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Total Variation (TV) regularization is a widely used convex but non-smooth regularizer in image 
restoration and reconstruction. Many algorithms involve solving a denoising problem as an intermediate 
step or in each iteration. Most existing solvers were proposed in the context of a specific application. 
In this paper, we propose a denoising method which can be used as a proximal mapping (denoising 
operator) for noises other than additive and Gaussian. We formulate the Maximum A-Posteriori (MAP) 
estimation in terms of a spatially adaptive and recursive filtering operation on the Maximum Likelihood 
(ML) estimate. The only dependence on the model is the ML estimate and the second order derivative, 
which are computed at the beginning and remain fixed throughout the iterative process. The proposed 
method generalizes the MAP estimation with a quadratic regularizer using an infinite impulse response 
filter, to the case with TV regularization. Due to the fact that TV is non-smooth and has spatial 
dependencies, the resulting filter after reweighted least squares formulation of the TV term, is recursive 
and spatially variant. The proposed method is an instance of the Majorization–Minimization (MM) 
algorithms, for which convergence conditions are defined and can be shown to be satisfied by the 
proposed method. The method can also be extended to image inpainting and higher order TV in an 
intuitively straight-forward manner.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Image denoising/reconstruction involves estimating an image or 
three dimensional (3D) volume from a set of noisy and often in-
complete set of observations. The relationship between the image 
to be estimated, x and the observation, y, and the type of noise 
corrupting the observed image depends on the imaging modality. 
For example, thermal noise in imaging sensors is usually modeled 
as additive and Gaussian distributed, multiplicative speckle noise 
(which occurs in Ultrasound and Synthetic Aperture Radar imag-
ing) is widely assumed to be Rayleigh distributed [51], and Poisson 
noise in confocal fluorescence microscopy [43]. While denoising 
for the case of additive and Gaussian noise has received a lot of 
interest because of its mathematical tractability, it is not always 
applicable in several situations [29].

Estimating the image is an ill-posed problem, necessitating 
prior information. In the Bayesian framework [58], we assume a 
suitable prior density on x, p(x), construct the posterior density 
p(x|y), and compute the Maximum A-posteriori Probability (MAP) 
estimate of x as the value which maximizes this probability. The 
prior or regularizer must be chosen so as to make the optimization 
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process feasible and numerically stable, and enforce certain char-
acteristics on the estimate. The well known convex optimization 
formulation for estimating x given y involves solving the mini-
mization problem,

min
x

l(x,y) + λ

2
φ(x), (1)

where l(x, y) is the data fidelity term, and is convex, φ(.) is the 
regularizer function, and λ > 0 is the parameter that controls the 
influence of the regularizer. It is trivial to show that the solution 
to this problem is the Bayesian Maximum A-posteriori (MAP) esti-
mate of x, where l(x, y) is the negative log likelihood function, and 
the prior on x is proportional to e−λφ(x) . The data fidelity func-
tion depends on the statistics of the observation model. Refer to 
Table 1 for a summary of the likelihood density, log likelihood ra-
tio, and the maximum likelihood (ML) estimate for the additive 
and Gaussian, multiplicative and Rayleigh, and Poisson noise mod-
els.

An algebraically elegant and computationally simple method for 
obtaining the MAP estimate with a quadratic prior was presented 
in [48]. In this work, a Taylor series approximation was used to for-
mulate the data fidelity term in terms of the ML estimate, which 
led to a closed form minimizer of (1) which could be implemented 
as a cascade of two Infinite Impulse Response (IIR) filters. The filter 
coefficients and other parameters were dependent on the model 
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Table 1
Parameters for the Gaussian, Rayleigh and Poisson statistical models.

Gaussian Rayleigh Poisson

Likelihood p(y|x) 1√
2πσ 2

e− 1
2σ2

∑
i (yi−xi )

2 ∏
i

yi
xi

e
− y2

i
2xi

∏
i

x
yi
i e−xi

(yi !)

Data fidelity l(x,y) 1
2σ 2

∑
i(yi − xi)

2 ∑
i

[
y2

i
2xi

− log( yi
xi

)

] ∑
i [xi − yi log(xi)]

γi = ∂2l/∂x2
i

1
σ 2

1
(xML

i )2
1

xML
i

ML estimate xML y 1
2 y2 y

Fig. 1. Neighborhoods used to assign filter coefficients. (a) Neighborhood Ni over 
which the weight w(m,n) is applied, shown as the shaded pixels. (b) Neighborhood 
N ′

i in which the pixel i = (m, n) appears in the difference terms.

and computed beforehand. This framework has the advantage of 
being computationally simple and applicable to different statisti-
cal models. In this work, our goal is to extend this MAP estimation 
filtering framework to solve the denoising problem with the to-
tal variation (TV) [11,45] regularizer which enforces the desirable 
qualities of sparseness and piece-wise smoothness [55].

The TV semi-norm is convex but non-smooth, and has led to 
the development of several image denoising, deconvolution, and 
reconstruction methods [10,56]. In denoising natural images with-
out texture, under the additive and Gaussian distributed noise 
model it is considered state-of-the-art in terms of Improvement 
in Signal to Noise Ratio (ISNR) [6]. In our notation, x is the vector 
representation, say, in lexicographic ordering, of a two-dimensional 
image and an index coordinate i corresponds to a pixel location 
(m, n). We will use the vector representation throughout. How-
ever, because of the fact that the two first-difference neighbors 
of a pixel x(m,n) , x(m−1,n) and x(m,n+1) cannot be represented con-
tiguously in this representation, we will use indices i and (m, n)

interchangeably.
The isotropic TV semi-norm of a two-dimensional (2D) image x

indexed by coordinates (m, n), assuming suitable boundary condi-
tions, is defined as,

TV(x) =
∑

(m,n)

√
(xm,n − xm−1,n)2 + (xm,n − xm,n−1)2. (2)

A generalized expression valid for higher dimensions is,

TV(x) =
∑

i

√∑

j∈Ni

(xi − xj)2, (3)

where the index i (which in the vector representation corresponds 
to the coordinates (m, n)) indexes the image or volume, and Ni
is its neighborhood (see Fig. 1), over which the difference is com-
puted. Unless stated otherwise, the neighborhood N C

i is the first 
order neighborhood. For the 2D case the index is i=̂(m, n) and 
N C

i = {x(m−1,n), x(m,n−1), x(m+1,n), x(m,n+1)}.

1.1. Related work

Several solvers exist for the case when the noise is additive and 
Gaussian [10,56,27], leading to the TV-regularized least squares 
minimization also known as the TV-ℓ2 problem,

min
x

1
2
∥x − y∥2 + λ

2
TV(x). (4)

The separability of the ℓ2 term has been advantageous in the 
development of solvers. The Chambolle method [10] involves it-
eratively calculating a projection onto a convex set. More recent 
methods based on the Bregman iterations and Alternating Direc-
tions Method of Multipliers (ADMM) frameworks [56,27] have ben-
efited from the separability of the data fidelity term, combined 
with variable splitting [16] to have a simpler least squares mini-
mization step at each iteration.

