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Sleep and Wakefulness State Detection in Nocturnal
Actigraphy Based on Movement Information

Alexandre Domingues∗, Teresa Paiva, and J. Miguel Sanches, Senior Member, IEEE

Abstract—Wrist actigraphy (ACT) is a low-cost and well-
established technique for long-term monitoring of human activity.
It has a special relevance in sleep studies, where its noninvasive na-
ture makes it a valuable tool for behavioral characterization and for
the detection and diagnosis of some sleep disorders. The traditional
sleep/wakefulness state estimation algorithms from the nocturnal
ACT data are unbalanced from a sensitivity and specificity points
of view since they tend to overestimate sleep state, with severe con-
sequences from a diagnosis point of view. They usually maximize
the overall accuracy that does not take into account the highly un-
balanced state distribution. In this paper, a method is proposed to
appropriately deal with this unbalanced problem, achieving simi-
lar sensitivity and specificity scores in the state estimation process.
The proposed method combines two linear discriminant classifiers,
trained with two different criteria involving movement detection
to generate a first state estimate. This result is then refined by a
Hidden Markov Model-based algorithm. The global accuracy, the
sensitivity, and the specificity of the method are 77.8%, 75.6%,
and 81.6%, respectively, performing better than the tested algo-
rithms. If the performance is assessed only for movement periods,
this improvement is even higher.

Index Terms—Actigraphy (ACT), hidden Markov model
(HMM), linear discriminant classifier (LDC), movement detection,
sleep/wake estimation.

I. INTRODUCTION

WRIST actigraphy (ACT) has received great attention
since the publication, by the American Sleep Disor-

ders Association, of the guidelines for its application in the
clinical environment [1]. Its relevance in the scope of sleep
disorders is well documented in the reviews [2], [3], where
it is shown that the number of publications including ACT is
rapidly increasing despite its performance still being far from the
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Fig. 1. ACT data acquired over a 24-h period. Rest and activity periods are
clearly distinguishable.

polysomnography (PSG), the golden standard for the sleep dis-
order diagnosis [4].

The highly portable and noninvasive nature of ACT sensors
makes them ideal for long-term monitoring applications. They
are a valuable tool to gather behavioral information and to obtain
estimates of some sleep parameters, such as sleep efficiency and
fragmentation [5], and for the characterization of the circadian
cycle [6], [7].

Fig. 1 shows a typical segment of ACT data over a 24-h
period, the rest and activity periods along the circadian cycle
are clearly visible.

Certain disorders, such as circadian phase shifts, are accu-
rately detected from the ACT data [8], but sleep staging and
accurate sleep/wakefulness (S/W) state discrimination are still
open issues and active fields of research.

The different levels of agreement between PSG and ACT
reported in the literature have raised some issues regarding the
validity of ACT for S/W estimation [9]–[12] and the metrics
used to evaluate the suggested algorithms [13].

The validation of the ACT prediction rates is typically made
from the hypnogram obtained from the PSG data. Although this
information is accurate, it is also unbalanced from a state distri-
bution point of view. In fact, in a healthy subject hypnogram, at
least 85% of the epochs correspond to Sleep state [14]–[16].

Thus, the high accuracies and sensitivities reported in S/W
estimation using the nocturnal ACT data, often mask the low
specificity associated to the poor wake detection ability, as re-
ported in [9]. Table I shows some of the most relevant results
obtained in S/W state estimation in adults.1 It illustrates how
diverse is the performance of the methods and mainly, how
different are the sensitivity and specificity in most of them.

In the assessment of the performance of new algorithms
and comparison with existing methods, common datasets and

1The methods from Sadeh et al. and Hedner et al. were implemented to
compare the performance of the proposed algorithm.
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TABLE I
PERFORMANCES REPORTED IN THE LITERATURE FOR S/W ESTIMATION

USING THE ACT DATA IN ADULT POPULATIONS

figures of merit must be used. In [14], for instance, the authors
implemented and compared the algorithms described in [6] and
[7] obtaining results significantly different than the originally
reported.

