
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 61, NO. 6, JUNE 2014 1711

Hypnogram and Sleep Parameter Computation From
Activity and Cardiovascular Data
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Abstract—The automatic computation of the hypnogram and
sleep Parameters, from the data acquired with portable sensors,
is a challenging problem with important clinical applications. In
this paper, the hypnogram, the sleep efficiency (SE), rapid eye
movement (REM), and nonREM (NREM) sleep percentages are
automatically estimated from physiological (ECG and respiration)
and behavioral (Actigraphy) nocturnal data. Two methods are de-
scribed; the first deals with the problem of the hypnogram estima-
tion and the second is specifically designed to compute the sleep
parameters, outperforming the traditional estimation approach
based on the hypnogram. Using an extended set of features the
first method achieves an accuracy of 72.8%, 77.4%, and 80.3% in
the detection of wakefulness, REM, and NREM states, respectively,
and the second an estimation error of 4.3%, 9.8%, and 5.4% for
the SE, REM, and NREM percentages, respectively.

Index Terms—Hypnogram estimation, rapid eye movement
(REM)/nonREM (NREM) percentage, sleep efficiency (SE), sleep
parameters.

I. INTRODUCTION

S LEEP disorders form a class of medical problems generally
characterized by changes of physiological or behavioral

sleep patterns [1]. Their impact on both young and adult popu-
lations is well documented [2] and can be related with a wide
range of short- and long-term consequences for the health of the
subjects, including anxiety, memory and cognitive impairments,
high blood pressure, obesity, and psychiatric problems, among
others.

The golden standard for the diagnosis of sleep disorders is the
polysomnography (PSG) [3], which is by far the most reliable
and accurate method. Several important measures for diagnosis
are derived from PSG data, such as the hypnogram, a graphical
representation of sleep stages (wakefulness, rapid eyemovement
(REM) sleep, and the three nonREM sleep stages) as a function
of time. This graphical representation is useful to analyze the
sleep cycle and several parameters are usually computed to
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Department—Instituto Superior Técnico/Technical University of Lisbon, 1649-
004 Lisbon, Portugal (e-mail: jmrs@ist.utl.pt).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2014.2301462

quantify and characterize sleep, such as the sleep efficiency (SE),
sleep onset latency, REM sleep percentage (REMp ), NonREM
sleep percentage (NREMp ), and REM latency.

However, PSG involves complex acquisition devices and long
setup procedures. It is uncomfortable to the subject and is usu-
ally done in clinical facilities. These highly constrained condi-
tions prevent its use in a nonintrusive way in normal daily life
and limits the duration of the typical exam, which is usually
performed over one or two nights.

Due to these constraints, simpler alternatives have been sug-
gested to complement the information given by the PSG. Sleep
and dream diaries [4], sleep questionnaires, and in particular,
actigraphy (ACT) [5], are very efficient acquiring behavioral
data over long periods, often revealing abnormal trends in the
subject’s behavior. An extensive review of the application of
ACT in the scope of sleep disorders is presented in [6]. The au-
thors conclude that, although ACT has a reasonable validity and
reliability in individuals with normal sleep patterns, its validity
in patients with poor sleep is more questionable, thus motivating
the combination of ACT with other sources of data.

The advent of small portable devices with high storage and
processing capabilities have allowed physiological and behav-
ioral data to be acquired, outside clinical environments, in a
reliable way, often across several days. This data includes ECG,
respiratory inductance plethysmography (RIP), oxygen satura-
tion, among others.

Sleep patterns are known to be intimately connected with
the activity of the autonomous nervous system (ANS) [7]. This
activity can be indirectly estimated from several physiologi-
cal signals, such as the heart rate variability (HRV), RIP, the
peripheral arterial tone, and the galvanic skin response.

HRV, extracted from ECG data, has received particular at-
tention by the researchers and medical community, particularly
after the the publication of the standards of measurement, phys-
iological interpretation, and clinical use of HRV [8]. The HRV
reflects the complex balance between the two branches of the
ANS, the parasympathetic and sympathetic pathways.

Several studies establish the correlation between sleep stages
and HRV [9], [10]. They show that REM sleep is associated with
an increased sympathetic activity and nonrapid eye movement
(NREM) sleep with a predominance of parasympathetic output.
In [11], the authors present a brief retrospective of the study of
HRV in the scope of sleep studies and show detailed data on the
variation of the HRV across the different sleep stages. Recent
studies focus on nocturnal HRV under confinement conditions
[12], and in [13], an in depth review of the relationship between
HRV and several sleep disorders is presented.