When the noise is not additive and Gaussian, l(x, y) is no longer 
a least squares term and problem (4) cannot be used to estimate x. 
There has not been much literature on general solvers for TV de-
noising with noise other than additive and Gaussian. Even though 
TV has been used in denoising in the context of multiplicative de-
speckling with Rayleigh or Gamma distributed noise [52,7], and 
Poisson noise [43], these methods are application specific and are 
not general solvers for their respective noise models. In [12], a TV 
regularized denoising method for Poisson and impulse noise was 
proposed, which used the quasi-Newton method to minimize the 
sum of the TV term with the appropriate data fidelity term. A re-
view of TV based denoising and restoration methods for Gaussian, 
gamma-speckle, Poisson, and impulse noises can be found in [44].

In [47,48], the authors use a Taylor series approximation around 
the ML estimate to have a weighted least squares data fidelity 
term, irrespective of the observation model. With a quadratic Gibbs 
regularizer, the MAP estimate had a closed form, which can be 
solved using two IIR filters in sequence. This is possible because 
the quadratic and Tikhonov [28] regularizers are convex and dif-
ferentiable.

Yet another family of algorithms for denoising and reconstruc-
tion is the Iterative Reweighted Least Squares (IRLS) type algo-
rithms. The IRLS method has been around for half a century 
[34,40,35], but has been applied in sparse signal recovery for 
a little over a decade [30,42,20,13,14,17] with the more recent 
works focusing on reconstruction [17] from compressive sensing 
[9,19] measurements. These methods, all proposed in the context 
of additive and Gaussian noise, solve denoising problems with the 
ℓ1-norm or non-convex ℓp-norm (0 < p < 1) regularizers which 
are non-smooth and therefore not easily differentiable. Therefore, 
the regularizer term is formulated as a weighted ℓ2 term, and 
the least squares problem is solved iteratively, with the weights 
updated at each iteration. We will use the IRLS formulation to re-
formulate the TV term as a weighted sum of squared differences.

Non-TV based image denoising methods include those based on 
wavelet type representations such as BM3D [15], principal com-
ponent analysis (PCA) [36,46], and those based on the non-local 
means (NL-means) algorithm [41]. Recent work such as [3,60] are 
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based on neural networks. In these approaches, denoising and in-
painting problems are solved using deep networks trained with 
sparse denoising auto-encoders (SDAs) to learn a dictionary, fol-
lowed by sparse minimization with a sparsity inducing regularizer 
such as the Frobenius norm. A median filter based method for 
denoising non-Gaussian and power law distributed noise was pro-
posed in [26], consisting of a thresholding operation, followed by 
median filtering, followed by BM3D filtering. In our proposed fil-
tering approach, we do not learn a set of bases but iteratively and 
adaptively adjust the weights corresponding to the reweighted TV 
formulation.

1.2. Contributions

In this work, we combine the IRLS method with the MAP es-
timation using IIR filtering, to propose a filtering approach for 
TV denoising, for the Gaussian, Rayleigh, and Poisson observation 
models. As in [47,48], we use a Taylor series approximation around 
the ML estimate to always have a weighted quadratic data fidelity 
term instead of the one for the corresponding model. In case of 
the TV regularizer, the problem is complicated by the fact that the 
regularizer term is not separable but based on spatial differences 
between neighboring pixels.

We formulate the TV term as a weighted sum of the squares 
of the differences between neighboring pixels. We therefore need 
to update the weights at each iteration as in IRLS. Because of 
the spatial dependencies, the filter is now not only recursive but 
also spatially adaptive. Only the ML estimate and other filter pa-
rameters depend on the noise model, and therefore the proposed 
approach can be used as a TV denoising solver for the respec-
tive model. We show that the proposed filter is an instance of the 
Majorization–Minimization (MM) family of algorithms [32,24,39], 
for which convergence has been proved [54,59].

A simple and intuitive modification to the filtering operation 
allows the method to be extended to the problem of image in-
painting [37,5,53], when the image needs to be estimated with 
some pixels missing from the noisy observed image.

The proposed adaptive filtering framework can be easily ex-
tended to TV terms taking into account higher order differ-
ences [33].

Experimental results show that the proposed method achieves a 
performance comparable to state-of-the-art methods for Gaussian, 
Rayleigh, and Poisson noise.

1.3. Organization of the paper

In this section we have motivated the problem and briefly sum-
marized the different and not directly related concepts we make 
use of, namely, Bayesian MAP inference through filtering, Taylor 
series approximation to generalize the convex problem, and IRLS. 
We present the proposed approach in Section 2, and extend it to 
higher order TV and image inpainting in Section 3. Experimental 
results are presented in Section 4. Section 5 concludes the paper.

2. Proposed method

Our starting point is (1). For clarity, we reformulate the convex 
problem to be solved to obtain the MAP estimate as the minimizer 
of the energy function E(y, x) which is the sum of the data fidelity 
term and the regularizer,

xMAP = arg min
x

E(y,x), (5)

= arg min
x

l(y,x) + λ

2
TV(x). (6)

In [48,47], a computationally simple and elegant approach is 
presented that transforms a non-Gaussian data fidelity term into a 

least squares function in terms of the ML estimate. It is assumed 
that the data fidelity term l(y, x) is separable, and we can solve 
for each element xi of x, using a Gauss–Seidel approach. Note that 
separability holds for denoising problems, but not for reconstruc-
tion or deblurring where there can be interactions between pixels. 
It is also assumed that the difference between the ML and MAP 
estimates is small. Each pixel xi is estimated by solving,

∂ E(y,x)

∂xi
= 0. (7)

Approximating the likelihood function by the second order Tay-
lor series, computed at the ML estimate, xML , leads to,

l(y,x) ≃ l(y,xML) + ∂l
∂xi

(y,xML)(xi − xML
i )

+ 1
2

∂2l

∂x2
i

(y,xML)(xi − xML
i )2 (8)

In (8), independently of the statistical model, the data fidelity 
term is expressed as a quadratic polynomial. The first two terms 
can be discarded, because after differentiation w.r.t. xi , they yield 
no term in xi . The term ∂l

∂xi
(y, xML) is zero by definition, because 

the ML estimate xML
i is a stationary point of the likelihood function. 

The parameter γi = ∂2l
∂x2

i
(y, xML) depends on the model and the ML 

estimate, but can be precomputed. The values for the Gaussian, 
Rayleigh, and Poisson models are presented in Table 1.