In order to overcome the intrinsic limitations of ACT, new ap-
proaches are being explored. In [20], cardiorespiratory signals
are combined with the ACT data yielding promising results,
and in [21], the authors show that it is possible to accurately
characterize the human activity from the accelerometer data in
a nonsleep scope. In [13], the authors employ artificial neu-
ral networks and decision trees to score the infant ACT data
obtaining relevant results and stressing the importance of using
common metrics. In [22] and [23], the authors hypothesized that
movements during wakefulness and sleep states are intrinsically
different, not only in terms of magnitude but from a spectral
and statistical distribution perspective. While movements dur-
ing the sleep state are typically random and without purpose,
i.e., purposeless, movements during wakefulness state are more
coherent and correlated, usually with a defined purpose.

The method proposed in this paper for S/W estimation, is
based on a movement detector (MD) designed to discriminate
and detect movement and quietness events from the nocturnal
ACT data.

The classification/testing procedure is performed in three
stages. After the feature extraction, an estimation of the S/W
state is obtained for each epoch with a linear discriminant classi-
fier (LDC) [24], with parameters θ∗ and θ∗M , during the quietness
and movement epochs, respectively, as represented in Fig. 3.
The previous result is then refined with a Hidden Markov Model
(HMM) that incorporates statistical information computed from
the training data.

The features used in the LDC’s are the coefficients of a
Rayleigh mixture distribution, to describe the first-order statis-
tics of the ACT data, the residues of an Autoregressive (AR)
model fitted to the data, describing its high-order statistics and
finally the signal energy that takes into account the intensity
of the signal, the most important feature used in the traditional
approaches for ACT data processing.

ACT-based S/W estimation algorithms typically combine sev-
eral features extracted from the intensity and frequency counts
of the recorded signal. In these algorithms, periods of strong
activity are normally scored as wakefulness and long periods
quietness as sleep. This strategy leads to acceptable and rele-
vant accuracies but also to the well-documented limitations of
ACT such as the poor ability to detect wakening episodes during

quietness periods, very typical in insomnia, and the generalized
tendency to overestimate sleep [8], [13]. Since sleeping is the
natural state during the night, when estimating S/W states, for
sleep disorders diagnosis purposes, it is generally more impor-
tant to accurately estimate wakefulness than sleep. The tradi-
tional state estimation algorithms usually maximize the overall
accuracy that does not take into account this unbalanced state
distribution, which leads to poor wakefulness state detection
rate.

The proposed method is designed to achieve a similar perfor-
mance during movement and quietness periods and it is tuned,
using the Geometric mean (G-mean) [25] as the optimization
criteria, for a balance between sleep and wakefulness detection
ability. Thus, minimizing the tendency of ACT to underestimate
the wakefulness periods [8], [13].

The presented algorithm is optimized for proper S/W estima-
tion in the scope of sleep disorders diagnosis. Other applications
may have different requirements not fulfilled by this method.
For example, the detection of rest and activity periods for am-
bulatory blood pressure monitoring, such as the work described
in [26], requires an algorithm less sensitive to microwakening
episodes.

II. METHODS

This section describes the method used to estimate the S/W
states from the nocturnal ACT data. These data are acquired
with an actigraph sensor located at the nondominant wrist of
the subject. The sensor, which is basically a 3-D accelerometer,
provides the magnitude of the acceleration vector.

A. Algorithm

The complete state estimation method, displayed in Fig. 3, is
composed by a preprocessing step, feature extraction, training,
state estimation, and a final classification refinement.

Two preprocessing operations are performed on the data: 1)
magnitude normalization and dc component removal, and 2)
movement segmentation.

The magnitude normalization and dc component removal is
required to minimize the interpatient and interdevice variability.
This procedure, performed in a sliding window basis, is done
according to

ã(n) =
a(n) − µ(n)

σ(n)
(1)

where a(n) is the ACT sample, µ(n) and σ(n) are the mean and
standard deviation of the data within the 5 min window centered
at the nth sample, respectively, and ã(n) is the normalized ACT
sample.

In a second preprocessing step, movement events are identi-
fied on the normalized data with the MD displayed in Fig. 4.

This detector is composed of 1) a noncausal low-pass stretch-
ing filter and 2) a threshold-based binarization block. The
smoothing filter computes the movement envelope, its width is
controlled by the parameter p, defined as p = 5 for a sampling
frequency of 1Hz.
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Fig. 2. (a) ACT data and detected movements (top) and (b) Hypnogram (bottom). The binary movement function was rescaled for visualization purposes.

