparison with the
threshold value, the higher the confidence in classifying it as
symptomatic. The opposite of both 1 and 2 are also true.

It should be noted that dataset B has low number of positive
cases. With such low statistical relevant data, it is not hard to
have a classifier that gives high performance, but suffers from
overfitting (generalization problems). Hence, we train and test
UAI in dataset A and use B for testing purposes only.

Regarding the performance in dataset A (see Table IV), the
proposed UAI clearly outperforms the medical standard DS
and the previously proposed AI score. Specifically, UAI shows
9.1% and 7.9% more accuracy than the standard DS and AI,
respectively. The results on the subsets of features s1 , s2 , and s3
clearly show that it is the combination of information provided
by the clinician along with texture information automatically
extracted that renders the best performance. It also indicates that
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every subset of features has relevant impact to the overall UAI
performance, with special mention for the proposed monogenic
features (s3).

Regarding results on dataset B (see Table V), UAI deliv-
ers a greater ability to characterize and identify asymptomatic
plaques that became symptomatic, in an average followup of ten
months, being 38.7% and 26.7% more accurate than DS and AI,
respectively. Also, UAI was the only method able to identify all
TP cases. The longitudinal dataset (B) is rather different from
the transversal one (A), naturally resulting in the decrease of all
FOM’s for the three scores (AI, DS, and UAI). Still, this per-
formance reduction was more significant on AI and DS than on
UAI, the later showing higher generalization robustness. Also,
datasets A and B were acquired by different operators, with dif-
ferent equipment and image settings, on separate countries. This
reinforces the robustness of the proposed method. Although it
requires further testing, it can be argued that the rotation and in-
tensity invariant nature of monogenic signals contribute to such
generalization robustness.

In absolute terms, the 77.1% accuracy of UAI on dataset B
is rather significant considering it was trained with dataset A.
This suggests that the method is capturing textural characteris-
tics of symptomatic plaques (positive cases in A) that also exist
in asymptomatic plaques that develop symptoms in a near future
(positive cases in B).

This study is implemented in an CAD tool used in research
[18], which allows the user to register relevant patient informa-
tion, load, and process images according to the work flow in
Fig. 2, extract the image features and calculate the final score.
The automatic processing required runs in an average of 10s
for each plaque on an 1.7-GHz Intel core i3 laptop. Although
user dependant, overall plaque assessment takes around 1 min
to complete.

V. CONCLUSION AND FUTURE WORK

In summary, the proposed UAI method allows 1) an objec-
tive characterization of atherosclerotic disease of the carotid
artery, 2) automatic classification into symptomatic versus
asymptomatic, and 3) a promising approach to identify plaque
vulnerability.

It is a nonexpensive, easy to carry out method that runs
on nearly real-time obtained with precessing methodology su-
pervised by experts including both clinical and image-based
features.

Plaque assessment based on UAI clearly out performs the
characterization based on the DS (which is the medical standard)
and the AI method proposed in [5].

UAI uses monogenic decomposition-based features, which to
our knowledge have never been applied in the scope of carotid
atherosclerotic disease diagnosis. Additionally, a new weighting
classification method is proposed to encode the relative discrim-
inative power of each feature on the score.

It is our goal to expand this current method with plaque mor-
phological 3-D features and clinical features such as smoking
habits, cholesterol levels, hereditary conditions, medication, etc.

Still, the presented results suggest that this score could have a
significant impact on stroke prediction and treatment planning.
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José Seabra received the M.Sc. and Ph.D. degrees
from the Technical University of Lisbon, Lisbon, Por-
tugal, in 2007 and 2011, respectively.

His thesis investigated different methologies to
model and characterize the carotid artery disease us-
ing ultrasound images. Currently, he is working as
an R&D Engineer for the iMagX project—a part-
nership between the Universit catholique de Louvain
and Ion Beam Applications, world leader in proton
therapy—focused in the research and development of
complete imaging solutions for patient positioning in

radiotherapy and proton therapy. His research interests include medical image
processing, computer aided diagnosis, reconstruction, denoising, segmentation,
and machine learning.

Luı́s Mendes Pedro received the M.D. and Ph.D. de-
grees from the Medical School of the University of
Lisbon, Lisbon, Portugal, in 1987 and 1993, respec-
tively.

He is currently an Associate Professor and a Con-
sultant of Vascular Surgery with the Cardiovascular
Institute and the Lisbon University Medical School,
Hospital de Santa Maria, Lisbon. His main research
interests include ultrasound plaque characterization,
carotid surgery, and endovascular surgery.
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