Our Taylor series reformulated problem with TV regularization 
is now,

xMAP = arg min
x

∑

i

γi(xi − xML
i )2 + λ

2
TV(x). (9)

In [48], a quadratic Gibbs prior p(x) = exp(− 
∑

i |xi − xi−1|2)
was used leading to the optimization problem,

xMAP = arg min
x

∑

i

γi(xi − xML
i )2 + λ

∑

i

(xi − xi−1)
2. (10)

To solve for a pixel xi from the MAP estimate, the objective func-
tion from (10) is differentiated w.r.t. xi , the derivative is equated 
to zero, and the resulting linear equation is solved as,

2γi(xi − xML
i ) + 2λ(xi − xi−1) + 2λ(xi − xi+1) = 0, (11)

which leads to,

xi = γi

γi + 2λ
xML

i + λ

γi + 2λ
(xi−1 + xi+1). (12)

This expression can be implemented as an IIR filter, with the ML 
estimate as the input. Since (12) has a causal and anti-causal part, 
in [48], it was implemented as a cascade of two first order filters. 
First the ML estimate was filtered by the causal component, then 
the result was reversed in time and then filtered by the anti-causal 
component (implemented as a causal filter, after time reversal). 
Thus the MAP estimate with a quadratic or Tikhonov [28] prior 
was obtained as a result of two first order filtering operations.

Obviously, when we replace the regularizer term from (11) with 
an ℓp-norm (0 < p ≤ 1) or an absolute difference term 

∑
i |xi −

xi−1|, we cannot perform the MAP estimation applying two filters 
because of non-smoothness. For these non-smooth regularizers, a 
reformulation must be applied to express the non-smooth term as 
a weighted quadratic term, and iteratively solve the minimization 
problem and adjust the weights. This is the rationale behind the 
IRLS algorithm for ℓp-norm (0 < p ≤ 1) regularization.

For an element xi ∈ R, the absolute value is expressed as |xi | =
wi x2

i , where the weight wi = 1/|xi |. Thus, the ℓ1-norm of x can be 
expressed as the weighted ℓ2-norm,
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∥x∥1 =
∑

i

wi x
2
i = xT Wx,

where W is a diagonal matrix containing the weight wi along its 
diagonal. It has been shown that IRLS with the pth power of the 
ℓp-norm when 0 < p < 1 yields the solution with the non-convex 
ℓp norm [31]. To prevent the weights from becoming very large 
when the pixel values are very small, a real value ϵ > 0 is added 
to the denominator wi = 1/(|xi | + ϵ). The weights can therefore 
be considered to be regularized [17]. The generalized IRLS (GIRLS) 
algorithm [38] reformulates the sum of the absolute differences 
between adjacent elements of a 1D signal, as a weighted quadratic 
term. For a pair of pixels, we have |xi − xi−1| = wi(xi − xi−1)

2, with 
wi = 1/(|xi − xi−1| + ϵ).

2.1. Recursive and spatially adaptive filtering for TV

We can now see that having gone from a quadratic Gibbs prior 
to a non-smooth ℓp regularizer (0 < p ≤ 1), we need to run a few 
iterations recursively to update the weights, as opposed to (12), 
which can be implemented as two filtering operations in cascade. 
The TV regularizer involves differences with neighboring pixels, 
and thus the filtering operation is not only recursive, but also spa-
tially adaptive as will be shown.

For a pixel indexed by i = (m, n), we define the neighborhoods 
over which the filtering is performed. In 2D, from the way (2) is 
computed, the neighborhood of first order differences is

Ni = {x(m−1,n), x(m,n−1)},
as shown in Fig. 1(a). Similarly, we define the neighborhood of 
pixels N ′

i , shown in Fig. 1(b), for which pixel i appears in the 
difference term and therefore is weighted by the coefficients cor-
responding to these pixels,

N ′
i = {x(m+1,n), x(m,n+1)}.

Recall that the complete neighborhood around pixel i is N C
i = Ni ∪

N ′
i .

To apply the method to 3D or higher order differences, it is 
straightforward to define these neighborhoods.

As in [39,13], we express the TV term in terms of spatially 
adaptive filter coefficients as follows,

TV(x) =
∑√∑

j∈Ni

(xi − xj)2

=
∑

i

wi

⎛

⎝
∑

j∈Ni

(xi − xj)
2

⎞

⎠ (13)

where the coefficient at location i is,

wi = 1
√∑

j∈Ni
(xi − xj)2 + ϵ

. (14)

We now substitute the TV term in (9), with the weighted 
quadratic formulation from (14) to obtain,

min
x

∑

i

γi(xi − xML
i )2 + λ

2

∑

i

wi

⎛

⎝
∑

j∈Ni

(xi − xj)
2

⎞

⎠ . (15)

We can now solve element-wise by differentiating with respect 
to each xi after gathering the terms in which it appears,

γi(xi − xML
i )

+ 2λwi

∑

j∈Ni

(xi − xj)

+ 2λ
∑

k∈N ′
i

wk(xi − xk) = 0. (16)

Hence, we have two first-order difference terms in (16), corre-
sponding to the weight wi of the pixel i, and to the sum of 
difference terms in which pixel i appears.

Rearranging the terms we get,

(γi + 2λwinb + 2λ
∑

k∈N ′
i

wk)xi

= γi x
ML
i + 2λwi

∑

j∈Ni

xj + 2λ
∑

k∈N ′
i

wkxk (17)

where nb is the size of the neighborhood. Thus the MAP estimate 
of xi is the result of a spatially adaptive filter applied to the ML 
estimate,

xMAP
i = ai x

ML
i + bi

∑

j∈Ni

xj + ci

∑

k∈N ′
i

wkxk, (18)

where ai = γi/di , bi = 2λwi/di , ci = 2λ/di , with the denominator 
term di = (γi + 2λwinb + 2λ 

∑
k∈N ′

i
wk). However, this filter does 

not have a simple closed form because the weights wi at a pixel 
i and the filter coefficients ai, bi, ci are functions of the MAP esti-
mate x. Therefore, we need to use a recursive approach to estimate 
x and update these coefficients.

Eq. (18) can be expressed in matrix notation as,

x = A(x)xML + (B(x) + C(x)) x, (19)

where row i of the matrices A, B, C correspond to the coefficients 
for pixel xi . These matrices are expressed as functions of the MAP 
estimate. Gathering the terms in x, the filter can be expressed in 
terms of a filtering operation on xML as follows,

(I − B(x) − C(x)) x = A(x)xML,

x = (I − B(x) − C(x))−1 A(x)xML. (20)

Since the filter (I − B(x) − C(x))−1A(x) is a function of the MAP 
estimate x, we need to use a recursive approach to estimate x and 
update the matrices A(x), B(x), C(x) at each iteration. This step is 
also solved recursively in [39] and [13], but with an approximate 
inversion, because the matrix (I −B(x) −C(x)) is not easy to invert.