The respiration process is controlled by a cyclic stimulation
of the diaphragm mediated by the phrenic nerve, which contains
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motor, sensory, and sympathetic nerve fibers. The involuntary
breathing process is thus a direct reflection of the activity of the
ANS.

In [14], the authors show that respiration is more irregular
during REM states when compared to nonREM, and in [15],
the authors show that different sleep stages lead to distinct au-
tonomic regulation of breathing.

The automatic extraction of useful indicators for sleep disor-
ders diagnosis, using data acquired in mobile environments, is
still an open issue that poses many challenges. The problems to
solve have different degrees of complexity and include the ac-
curate estimation of sleep and wakefulness periods, detection of
REM and NREM sleep, and the automatic computation of sleep
parameters. Several approaches have been proposed to address
these issues. Spectral analysis of the HRV plays a major role in
many publications, where the frequency bands described in [8]
have become the standard for HRV spectrum analysis.

The low frequencies (LF—[0.015 − 0.15] Hz) are thought
to reflect the balance between the activity of the two branches of
the ANS and the high frequencies (HF—[0.15 − 0.4]Hz) the
activity of the parasympathetic branch, highly modulated by the
breathing pattern [16].

Some authors have proposed variations to these standards
with relevant results. In [17], the authors propose an algorithm
that adaptively extracts features from HRV for sleep and wake
classification. They show that the adaptive frequency bands im-
prove the discriminative power of the frequency based features.
In [18] and [19], the authors propose the use of time-variant
autoregressive models (TVAM) to extract the spectral features,
they show that using TVAM the algorithm becomes more sen-
sitive to fast variations in the sleep state.

An accurate detection of sleep stages across the entire night
has been presented by some authors. In [20], the authors present
an algorithm, optimized for sleep-disordered breathing patients,
which discriminates sleep stages based on a set of heuristic rules
and a threshold based discriminative function. In [21] and [22],
a hidden Markov model (HMM) classifier based on features ex-
tracted from TVAM is presented to discriminate Wake–REM–
NREM and REM–NREM, respectively. A recent study by
Willemen et al. [23] evaluates the discriminative capacity of
a large set of cardio–respiratory and movement features in three
classification tasks: Sleep–Wake, REM–NREM,and light-deep
sleep achieving high agreement rates.

In [24], the authors present an interesting approach, also
adopted in this paper, where parts of the data, ambiguous from
a classification point of view, are discarded in order to improve
the final estimation of the sleep and wakefulness periods.

The estimation of sleep parameters/stages from multimodal
data is presented in some papers with promising results. In
[25], the authors combine ACT and cardio–respiratory signals
to achieve high accuracies in sleep and wakefulness detection,
although no proper validation data, (i.e., the hypnogram from
the PSG), is used. In [26] and [14], the authors present a sleep
staging algorithm that combines HRV and RIP, and explore the
influence of obstructive sleep apnea (OSA) in the performance
of the algorithm.

Fig. 1. Fluxogram of the proposed method. The hypnogram and sleep param-
eters are initially estimated from the output of three binary classifiers, fed to a
HMM based algorithm (left). An alternative method for the estimation of the
sleep parameters is also described based on the output of two binary classifiers
and a regularization operation (right).

In [27], the authors combine ACT, respiratory effort, and HRV
obtaining a high accuracy but relatively low sensitivity in the
discrimination between sleep and wakefulness.

This paper deals with the problem of automatically estimat-
ing a simplified hypnogram (wakefulness, REM, and NREM)
and three standard sleep parameters: 1) SE, 2) REMp , and 3)
NREMp from data easily acquired with portable sensors.

The sleep parameters are estimated using two different meth-
ods: first, the Hypnogram is estimated from the data and the
sleep parameters computed. Then, an alternative method is de-
scribed that eliminates the need for a hypnogram by combin-
ing the rejection of ambiguous samples and a regularization
operation.

The two methods rely on an extended set of features, extracted
from HRV, RIP, and ACT, and an ensemble of classifiers that
include a rejection option.

II. METHODS

In this section, the multimodal data is presented, followed by
the description of the algorithm to estimate the Hypnogram and
compute the three sleep parameters.