Let S(t) = | dF (t)
dt | denote the sensibility of the MD and F (t)

the percentage of movement detected as a function of the thresh-
old, t. The optimal value, t∗, is obtained for each dataset comput-
ing S and finding t∗ = arg minx

d2 S (t)
dt2 . The selected threshold

corresponds to the point where the sensibility is more stable.
Fig. 5 illustrates the determination of t∗ for one dataset. The

sensibility curve is evaluated for the range t = [0.5 1], this range
was chosen by direct observation of the data. The average opti-
mal threshold, computed from all datasets, is t̂∗ = 0.68 ± 0.22.
The output of the detector is a binary function τ(n) ∈ {m, q},
where m corresponds to movement and q to quietness.

Fig. 2 displays an example of the preprocessed data. Fig. 2(a)
shows the normalized ACT signal and the movement indica-
tor, and Fig. 2(b) the corresponding hypnogram segment. The
hypnogram discriminates five different states, namely wakeful-
ness, Rem sleep, and three non-Rem sleep states. All epochs
marked as Rem and non-Rem were translated into a single sleep
label.

The next three sections describe 1) the features, 2) the main
classification stage (MCS), and 3) the refinement algorithm,
which compose the proposed method, here, called Movement-
based State Detection (MSD).

1) Features: In this paper, an extended set of features is used,
one related to ACT intensity and two describing first and higher
order statistics, used to discriminate the intrinsic characteristics
of the ACT data. After preprocessing, each ACT time course is
divided in contiguous epochs of T = 30 s.

Let wj represent an L-dimensional window, 210 s long, cen-
tered on the jth epoch, where j ∈ {1, . . . , M} with M the total

number of epochs. Features are extracted from each window,
wj , as follows.

1) Energy, Ej —The energy of the epoch is Ej =∑
k h(k)w2

j (k), where h = {h(k)} is a Hanning window.
2) Residue, rj —Residue of the eight-order AR model [27]

estimated for each wj based on an L dimension window,
centered on it, as proposed by the authors in [23]. By using
a forward search feature selection algorithm [24], it was
concluded that the residue is more discriminative than the
coefficients of the AR model in the estimation of the S/W
state. Fig. 6(b) shows the normalized histograms of the
residues obtained for sleep and wakefulness movements.
The residues roughly follow a Gaussian distribution with
different means and standard deviations for the two
states.

3) Coefficients αj (k)—Coefficients of a three component
Rayleigh Mixture Model (RMM) [22], fitted to each wj .
It was found that only the coefficients, αj (k) are discrim-
inative for S/W state estimation and not the parameters
of the Rayleigh components of the mixture. The number
of components in the mixture, L, was selected by fitting
several mixture distributions, with different values of L, to
the complete set of data and measuring the goodness-of-
fit. The used optimality criterion was the Kullback–Leibler
(KL) divergence.
Table II shows that the value of the KL divergence de-
creases until L = 3 and then remains approximately con-
stant for higher values of L. The selected value was thus
L = 3.
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Fig. 3. Fluxogram of the proposed (MSD) algorithm. After preprocessing and
feature (F) extraction, an initial estimation (x∗) is made using an LDC with
parameters θ∗ and θM

∗. The final estimate, x̂, is obtained with an HMM-based
regularization algorithm.

Fig. 4. Structure of the MD.

The physical reasoning to use an RMM is related to
the model adopted for the actigraph sensor, as described
in [28]. If the acceleration along each axis is described by
a zero mean Gaussian distribution, the acceleration mag-
nitude follows a Rayleigh and a Maxwell distribution in
2-D and 3-D, respectively. Fig. 6(a) shows the normalized
histograms of Sleep and Wakefulness movement data and
the two Rayleigh distributions fitted to the data.

2) Main Classification Stage: The MCS performs the initial
estimation of the S/W state, denoted as x∗ ∈ {s∗, w∗}. The used
cost function, the G-mean metric, is given by

J =
√

sens ∗ spec (2)

where sens and spec2 are the sensitivity, the ability of the method
to correctly detect sleep, and specificity, the ability of the method

2sens = TP
TP+FN , spec = TN

TN+FP , acc = TP+TN
TP+TN+FP+FN , TP, TN, FP,

and FN are the true positives, true negatives, false positives, and false nega-
tives, respectively.