From (18), we express the estimate at iteration t + 1 in terms 
of the recursive filter,

xt+1
i = ai(xt)xML

i + bi(xt)
∑

j∈Ni

xt
j + ci(xt)

∑

k∈N ′
i

wkxt
k. (21)

The recursive, spatially varying linear filter representation at it-
eration t + 1 is,

xt+1 = A(xt)xML +
(

B(xt) + C(xt)
)

xt . (22)

This filtering process must be run for a few iterations, until 
the relative difference between coefficients {wi}t and {wi}t+1 falls 
below a given threshold. From (13), we can expect that in homo-
geneous regions of the image, as the TV of the image decreases, 
because of the inverse relation, the amplitude of the coefficients 
{wi} would increase. In regions with texture, we would expect the 
TV to increase and the weights to decrease.

Our proposed method, which we call Adaptive Total Variation 
Filtering (ATVF) is summarized below:
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Algorithm ATVF
1. Given the observation model and observation y, compute xML

and set of coefficients {γi} using Table 1.
2. Initialize parameters λ > 0, ϵ > 0, initial estimate x(0) .
3. Compute initial weights w(0) using (14).
4. Set t = 0
5. repeat
6. Compute x(t+1) using (22).
7. Update weights w(t+1) with x(t+1) using (14).
8. t ← t + 1
9. until stopping criterion is satisfied.

2.2. ATVF with regularized weights

At each iteration of ATVF, we need to compute (21) for each 
pixel. Upon inspecting (18) we find that the computational load 
comes from looking up the weight vectors corresponding to the 
pixel, for the vector inner product with the vector of neighboring 
pixels.

Notice that in the second term of (18) has a single weight wi
that is multiplied to the neighboring pixels from the set Ni . We 
similarly approximate the third term, by assuming a form of reg-
ularization on the weight vector so as to multiply the pixels from 
the neighborhood N ′

i by wi . Eq. (18) now changes to,

xMAP
i = ai x

ML
i + bi

∑

k∈(Ni∪N ′
i )

xk, (23)

where ai = γi/di , bi = 4λwi/di , with the denominator term di =
(γi + 4λwi).

We see that (adaptivefilterClosedFormRW) has no vector inner 
products because of the approximated weights and is therefore 
computationally simpler than (18). Using this equation for the first 
step in the iterative process in algorithm ATVF leads to an approx-
imate method which we will refer to as ATVFRW for ATVF with 
Regularized Weights.

2.3. Convergence

From (9), the cost function to be minimized is,

L(x) = 1
2

∑

i

γi(xi − xML
i )2 + λ

2
TV(x). (24)

Our reweighted problem (16) can be expressed in terms of a 
difference matrix D, as

min
x

1
2

∑

i

γi(xi − xML
i )2 + λ

2
xT DT WDx, (25)

The difference operator is now a concatenation of the horizontal 
and vertical difference operators, Dh and Dv respectively, DT =
[DT

h , DT
v ]. The weight at a pixel i is wi = 1/(

√
(Dhx)2

i + (Dv x)2
i +ϵ). 

The weight matrix W contains the respective weights along its di-
agonal.

It has been proved [38,39,59] that the reweighted ℓ2 formu-
lation of TV is a majorizer [32] on the function TV(x). Therefore, 
instead of minimizing L(x), x is estimated by minimizing the ma-
jorizer or surrogate function which upper bounds L(x),

Q (x|x(t)) = 1
2

∑

i

γi(xi − xML
i )2 + λ

2
xT DT W(t)Dx. (26)

This means that L(x) ≤ Q (x|x(t)), with equality when x = x(t) . The 
monotonicity property means that

L(x(t+1)) ≤ Q (x(t+1)|x(t)) ≤ Q (x(t)|x(t)) = L(x(t)). (27)

See [39] and [59] for the proof and a summary of the properties 
of majorizer functions.

In [59], the authors present conditions for convergence in terms 
of the second derivatives of the objective function and the ma-
jorizer, but add that these conditions are difficult to verify and fur-
ther state that in practice, for convergence, the majorizer Q (x|x(t))
must approximate the function L(x) as closely as possible in the 
neighborhood of x(t) . In the experimental results presented in Sec-
tion 4, this is verified for the case of additive and Gaussian noise 
in Fig. 2(a).

The MM framework refers to a class of algorithms and not a 
specific method, therefore analysis of convergence conditions and 
speed is not easy. Many MM algorithms exhibit a slow rate of con-
vergence. Theoretical calculations for several MM algorithms are 
too hard to carry out, and one must rely on numerical experiments 
to determine the rate of convergence [59]. However, the authors 
of [59] defend the use of MM algorithms in spite of the uncertain-
ties about rates of convergence because in large-scale problems, 
many traditional algorithms are simply infeasible.

In [54], the authors make use of the fact that the MM algo-
rithms are a generalization of the Expectation Maximization (EM) 
methods [18] and retain the monotonicity and convergence prop-
erties of EM, to present a set of convergence conditions, which can 
be tested on the surrogate function Q (.|.) and the mapping,

x(t+1) = arg min
x

Q (x|x(t)) = F (x(t)), (28)

which can be expressed as a function of the previous iteration. In 
our case, we have a closed form for F (.), given by (22). Since the 
spatially adaptive operators A, B, C are functions of the coefficients 
w(t) , we can consider them independent of x(t) . Thus our mapping 
is Eqs. (21) or (22) which are used iteratively to solve (25),

F (x(t)) = A(t)xML +
(

B(t) + C (t)
)

x(t). (29)

The regularity conditions from [54] which are assumed for the 
convergence conditions to hold, are presented below.

1. L(.) is differentiable, with a continuous derivative.
From (24), it appears as though this condition is not satisfied 
because of the non-smooth TV term. But this problem can be 
got around by adding a small positive offset δ while calculat-

ing the TV function TV(x) = ∑
i

√
(Dhx)2

i + (Dvx)2
i + δ, thereby 

avoiding a possible singularity after differentiation w.r.t. x [39].
2. Q (x|x′) is continuous in both x and x′ , and differentiable in x′.

This is easily verified from (26).
3. All the stationary points of the function L(.) are isolated.

This is verified because in (24), the sum of two terms is convex 
and because of the quadratic term does not have any “ridge” 
along which the function L(.) is stationary.

After suitable sign reversals to account for notation and the fact 
that the convergence conditions were defined for the EM algo-
rithms, the conditions from [54] required for the convergence of 
a MM algorithm are as follows.

1. Corollary to Theorem 2 [54]: Under the assumption that the map-
ping function F (.) is continuous over Sl , the set of stationary points 
of the function L(.), the sequence of iterates x(t) is convergent i.f.f. 
∥x(t+1) − x(t)∥ → 0, when t → ∞.
While it is verified from (29) that our recursive filter is con-
tinuous, it is not easy to show that the sequence of iterates is 
convergent. In the experimental results, we present the evolu-
tion of the difference between successive iterates in Fig. 2(b), 
where this can be verified.
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Fig. 2. Evolution of the objective function for the Lena image. (a) Evolution of the objective functions from (5) and (15) for Gaussian noise; (b) evolution of the difference 
between successive iterates ∥x(t+1) − x(t)∥; (c) evolution of the data fidelity term plus TV and reweighted and approximated objective function, for Rayleigh noise; (d) the 
respective objective functions for Poisson noise.