The complete estimation method, displayed in Fig. 1, is com-
posed by the preprocessing and feature extraction procedures,
presented in Sections II-B and II-C, respectively, followed by
the classification stage (see Section II-D) designed to reject the
ambiguous features.

The output of the set of classifiers is then used as the input
for a HMM, as described in Section II-E and shown in Fig. 1,
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to estimate the Hypnogram, followed by the computation of the
sleep parameters. An alternative method to compute the sleep
parameters is finally described in Section II-F.

The performance of all the described methods is assessed with
several figures of merit (FOM). These FOMs are computed in a
leave-one-patient-out cross-validation basis, where each patient
dataset is tested after training the algorithm (i.e., the classifiers
and the HMM model) with the remaining data.

Besides the positive detection rate and global accuracy (Acc),
the Gmean1 [28] is also computed. This is motivated by the
highly unbalanced nature of the classification tasks at hand, e.g.,
in the sleep versus wakefulness discrimination problem, up to
95% of the samples belong to the sleep class, in REM versus
NREM typically around 80% of the samples belong to NREM
class. The Gmean gives a global insight into the performance of
the method, which is often masked in the Acc by the bias intro-
duced by predominant classes. The Cohen kappa index2 [29] is
also computed, for performance comparison, when necessary.

A. Data

Each subject performed one standard nocturnal PSG exam at
a sleep laboratory. The PSG data was jointly acquired with ACT
using a SomnowatchTMdevice, from Somnomedics, placed in the
nondominant wrist of the subjects, acquiring with a sampling
rate of 1 Hz. The core of these devices is a 3-D accelerometer
that measures the acceleration along three orthogonal axes with
a configurable output format. Here, the output of the ACT is the
acceleration magnitude.

The hypnogram, obtained from the PSG by trained techni-
cians, is used as a ground truth to identify REM sleep, NREM
sleep, and wakefulness in epochs of 30 s.

Twenty adult subjects (age 42.1 ± 9 years, 12 Males, 8 Fe-
males), with no prediagnosed sleep disorders, participated in
this study.

The SE was computed from the hypnogram for every patient,
ranging from 75% to 95% with an average value of 86.1 ± 5.2%.
This value is usually above 85% [30] in healthy patients, this
suggests the occurrence of sleep disturbances in some of the
subjects, although not necessarily pathological.

B. Preprocessing

Preprocessing operations are required to reduce the move-
ment artifacts, normalize the data across different patients, and
prepare it for feature extraction.

ECG filtering and QRS complex detection is performed ac-
cording to the methods described in [31], the RR signal [8] is
then constructed from the detected R peaks and downsampled to
2 Hz. The downsampling operation consists in an antialiasing fil-
tering, using a 8th order Chebyshev low-pass filter, with 0.8-Hz
cutoff frequency, followed by decimation. The 2-Hz sampling

1Given the positive detection rates (R1 . . .N ) of a N class problem, the Gmean

is given by
∏N

i=1 R
1
N
i .

2Values of kappa can range from −1.0 to 1.0, with −1.0 indicating perfect
disagreement below chance, 0.0 indicating agreement equal to chance, and 1.0
indicating perfect agreement above chance.

frequency is within the accepted range, as shown in [31], be-
ing above the Nyquist frequency for the considered frequency
ranges.

Magnitude normalization and dc component removal are ap-
plied to both the RIP and ACT signals in a sliding window basis
as follows:

ã(n) =
a(n) − μ(n)

σ(n)
(1)

where a(n) is the original sample, μ(n), and σ(n) are the mean
and standard deviation of the data within the 5-min window
centred at the nth sample and ã(n) is the normalized sample.

C. Feature Extraction

This paper combines features extracted from the RR, RIP, and
ACT signals and one synchronization measure between the RR
and RIP.

After preprocessing, each dataset is divided in contiguous
epochs of T = 30 s, synchronized with the ground-truth hypno-
gram provided by the medical staff. All the epochs correspond-
ing to any of the three distinct NREM sleep stages were grouped
into one single label.

Let wj = {RRj RIPj ACTj} represent a T dimensional win-
dow, containing the multimodal data from the jth epoch, where
j ∈ [1, . . . , M ] and M the total number of epochs. The extracted
features and the extraction procedures are the following.