Fig. 5. Sensibility of the MD and the respective second derivative for a given
dataset. The minimum of the second derivative is selected as the optimal value
for this dataset, corresponding to t∗ = 0.7.

to correctly detect wakefulness, respectively. This criterion is
adopted for simultaneous maximization of the sensitivity and
specificity, which is not guaranteed when only the overall accu-
racy (acc) is considered.

The MCS is composed of the following three steps.
1) Classification of the test data with LDC(θ∗). The param-

eters θ∗ were obtained through the maximization of the
cost function (2), taking into account the whole training
dataset.

2) Classification of the test data with LDC(θ∗M ). LDC(θ∗M )
is trained using the whole data but the cost function (2)
is optimized taking into account only the movement data
(τ(n) = m).

3) Combination of the previous results, where quietness
epochs are scored from LDC(θ∗) and movement epochs
are scored using LDC(θ∗M ).

3) HMM Regularization Algorithm: This final procedure re-
fines the results obtained in the MCS leading to the final esti-
mation, x̂ ∈ {ŝ, ŵ}.

An HMM was chosen for this task since it models processes
which have a temporal relation between states, which is the case
in the sleep/wake cycle.

Two hidden states are considered, x ∈ {s, w}, where s and w
refer to sleep and wakefulness states, respectively.

Let us consider x∗ ∈ {s∗, w∗}, the output, of the MCS, τ ∈
{m, q} the output of the MD, and t ∈ N the time, in seconds,
since the last movement (quietness periods) or since the patient
started to move (movement periods).

The observation model takes into account the following in-
formation, extracted in the training step:

1) The accuracy rate of the MCS, given by P (x∗|x).
2) The conditional distribution of the activity given the state,

expressed as P (τ |x) and shown in Table III.
3) The duration of the quietness and movement periods dur-

ing sleep and wakefulness. Expressed as

P (t|x, τ) =
{N (σx), if τ = m

E(λx), if τ = q
(3)
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Fig. 6. Normalized histograms of (a) Sleep (blue) and Wakefulness (red) movement data and the respective Rayleigh distributions and (b) Sleep (blue) and
Wakefulness (red) residues, obtained using a order eight AR model fitted to the data.

TABLE II
KL DIVERGENCE USING DIFFERENT NUMBER OF COMPONENTS FOR

THE RAYLEIGH MIXTURE DISTRIBUTION

TABLE III
CONDITIONAL PROBABILITIES OBTAINED FROM THE RELATIVE

FREQUENCY OBSERVED IN THE REAL HYPNOGRAMS

where N (σx) is a Gaussian probability distribution
with zero mean and E(λx) an exponential probability
distribution.

E(λx) is an exponential probability distribution, P (t|λs,w ),
giving the probability of a quietness period of length t being
observed during sleep and wakefulness. This distribution arises
naturally if movement events are assumed to be a stochastic
Poisson process. The parameters λs and λw are computed as

λ̂x =
1
tx

(4)

where tx is the mean duration of all quietness intervals for
sleep (x = s) and wakefulness (x = w) states. N (σx) is a zero
mean Gaussian probability distribution, P (t|σs,w ), giving the
probability of a movement of length t being observed during
sleep and wakefulness states. The parameters σs and σw are the
standard deviation of the duration of all movements recorded
during sleep and wakefulness states, respectively.

Fig. 7(a) shows the histograms of the length of the quiet-
ness periods during sleep and wakefulness states. As expected,
the mean value is larger during sleep and the periods tend to
be longer. Fig. 7(b) shows the histogram of the length of the
recorded movements, as expected, during wakefulness, move-
ment duration is typically longer and has a higher standard
deviation.

The probability of any observation y = {x∗, τ, t} given the
state x ∈ {s, w} is expressed as

P (x∗, τ, t|x) = P (x∗|x)P (t, τ |x)

= P (x∗|x)P (τ |x)P (t|x, τ). (5)

The transition matrix is computed from the training data as

P =

⎡

⎣
N (ss)

N (ss)+N (sw)
N (sw)

N (ss)+N (sw)

N (ws)
N (ws)+N (ww)

N (ww)
N (ws)+N (ww)

⎤

⎦ (6)

where N(.) is a counting operator for ss, sw, ws, and ww, corre-
sponding to sleep–sleep, sleep–wakefulness, wakefulness–sleep,
and wakefulness–wakefulness transitions, respectively.