2. Theorem 3 [54]: Under the assumption that for all x ∈ Sl there exists 
a unique global minimum of Q (.|x), then for any starting value x0

of the sequence {x(t)}, x(t) → x∗ when t → ∞, for some stationary 
point x∗ ∈ Sl . Moreover, F (x∗) = x∗ , and if x(t) = x∗ for all t, the 
sequence of likelihood values {L(x(t))} is strictly decreasing to L(x∗).
This is the most significant result for the purpose of evaluat-
ing our framework. In the MM algorithms, it means that if the 
function Q (.|x) has a global minimum, convergence is guar-
anteed for any starting value. For our function Q (.|x) defined 
in (26), it is easy to verify that it has just one global minimum.

3. Extensions to inpainting and higher order TV

The method proposed in the previous section can be extended 
to the inpainting problem [37,5,53] when some pixels of the ob-
served image y are missing, in a straight forward manner. This is 
also true for higher order TV [33], taking into account a larger 
neighborhood of pixels. In both cases, the only change from al-
gorithm ATVF is in the adaptive filter step formulated in (18). 
These changes can be applied to ATVF as well as the faster ver-
sion ATVFRW.

3.1. Image inpainting

Inpainting is the problem of estimating a complete image when 
some of the pixel values of the noisy image are unknown. This 
may occur in situations such as faulty imaging sensors or bit errors 
during transmission [29,8]. The loss of pixels is formulated by an 
element-wise masking operation,

y = Hf(x), (30)

where y is the observed image in vector notation, the observation 
mask H is an identity matrix with the diagonal elements corre-
sponding to missing pixels set to zero, and f is the noisy image 
depending on the image x and the observation model.

Taking into account the observation matrix, the optimization 
problem for estimating x given y changes from (1) to,

min
x

l(Hx,y) + λ

2
TV(x). (31)

In this case we use the fact that the pixel values of y with the 
corresponding diagonal element of H equal to one, are the cor-
responding ML values, and therefore the corresponding pixels of 
x can be estimated using (18). For the missing values, the corre-
sponding pixels of x are estimated from the neighboring pixels. 
This means that the ML term in (18) can be multiplied with the 
diagonal mask element hi , leading to,

xMAP
i = aihi x

ML
i + bi

∑

j∈Ni

xj + ci

∑

k∈N ′
i

wkxk, (32)

where the terms ai , bi , and ci have the same expressions as before 
(see (18)), except that the denominator term is now di = (hiγi +
2λwinb + 2λ 

∑
k∈N ′

i
wk).

For the faster version ATVFRW, the equation changes to,

xMAP
i = hiai x

ML
i + bi

∑

k∈(Ni∪N ′
i )

xk, (33)

where ai = γi/di , bi = 4λwi/di , with the denominator term di =
(hiγi + 4λwi).
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3.2. Higher order TV

This adaptive filtering framework is easily extensible to higher 
order total variation [33], in which second (or higher) order differ-
ences are used. For example, in the 2D case, the second order TV 
is,

TV2(x) =
∑

(m,n)

(
(xm,n − xm−1,n)

2 + (xm,n − xm,n−1)
2

+ (xm,n − xm−2,n)
2 + (xm,n − xm,n−2)

2
)1/2

. (34)

In this case, the only changes in the proposed filter are in the 
sizes of the neighborhoods Ni and N ′

i .
We denote the order of TV used in our, one or two, as ATVF-1 

or ATVF-2, respectively.

4. Experimental results

All experiments were performed on MATLAB on a four core 
server Intel Xeon based server with 64 GB of RAM and running 
Ubuntu Linux. The code for ATVF was implemented in MATLAB 
with the scan over all pixels for the adaptive filter implemented 
in both Matlab and C++ through Mex. Existing TV based methods 
against which we compare our proposed method are not always 
available in both Matlab and C or C++. Therefore for reasons of 
fairness in comparison, in such situations, we present computa-
tion times for ATVF using both Matlab and C++. All tables present 
results which were averaged over 100 instances of the respective 
experiment.

We test the accuracy of the proposed method with synthetic 
experiments, in which we corrupt known noise-less images with 
noise. In this case, the criteria we use are the mean square er-
ror (MSE) and the improvement in signal to noise ratio (ISNR), 
for Gaussian noise, and the Median Absolute Error (MAE) [21] for 
non-Gaussian noise. For a known image x, noisy observation y and 
estimate x̂, the MSE is defined as,

MSE = 1
Nx

∥x − x̂∥2
2,

where Nx is the number of pixels. The ISNR is defined as,

ISNR = 10 log10

(
∥x − y∥2

2

∥x − x̂∥2
2

)

.

Finally, the MAE is defined as,

MAE = 1
Nx

∥x − x̂∥1,

and the normalized MAE is defined as,

nMAE = ∥x − x̂∥1

∥x∥1
.

We also use the structural similarity index measure (SSIM) [57]
to measure the similarity between the denoised estimate and the 
original noise-free image.

The values of the regularization parameter λ were obtained by 
hand-tuning with ATVF. For existing methods, we use the val-
ues specified by the respective authors. The stopping criterion 
used was until the relative difference between successive iterates 
∥x(t+1) − x(t)∥/∥x(t)∥ fell below a certain level.

Table 2
Summary of results for comparing our method with Chambolle’s algorithm and the 
Split Bregman Algorithm, for denoising the 512 × 512 Lena image, with Gaussian 
noise (SNR 2 dB). We see that ATVF-1 produces the best possible ISNR.

Method Iterations CPU time (s) ISNR (dB) SSIM

C/mex Matlab

ATVF-1 27 4.53 241.88 11.72 0.822
ATVFRW-1 8 1.41 29.34 10.52 0.749
ATVF-2 8 1.46 29.48 10.31 0.829
ATVFRW-2 5 0.89 18.70 10.26 0.810

Chambolle 17 1.76 10.40 0.756
SBA – 1.80 11.45 0.818

Table 3
Summary of results for comparing our method with Chambolle’s algorithm and the 
Split Bregman Algorithm, for denoising the 256 × 256 house image, with Gaussian 
noise (SNR 2 dB). We see that ATVF-1 produces the best possible ISNR.