1) RR Features: The RR frequency domain features are
computed, according to the guidelines from [8], in the LF and
HF bands. In order to extract these features from each RRj ,
an eight-order autoregressive model (AR) [32] is fitted to the
extended window RR∗

j = [RRj−3 . . . RRj ] and a set of optimal
coefficients âRR and a residual, ERR , are obtained. The length
of RR∗

j , 2 m, follows the standards set by [8], allowing to cap-
ture the low-frequency components of the RR signal. The power
spectrum is computed from the estimated AR coefficients and
the following features are extracted:

1) PMj : Magnitude of the high-frequency pole of the filter
impulsive response filter (IIR) described by the coeffi-
cients âRR .

2) PPj : Phase of the high-frequency pole.
3) ERRj : Residual of the AR model fitted to RR∗

j .
4) TPj : Total power (LF+HF).
5) HFj : Power in the HF range.
6) LFj : Power on the LF range.
7) LF/HFj : Power ratio between the two frequency bands.
8) MHRj : Mean heart rate on the considered RRj .
2) RIP Features: The RIP related features are extracted by

estimating the optimal parameters âBR of the four-order AR
model fitted to each RIPj , and computing:

1) BVj : Magnitude of the high-frequency pole of the filter,
describing the variance in the breathing rate.

2) BPMj : Phase of the high-frequency pole, reflecting the
average breathing rate.

3) RR + RIP Features: The temporal interplay between os-
cillations of heartbeat and respiration, reflect information related
to the cardiovascular and autonomic nervous system [33].
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Fig. 2. Two minute window of the RR signal (top left) and the respective power
spectrum (top right) showing two peaks centered in the LF and HF bands. The
breathing signal (middle left) has its frequency response centred (middle right)
in the breathing frequency. This response is used to bandpass filter the RR
signal, resulting in the signal and power spectrum displayed in the bottom left
and right, respectively.

Let RRBr
j denote the breathing component of RRj . The phase

synchronization between RIPj and RRBr
j is quantified comput-

ing the Phase-Locking Factor (PLF) [34] given by

θj =

∣
∣
∣
∣
∣

1
T

T∑

n=1

ei(φR IP [n ]−φR R [n ])

∣
∣
∣
∣
∣

(2)

where φRIP and φRR are the instantaneous phases of RIPj and
RRBr

j , respectively, computed using the Hilbert transform. The
value of θj is a measurement of the synchronization between the
two oscillators, with 1 corresponding to perfect synchronization
and 0 to no correlation between the phases.

The breathing component RRBr
j is obtained filtering RRj

with the bandpass IIR filter described by the set of optimal
coefficients âBR . To compensate the nonlinearity of the phase,
the signal is filtered in both forward and backward direction.
Fig. 2 illustrates the steps in the computation of θj .

4) ACT Features: The features extracted from ACT are
based on the work described in [35]. Each set of features is com-
puted from a 3.5-min window ACT∗

j = [ACTj−3 . . . ACTj+3],
centered on the jth epoch. The following features are extracted:

1) AR—Coefficients (a{1,...,4},j ) and residue (EARj) of a
four-order AR model fitted to ACT∗

j .
2) RMM—Weights (w{1,...,3},j ), parameters (r{1,...,3},j ), and

the Kullback–Leibler (KLj ) divergence of the Rayleigh
mixture model (RMM) [36] distribution fitted to ACT∗

j .
3) Magj —The energy of x(k) = ACT∗

j given by
∑

k h(k)x(k)2 , where h = {h(k)} is a Hanning
window.

In order to minimize the interpatient variability, a normal-
ization operation was performed. Let f ij denote the vector
containing all the samples from feature i and subject j, the
normalization is performed according to,

f̃ij (n) =
1

1 + e
− f i j (n )−μ i j

σ i j

(3)

where f̃ij (n) is the nth normalized sample and μij and σij the
mean value and standard deviation of f ij , respectively. This

normalization step ensures that all features fall in the range
[0, . . . , 1].

The discriminative power of each feature was computed us-
ing the Mahalanobis Distance (MD) [37] and the statistical
significance was assessed performing a one-way ANOVA test.
Table I shows the MD and the result of the p-value test (for a
significance level of 0.05) obtained for each feature in four dif-
ferent tasks: 1) REM versus wakefulness, 2) REM versus NREM,
3) NREM versus wakefulness, and 4) sleep versus wakefulness
discrimination.

D. Classification and Feature Selection

The discrimination between the considered classes, wake-
fulness, REM, and NREM, falls within a common multiclass
classification problem. Several approaches are possible to solve
this kind of problem, they include: 1) the design of a All-versus-
All classifier, where each sample is classified into one of the
three possible classes, 2) a hierarchical classifier, with an initial
classification separating wakefulness and sleep and a second
classifier discriminating the former class into REM and NREM
states, and 3) a combiner classifier composed by three One-
versus-All classifiers and the final score given by a specific
combining rule.

The main limitation of approach 1) is that the same group
of features is used to discriminate the three different classes.
From Table I, it is clear that distinct features are optimal to
discriminate different classes thus motivating the use of binary
classifiers.

The hierarchical classification approach, 2), enables the use
of distinct features to discriminate between different classes, but
the classification error in sleep/wakefulness propagates into the
second stage, REM/NREM. The results using this approach are
presented in Section III for comparison purposes.

The solution adopted in this paper, is an extension of approach
3). The estimation of the hypnogram, described in Section II-E,
is based on three binary classifiers that independently classify
all the samples into 1) REM/wakefulness (RW), 2) REM/NREM
(RN), and 3) NREM/wakefulness (NW).

The estimation of the sleep parameters, described in
Section II-F, uses a fourth binary classifier that maps all samples
into sleep and wakefulness (SW) classes.

Each classifier is designed to take into account a rejection
factor (RF), rejecting a specified percentage of samples, whose
classification is ambiguous. In large biomedical datasets, such
as the one considered, the systematic rejection of unreliable
segments and/or samples has been shown to increase the ac-
curacy of the classification procedures without compromising
the overall result [24]. The rejection works by computing the
true or estimate posterior probability of the winning class for
each sample and rejecting those which are below the specified
percentage.

Therefore, each classifier maps each sample into one
of three labels: RW ∈ {rs, wk, r}, RN ∈ {rs, ns, r}, NW ∈
{ns,wk, r}, and SW ∈ {sl, wk, r}, where rs, ns, wk, sl, and r
refer to REM, NREM, wakefulness, sleep, and rejected sample,
respectively.
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TABLE I
MD AND THE RESULT OF THE SIGNIFICANCE TEST, (p = 1 MEANS THAT THE NULL HYPOTHESIS IS REJECTED) FOR ALL THE EXTRACTED FEATURES ON THREE

BINARY CLASSIFICATION TASKS: I) RW—[REM / Wakefulness], II) RN—[REM/NREM], AND III) NW—[NREM/Wakefulness]

During the training step, the RW, RN, and NW binary classi-
fiers are trained only with data from the two considered classes,
respectively. However, during the test, they map samples be-
longing to three classes. Any sample from a class not predicted
by the classifier will either be misclassified or rejected.

The four binary classification tasks were tested with several
different classifiers, the support vector classifier with a second-
degree polynomial kernel yielded the highest accuracy for all
tasks with the exception of the REM versus NREM classifi-
cation, where the Parzen classifier performed better. All the
described classification tasks were implemented using PRtools
[38].

Feature selection was performed for each classifier, consid-
ering only the statistically significant features and a floating
feature selection algorithm [39], without any constraint on the
number of selected features. The evaluation criteria is the ac-
curacy of the classifier, used on each classification task. The
selected features are displayed in Table I with the respective
MD marked in bold.

E. Hypnogram and Sleep Parameter Estimation

The hypnogram estimation is based on a HMM, with three
hidden states x ∈ {w, REM, NREM}. The HMM combines the
output of the three binary classifiers (RW, NW, RN) produc-
ing a final estimate of the hypnogram. The HMM was chosen
as the combiner of the three classifiers due to its ability to in-
corporate the information regarding the rejected samples in the
observation model. Furthermore, HMMs are particularly useful
in this kind of problem since they are able to model the temporal
correlation between states which is the case on the sleep cycle
dynamics.

Let us consider O a N × 3 observation matrix, where each
row/observation on = [RWn,RNn,NWn ] contains the output
of the three binary classifiers for the nth sample. The observation
space is thus composed by 27 different possible observations.

The wmission matrix (EM) is a 3 × 27 matrix, representing
the probabilities P (o1...27 |x1...3), and is computed from the
relative frequencies observed in the training data.
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The transition matrix (TM) is a 3 × 3 matrix with the state
transition probabilities, expressed as P (xn |xn−1). The TM is
also computed from the relative frequencies observed in the
training data.