Method Iterations CPU time (s) ISNR (dB) SSIM

C/mex Matlab

ATVF-1 32 2.08 68.95 9.96 0.638
ATVFRW-1 133 8.00 9.33 8.64 0.507
ATVF-2 6 0.47 14.8 8.82 0.571
ATVFRW-2 6 0.51 6.11 7.69 0.614

Chambolle 16 0.51 7.99 0.422
SBA 17 0.48 9.45 0.544

4.1. Synthetic examples

In Fig. 2 for denoising with the Lena image, we verify that 
the reweighted objective function closely approximates the ℓ2+TV 
objective function, and that the difference between successive it-
erates is decreasing. We also see from Fig. 2 that for the non-
Gaussian noises, the approximate reweighted model leads to an 
objective function that is close in value to the sum of the re-
spective data fidelity term and the TV term, or follows the same 
monotonic trend.

4.1.1. Gaussian noise
For additive Gaussian noise, we compare ATVF against Cham-

bolle’s algorithm [10] and the Split Bregman Algorithm (SBA) for 
TV denoising [27]. Chambolle’s method is implemented in Mat-
lab but essentially uses matrix-vector multiplications, so therefore 
would not be significantly faster if implemented in C or C++. SBA 
is a very fast algorithm, being a part of the Bregman iterations or 
Alternating Direction Method of Multipliers (ADMM) [22,61] family 
of algorithms, and is available in C.

For denoising, the regularization parameter λ was set to 50 for 
ATVF1 and 25 for ATVF2, for both the Lena and House images. For 
inpainting with a random sampling mask, the values used were 20 
for ATVF1 and 10 for ATVF2. For inpainting with the superimposed 
text, these values were 10 and 5 respectively.

Table 2 summarizes the results for denoising the 512 × 512
Lena image with Gaussian noise, SNR = 2 dB. We see that Cham-
bolle’s method and SBA are computationally faster, as expected, 
since ATVF and ATVFRW have to go over every pixel in every 
iteration. But ATVF-1 leads to a higher ISNR and SSIM than achiev-
able with either. It can also be noted that with second order TV, 
ATVF-2 and its faster version ATVFRW-2, converge faster but do 
not produce as good a value of ISNR as ATVF-1. The original image 
is shown in Fig. 3(a), and the noisy observed image is shown in 
Fig. 3(b). Figs. 3(c) to 3(h) present the denoised estimates. A sim-
ilar trend is observed for the House image, which is illustrated in 
Fig. 4, with the results summarized in Table 3.

For the inpainting problem, we compare our method with two 
methods that can use TV regularization, the Split Augmented La-
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Fig. 3. Lena image with Gaussian noise (SNR = 2 dB): (a) original, (b) noisy; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, (f) ATVFRW-2, (g) Chambolle’s method, 
(h) split-Bregman algorithm.

Fig. 4. House image with Gaussian noise (SNR = 2 dB): (a) original, (b) noisy; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, (f) ATVFRW-2, (g) Chambolle’s method, 
(h) split-Bregman algorithm.

Fig. 5. Inpainting with the Lena image, Gaussian noise: (a) original, (b) original with additive Gaussian noise; (c) noisy image with 50% of the pixels missing; estimates using: 
(d) ATVF-1, (e) ATVFRW-1, (f) ATVF-2, (g) ATVFRW-2, (h) SALSA, (i) FISTA.

Table 4
Summary of comparison of our method with other inpainting methods, for inpaint-
ing the 512 × 512 Lena image, with Gaussian noise (SNR 10 dB) and 50% of the 
pixels missing. We see that ATVFRW is faster than the existing methods and pro-
duces a higher ISNR, even though the best ISNR is produced by ATVF.

Method Iterations CPU time (s) ISNR (dB) SSIM

ATVF-1 52 201.97 21.00 0.879
ATVFRW-1 39 68.05 20.22 0.871
ATVF-2 39 150.25 18.90 0.862
ATVFRW-2 36 68.2 18.64 0.861

SALSA 323 101.90 18.22 0.787
FISTA 121 103.27 18.20 0.787

grangian and Shrinkage Algorithm (SALSA) [1] and the Fast Iter-
ative Shrinkage and Thresholding Algorithm (FISTA) [4]. In this 
case, since both methods have Matlab implementations available,
we present computation times only for the Matlab implementa-
tion of our method. Fig. 5(a) shows the Lena image with Gaussian 

Table 5
Summary of comparison of our method with other inpainting methods, for in-
painting the House image, with Gaussian noise (SNR 10 dB) and 50% of the pixels 
missing. We see that ATVFRW is faster than the existing methods and produces a 
higher ISNR, even though the best ISNR is produced by ATVF.

Method Iterations CPU time (s) ISNR (dB) SSIM

ATVF-1 52 204.51 21.00 0.879
ATVFRW-1 39 69.74 20.22 0.871
ATVF-2 39 150.17 18.90 0.862
ATVFRW-2 36 68.34 18.64 0.861

SALSA 320 94.56 18.22 0.787
FISTA 120 102.12 18.20 0.787

noise, SNR = 10 dB, and Fig. 5(c) shows the observed image with 
50% of its pixels randomly discarded and set to zero. Figs. 5(d) to 
5(i) show the estimates obtained from Fig. 5(c). The computation 
times, ISNR, and SSIM values are summarized in Table 4. We see 
that both ATVF and ATVFRW produce better ISNRs than SALSA or 
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Fig. 6. Inpainting with the Lena image, Gaussian noise: (a) original, (b) noisy image with 80% of the pixels missing; estimates using: (d) ATVF-1, (e) ATVF-2, (f) SALSA, 
(g) FISTA.

Fig. 7. Inpainting with the House image, Gaussian noise: (a) original, (b) original with additive Gaussian noise; (c) noisy image with 50% of the pixels missing; estimates 
using: (d) ATVF-1, (e) ATVFRW-1, (f) ATVF-2, (g) ATVFRW-2, (h) SALSA, (i) FISTA.

Fig. 8. Inpainting with the Lena image, Gaussian noise with superimposed text: (a) sampling mask, (b) observed image; estimates using: (c) ATVF-1, (d) SALSA, (e) FISTA.

Table 6
Summary of comparison of our method with other inpainting methods, for inpaint-
ing the Lena image, with Gaussian noise (SNR 5 dB) and 80% of the pixels missing. 
We see that ATVF2 produces the best ISNR when the fraction of missing pixels is 
high.

Method Iterations CPU time (s) ISNR (dB) SSIM

ATVF-1 95 167.6 15.81 0.648
ATVF-2 70 113.17 17.60 0.731
SALSA 342 269.30 15.59 0.576
FISTA 220 189.61 16.94 0.576

FISTA, and ATVFRW is computationally the fastest. The same is ob-
served for the House image in Fig. 7 and Table 5.

We present another example with a high proportion of the pix-
els missing. In Fig. 6, we illustrate inpainting with the Lena image 
with 80% of its pixels missing, and present the estimates obtained 
with ATVF1, ATVF2, SALSA, and FISTA. We can see from the results 
in Table 6, that in this case with a high loss of pixels, ATVF2 pro-
duces a higher ISNR than ATVF1. Therefore, when we have high 
fractions of pixels missing, using a higher order TV is advanta-
geous.