The hidden state, x(n), is estimated along the time from the
observations, o(n), and the model parameters, EM and TM. The
initial probabilities of REM and NREM sleep are set to 0 and
the initial probability of wakefulness is set to 1 since all patients
were awake in the beginning of the exam. The optimal solution,
the most probable state sequence, is computed using the Viterbi
Algorithm [40].

The three considered sleep parameters are computed from the
estimated hypnogram as

SE =
N(s)

N(s) + N(w)
(4)

NREMp =
N(nr)

N(nr) + N(r)
(5)

REMp =
N(r)

N(r) + N(nr)
(6)

where N(.) is a counting operator for s, w, r, and nr, cor-
responding to sleep, wakefulness, REM, and NREM epochs,
respectively.

F. Alternative Sleep Parameter Estimation

The estimation of the sleep parameters, as described in the
previous section, follows the standard procedure, where the
computation is performed directly from the hypnogram. The
error associated with the estimated hypnogram will thus be di-
rectly reflected in the estimated parameters.

In this section, an alternative method is proposed that com-
putes the sleep parameters directly from the output of the SW
and RN classifiers. This method improves the accuracy of the
estimated sleep parameters by taking into account 1) the higher
accuracy of the binary classifiers, compared to the full hypno-
gram estimation, 2) a correction factor, computed in the training
step, that takes into account the percentage of misclassified sam-
ples, and 3) an estimation of the number of samples that were
rejected on each class.

Let us consider a binary classifier C, with a reject option,
which maps each sample into one of three labels l ∈ {p, n, r}
where p, n, and r denote positive, negative, and reject.

The confusion matrix3 is represented as

A =
[

Tp Fn Rp
Fp Tn Rn

]

(7)

where Tp, Fn, Fp, Tn, Rp, and Rn are the true positives, false
negatives, false positives, true negatives, rejected positives, and
rejected negatives, respectively.

The positive (θp,i) and negative (θn,i) correction factors and
the fraction of rejected samples per class (ωp,i and ωn,i) are

3The positive detection rate is computed as Tp
Tp+Fn and the global accuracy

as Tp+Tn
Tp+Fn+Fp+Tn

TABLE II
PERFORMANCE OF THE HYPNOGRAM ESTIMATION ALGORITHM

TABLE III
HIERARCHICAL CLASSIFICATION

computed for each training dataset as

θp,i =
Tpi + Fpi

Tpi + Fni
(8)

θn,i =
Fni + Tni

Fpi + Tni
(9)

ωp,i =
Rpi

Rpi + Rni
(10)

ωn,i =
Rni

Rpi + Rni
(11)

with i ∈ [1, . . . ,M ], and M as the number of training datasets.
The final values are obtained averaging over θ{p,n} and ω{p,n}.

The countingoperation can thus be improved by correcting
the number of predicted samples in each class as

N(p̂) =
N(p)
θp

(12)

N(n̂) =
N(n)
θn

(13)

and estimating the number of rejected samples from each class
as

N(rp) = ωpN(r) (14)

N(rn ) = ωnN(r). (15)

The expressions for the three sleep parameters can now be
rewritten as

SE =
N(ŝ)

N(s) + N(w)
(16)

NREMp =
N(n̂s) + N(rns)

(N(ns) + N(rs) + N(r)) × SE
(17)

REMp =
N(r̂s) + N(rrs)

(N(ns) + N(rs) + N(r)) × SE
(18)
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TABLE IV
AVERAGE OF THE ESTIMATED PARAMETERS (EST.) AND ESTIMATION ERROR (ERR.) OF THE SLEEP PARAMETERS, COMPUTED USING THE ESTIMATED HYPNOGRAM

AND THE ALTERNATIVE METHOD FOR SEVERAL VALUES OF THE RF

where SE is computed from the output of the SW classifier and
NREMp and REMp from the RN classifier.

III. RESULTS

A. Hypnogram Estimation

The algorithm for hypnogram estimation was tested with sev-
eral RFs, the obtained results are listed in Table II. The RF of
10% yields the highest values for almost all the FOMs, achieving
a detection ratio of 72.8%, 77.4%, and 80.3% for wakefulness,
REM, and NREM, respectively, and a global accuracy of 78.3%.
This result (obtained with data previously unseen by the classi-
fiers) corresponds to a gmean of 76.8% and a kappa index of k
= 0.58.