We present an example with inpainting when the sampling 
mask is not random, but text superimposed on the image. Fig. 8
shows the sampling mask, observed image, and estimates obtained 
using ATVF-1, SALSA, and FISTA. We can see from the results sum-

Table 7
Summary of comparison of our method with other inpainting methods, for inpaint-
ing the Lena image with Gaussian noise and text superimposed. We see that ATVF 
is slower than the existing methods but produces a better ISNR.

Method Iterations CPU time (s) ISNR (dB) SSIM

ATVF-1 66 295.43 12.19 0.902
SALSA 180 53.41 7.43 0.784
FISTA 129 110.13 7.67 0.783

marized in Table 7 that our method is slower than SALSA and 
FISTA but produces a higher ISNR.

4.1.2. Poisson noise
For Poisson noise, our comparison is with Poisson Image De-

noising using Augmented Lagrangian (PIDAL) [25] and Log TV [43]
for the denoising problem. For the inpainting problem, our com-
parison is with PIDAL, which, like SBA and SALSA, is an augmented 
Lagrangian/ADMM based method. Since PIDAL was implemented in 
Matlab, and Log TV in C, once again, we present computation times 
using both our implementations in Table 8.

Expectedly, PIDAL was found to be the fastest method among 
the Matlab implementations, which led to an ISNR above 8 dB. 
However, ATVF-1 produced the highest ISNR, and its C++ imple-
mentation was computationally faster than LogTV. The noisy image 
and estimates obtained using the various methods are presented in 
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Table 8
Summary of results for denoising the 512 × 512 Lena image, with Poisson noise. ATVF1 produces the best ISNR, although PIDAL, an ADMM method, is faster.

Method Iterations CPU time (s) MAE Normalized
MAE

ISNR (dB) SSIM

C/mex Matlab

ATVF-1 6 1.19 54.58 1.418 1.748e–07 9.07 0.977
ATVFRW-1 5 1.07 17.43 1.825 2.245e–07 7.15 0.967
ATVF-2 4 0.92 38.41 2.21 2.723e–07 5.6 0.968
ATVFRW-2 4 0.77 14.24 1.85 2.28e–07 6.68 0.971
PIDAL 16 – 17.43 1.41 1.73e–07 8.6 0.975
Log TV 9 1.06 – 1.475 1.815e–07 8.79 0.974

Fig. 9. Lena image with Poisson noise: (a) original, (b) noisy; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, (f) ATVFRW-2, (g) PIDAL, (h) Log TV.

Table 9
Summary of results for denoising the House image, with Poisson noise.

Method Iterations CPU time (s) MAE Normalized
MAE

ISNR (dB) SSIM

C/mex Matlab

ATVF-1 6 0.42 13.72 1.511 6.68e–07 8.96 0.966
ATVFRW-1 5 0.39 4.45 1.939 8.58e–07 7.07 0.941
ATVF-2 4 0.36 9.19 2.312 1.023e–06 5.65 0.906
ATVFRW-2 5 0.44 3.63 2.028 8.97e–07 6.25 0.940
PIDAL 16 – 4.17 1.37 6.058e–07 9.16 0.968
Log TV 8 0.25 – 1.552 6.86e–07 8.88 0.962

Fig. 10. House image with Poisson noise: (a) original, (b) noisy; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, (f) ATVFRW-2, (g) PIDAL, (h) Log TV.

Fig. 9. For the House image, ATVF1 produced an ISNR close to that 
obtained by PIDAL, as summarized in Table 9. The observed image 
and estimates are presented in Fig. 10.

Table 10 and Fig. 11 present the results for inpainting with 
Poisson noise. Even though ATVFRW-1 reached the maximum 
number of iterations, it produced the most accurate result. For 
the House image, the tendencies are similar as summarized 
in Table 11, but the best value of the ISNR is produced by 
ATVF1.

For denoising, the regularization parameter λ was set to 1 for 
ATVF1 and 0.025 for ATVF2, for both the Lena and House images. 
For inpainting with a random sampling mask, the values used were 
0.05 for ATVF1 and 0.025 for ATVF2 (Figs. 11 and 12).

4.1.3. Rayleigh speckle noise
For the Rayleigh multiplicative noise case, our comparison is 

with Rayleigh Log TV (RLTV) [50,49] and with the ADMM based 
reconstruction method [2] for Rayleigh multiplicative noise. Both 
these methods were implemented in Matlab.

From Tables 12 and 14, we see that ATVFRW-1 produces the 
lowest MAE value for both denoising and inpainting. The second 
order TV methods are faster for the denoising problem, but did 
not produce a visually reasonably good estimate for the inpaint-
ing problem and were therefore not included in the comparison. 
The observed and estimated images are presented in Fig. 13 for 
the denoising problem, and in Fig. 15 for the inpainting problem. 
Tables 13 and 15 present the corresponding results for inpainting 
with the House image.
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Table 10
Summary of results for inpainting with the 512 × 512 Lena image, with Poisson noise and 50% of the pixels missing. The best ISNR was obtained using ATVF2.

Method Iterations CPU time (s) MAE Normalized
MAE

ISNR (dB) SSIM

ATVF-1 59 232.15 2.212 2.721e–07 18.03 0.957
ATVFRW-1 13 23.51 2.241 2.756e–07 17.85 0.949
ATVF-2 49 188.98 2.117 2.601e–07 18.14 0.964
ATVFRW-2 73 268.38 3.425 4.213e–07 13.97 0.928
PIDAL 12 3.07 3.319 4.83e–07 15.24 0.948

Fig. 11. Inpainting with the Lena image with Poisson noise: (a) original, (b) noisy image with 50% of the pixels missing; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, 
(f) ATVFRW-2, (g) PIDAL.

Table 11
Summary of results for inpainting with the House image, with Poisson noise and 50% of the pixels missing. The best ISNR was obtained using ATVF1.

Method Iterations CPU time (s) MAE Normalized
MAE

ISNR (dB) SSIM

ATVF-1 60 119.57 2.319 1.026e–06 18.26 0.922
ATVFRW-1 13 12.55 2.202 1.063e–06 17.94 0.917
ATVF-2 50 96.02 2.344 1.037e–06 17.74 0.935
ATVFRW-2 72 70.03 3.91 1.733e–06 13.23 0.912
PIDAL 12 0.03 3.58 1.59e–06 15.38 0.928

Fig. 12. Inpainting the House image with Poisson Noise: (a) original, (b) noisy image with 50% of the pixels missing; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, 
(f) ATVFRW-2, (g) PIDAL.

Table 12
Summary of results for denoising the 512 × 512 Lena image, with Rayleigh noise. 
The best estimate in terms of ISNR is produced by ATVFRW1.

Method Iterations CPU time (s) Normalized MAE SSIM

ATVF-1 10.75 91.70 1.9e–06 0.991
ATVFRW-1 68 12.43 1.2e–06 0.996
ATVF-2 8 74.31 1.5e–06 0.994
ATVFRW-2 18 3.43 1.3e–06 0.995
RLTV 11 277.20 2.4e–06 0.984

Tables 12 and 14 show that the trend is similar for the house 
image, with the respective observed images and estimates pre-
sented in Figs. 14 and 16.

Table 13
Summary of results for denoising the House image, with Rayleigh noise. The best 
estimate in terms of ISNR is produced by ATVFRW1.

Method Iterations CPU time (s) Normalized MAE SSIM

ATVF-1 11 24.64 7.2e–06 0.989
ATVFRW-1 71 4.04 3.3e–06 0.997
ATVF-2 10 22.84 4.6e–06 0.995
ATVFRW-2 21 1.57 3.5e–06 0.997
RLTV 35 220.25 9.2e–06 0.982

For denoising, the regularization parameter λ was set to 0.1 for 
ATVF1 and 0.025 for ATVF2, for both the Lena and House images. 
Note that the image is normalized in this case. For inpainting with 
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Fig. 13. Lena image with Rayleigh multiplicative noise: (a) original, (b) noisy; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, (f) ATVFRW-2, (g) RLTV.

Fig. 14. House image with Rayleigh multiplicative noise: (a) original, (b) noisy; estimates using: (c) ATVF-1, (d) ATVFRW-1, (e) ATVF-2, (f) ATVFRW-2, (g) RLTV.

Fig. 15. Inpainting with the Lena image with Rayleigh noise: (a) original, (b) noisy image with 50% of the pixels missing; estimates using: (c) ATVF-1, (d) ATVFRW-1, 
(e) ADMM.

Fig. 16. Inpainting with the House image with Rayleigh noise: (a) original, (b) noisy image with 50% of the pixels missing; estimates using: (c) ATVF-1, (d) ATVFRW-1, 
(e) ADMM.

Table 14
Summary of results for inpainting with the 512 × 512 Lena image, with Rayleigh 
noise and 50% of the pixels missing. The best estimate in terms of ISNR is produced 
by ATVFRW1.

Method Iterations CPU time (s) MAE Normalized
MAE

SSIM

ATVF-1 37 290.64 0.16 1.21e–06 0.996
ATVFRW-1 80 286.66 0.1345 9.8e–07 0.997
ADMM 5 1.96 0.5063 3.815e–06 0.958

a random sampling mask, the value used was 2 for both ATVF1 
and ATVF2 (Table 15).

4.2. Real data

When we wish to denoise acquired biomedical images, we do 
not have access to the ground truth. Therefore, our comparison 

Table 15
Summary of results for inpainting with the House image, with Rayleigh noise and 
50% of the pixels missing. The best estimate in terms of ISNR is produced by 
ATVFRW1.

Method Iterations CPU time (s) MAE Normalized
MAE

SSIM

ATVF-1 37 72.83 0.132 3.37e–06 0.997
ATVFRW-1 81 73.96 0.1086 2.871e–06 0.998
ADMM 41 3.72 0.1235 3.465e–06 0.997

with other algorithms in this situation is on the basis of computa-
tion time only after optimizing the respective parameters of each 
method to produce a visually good image.

For multiplicative Rayleigh noise, we have a transversal ultra-
sound (US) image of the carotid artery, acquired using a Philips 
Medical Systems ATL HDI 5000 Ultrasound machine. The extracted 
radio frequency (RF) envelope image is shown in Fig. 17(a), after
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Fig. 17. Transversal US image of the carotid artery (after contrast enhancement for display): (a) RF envelope image with speckle, estimates using: (b) ATVF-1, (c) RLTV. 
(d) diagonal profiles of the noisy and estimated images.

Table 16
Denoising real biomedical images – summary.

Carotid artery – transversal US 
image size: 201 × 201

Immunofluorescence 
image size: 170 × 232 × 3

Method Iterations CPU time 
(s)

Method Iterations CPU time (s)

C/mex Matlab

ATVF-1 105 75.78 ATVF-1 5 0.37 6.49
RLTV 47 31.30 PIDAL 21 – 8.09

Log TV 9 0.23 –

contrast enhancement for display. The estimates using ATVF-1, and 
RLTV are shown in Figs. 17(b), and 17(c), respectively. Fig. 17(d) 
shows the diagonal profiles of the speckled and estimated im-
ages. From Table 16, we see that the Matlab version of ATVF-
1 was not the computationally fastest method, however from 
the diagonal profiles we see that for lower values (the figure is 
shown in the logarithmic scale), it preserves values better than 
RLTV.

For the Poisson model, we perform the denoising of a fluores-
cence microscopy image of epithelial cells of the stomach with 
tagged E-Cadherin [23]. The image size is 240 × 320. The esti-
mates using ATVF-1, PIDAL, and Log TV are shown in, respectively, 
Figs. 18(b), 18(c), and 18(d). Figs. 18(e) and 18(f) show the di-
agonal profiles of the noisy and estimated images, for the green 
and blue components, respectively. From the computation times 
presented in Table 16, we see that ATVF-1 is slower than Log 
TV for the C/C++ versions, but its Matlab version is faster than 
PIDAL. Note that the number of iterations and the CPU times 
were the sums of those for the green and blue components of 

the color image. It is obvious that the red component is negligi-
ble.

5. Conclusions

We have proposed a Bayesian MAP estimation method to solve 
the TV denoising problem in a common framework for different 
statistical models. The proposed method, ATVF, involves recursive 
spatially adaptive filtering and can be easily extended to inpainting 
and higher order TV. This method falls within the class of MM al-
gorithms for which convergence conditions can be verified. Exper-
imental results show that ATVF is quite competitive with existing 
denoising and inpainting methods, and is therefore applicable as a 
solver for the denoising problems with non-Gaussian observation 
models.

Directions of current and future work include:

• Continuation on the parameter ϵ , through the use of appropri-
ate surrogate functions, leading to another step at each itera-
tion,

ϵ(t+1) = arg min
ϵ

l(x(t),W(t),ϵ).

Another idea worth investigating would be to treat ϵ as a reg-
ularization parameter on the weights, and study the relation 
between the proposed method which has an IRLS-MM flavor, 
with the ADMM framework.

• Speeding up the algorithm as can be done for MM algorithms 
using a quasi-Newton method [59,32].

• Optimizing the scan pattern through the pixels to reduce com-
putation time, and facilitate parallelization and implementa-
tion on GPUs.
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Fig. 18. Immunofluorescence image: (a) acquired image with Poisson noise, estimates using: (b) ATVF-1, (c) PIDAL, (d) Log TV. (e) and (f): diagonal profiles of the noisy and 
estimated images for: (e) green component, (f) blue component. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
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