For performance comparison purposes, the hierarchical
classification method, with no data rejection, discussed in
Section II-D was also implemented. Table III shows that the two
classifiers wake/sleep and REM/NREM have relatively good
performances (Acc ≈ 80%) which are in concordance with the
performances reported in [27] for sleep/wake discrimination
using cardiovascular data and ACT and [22] for REM/NREM.
However, the hierarchical combination of the two classifiers
(three class discrimination) leads to a poor Accuracy/Gmean,
which are lower than the worst result from Table II.

B. Sleep Parameters Estimation

The three sleep parameters and the estimation error4 were
computed, for each dataset, using the estimated hypnogram and
using the alternative method.

4Let α represent a sleep parameter, the estimation error is given by Eα =
|α t r u e −α e s t im a t e d |

α t r u e
.

Table IV shows the average value and error for each pa-
rameter, computed for several different RFs. As expected, by
incorporating the rejection information, the alternative param-
eter estimation outperforms the hypnogram method in all the
metrics.

Using a RF of 10% and the alternative parameter estimation
method, the average values are almost coincident with the real
values. The estimation errors are 4.3% for the SE, 9.8% for the
REMp , and 5.5% for the NREMp .

In order to test the influence of the training and test sets
and to assess the generalization capability of the algorithm the
following steps were performed:

1) Ten datasets were randomly selected from the pool of 20
available datasets.

2) From these ten datasets, five were randomly selected to
train the algorithm.

3) The sleep parameters were estimated for the remaining
five datasets and the average error computed.

This procedure was repeated ten times resulting in average
errors of 5.9 ± 1.4, 11.8 ± 5.6, and 4.3 ± 2.6 for SE, REMp ,
and NREMp , respectively. These values are very similar to the
ones reported in Table IV suggesting that the reported results
should be extensible to other datasets.

IV. DISCUSSION

The automatic estimation of a hypnogram is often limited by
noisy observations that need to be discarded. This is particularly
relevant in real environments using data acquired from portable
devices. In this paper, a HMM-based algorithm is described to
overcome this limitation and compute sleep parameters from a
limited set of observations.
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The hypnogram estimation algorithm achieves an accuracy
of 78.3% with similar detection rates for all considered states.
The corresponding k-index, k = 0.58, is, to the best of our
knowledge, among the highest values reported in the literature
for a three state discrimination task: [21] (k = 0.42), [26] (k
= 0.32), [14] (k = 0.45), [41] (Acc = 76%), [42] (k = 0.44), and
[23] (k = 0.62). In addition, it is important to stress that many
of the cited methods discard noisy observations, preventing the
estimation of a continuous hypnogram, and do not take into
account the inherent temporal correlation between sleep states.

A recent study by Rosenberg et al. [43] shows that the inter-
scorer agreement in the hypnogram estimation is approximately
83%. The accuracy reported in this paper is already close to this
value.

The sleep parameter estimation method, designed to reject
ambiguous samples, led to estimation errors of≈ 5% for SE and
NREMp and ≈ 10% for REMp . These results are encouraging,
suggesting that preliminary screenings for sleep disorders can
be done using data acquired by noncumbersome and portable
devices.

The data used in this study were collected from a hetero-
geneous group of subjects, having no described pathological
condition. The heterogeneity of the group promotes the gener-
alization ability of the method. However, the absence of patholo-
gies in the dataset might lead to poor performance of the method
with subjects presenting aberrant sleep patterns, like in OSAs
or Insomnia. A possible approach to overcome this limitation is
the use of a multimodel approach.

V. CONCLUSION

In this paper, we have presented a new method to estimate the
Hypnogram from RR, RIP, and ACT data. The method relies on
an ensemble of classifiers, trained with a rejection option and a
HMM based regularization algorithm, which takes into account
statistical information regarding the sleep cycle. The proposed
method is able to estimate a three-state hypnogram with an
acceptable accuracy, outperforming most of the state of the art
algorithms. However, we have shown that the computation of
sleep parameters from this hypnogram, particularly REM, and
nonREM percentages, is strongly affected by the estimation
error.

In order to solve this problem, we describe a method that
discards ambiguous samples and estimates the sleep parameters
based on the information regarding classifiers performance and
rejection patterns. With this new method the estimation errors
are ≈ 5% for SE and NREMp and ≈ 10% for REMp .
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