The hidden state, x(t), is estimated along the time from the
observations, y(t), and the model parameters. The initial prob-
abilities are set to 0.0 and 1.0 for Sleep and Wakefulness states,
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Fig. 7. Normalized histograms of (a) the length of quietness periods and (b) duration of the recorded movements, during sleep (blue) and wakefulness (red)
states.

respectively, because all the patients were awake in the begin-
ning of the exam, and the optimal solution, the most probable
state sequence, is computed using the Viterbi Algorithm [29].

B. Comparative Methods

In this section, two of the methods for S/W discrimination
listed in Table I, are described, as well as the adaptations required
for their use with the existing datasets. The two methods, here
called Sadeh’s [7] and Hedner’s [19], were selected by their
reported performance, particularly its Sens and Spec balance.

1) Sadeh’s Algorithm: In [7], Sadeh et al. propose a scoring
algorithm, using 60 s epochs, that linearly combines several
features in the following discriminative function:

PS = αθT (7)

where α is a vector of adjustable parameters defined in [7] as

α = [7.601;−0.065;−1.08;−0.056;−0.703] . (8)

θ is a vector of features extracted from the data expressed as

θ = [1;µ;Nat;σ;LogAct] (9)

where µ is the mean number of activity counts on a 11 min
window centered in the current epoch, Nat is the number of
epochs with activity level equal to or higher than 50 but lower
than 100 activity counts in a window of 11 min, σ is the standard
deviation of the activity on the last 6 min, and LogAct is the
natural logarithm of the number of activity counts during the
scored epoch plus 1.

A given epoch is scored as sleep if PS >= 0 and wakefulness
otherwise.

Since the initial algorithm was developed for a different Acti-
graph device and database, the five parameters from the dis-
criminative function were optimized for the current data. The
optimal parameters were found maximizing the cost function
given by (2) leading to

α∗ = [4.097;−0.528;−0.51;−0.259;−1.65] . (10)

2) Hedner’s Algorithm: In [19], Hedner et al. present an S/W
state estimation algorithm with focus on sleep apnea patients.
The algorithm is divided in four distinct steps with the last one
aiming at the detection of periodic movements, typical from the
apnea patients. Here, the last step is discarded and the algorithm
is as follows.

1) Determination of the background movement activity of
the patient throughout the night, σ.

2) Bandpass filter between 2 and 2.5 Hz, leading to a signal
regarded as the energy of the activity.

3) For each 30 s epoch, values of energy below σ are dis-
carded and the remaining energy is integrated using a 5-
min Hanning window. Values below a fixed threshold,
θ are scored as sleep and values above are scored as
wakefulness.

The two parameters, σ and θ were computed maximizing the
cost function given by (2).

III. RESULTS

This section describes the data used in this paper, presents the
experimental results obtained with the MSD, and compares them
with the two methods described in the previous section. The
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performance is assessed with several Figures of Merit (FOM).
These FOMs are computed in a leave-one-patient-out cross val-
idation basis, where each patient dataset is tested after training
the classifier with the remaining data. All the classification rou-
tines are implemented using PRTools [24] for MATLAB.

A. Data

The nocturnal ACT data were acquired with a Somnowatch
device, from Somnomedics, placed in the nondominant wrist
of the subjects, acquiring with a sampling rate of 1 Hz. The
core of these devices is a 3-D accelerometer that measures the
acceleration along three orthogonal axis with a configurable
output format.

Here, the output of the actigraph is the acceleration magni-
tude. Some authors suggest that this configuration, also known
as digital integration, is the most reliable to measure activity
levels [8], [30].

The nocturnal ACT data were jointly acquired with the PSG
data for validation purposes and the hypnogram obtained from
the PSG by trained technicians, is used as a ground truth to
identify sleep and wakefulness states in epochs of 30 s. Twenty-
nine adult subjects (age 48 ± 13 years, 13 Males, 16 Females),
with no particular prediagnosed sleep disorder, participated in
this study.

The Sleep Efficiency (SE), computed as the ratio between total
sleep time and total bed time was obtained for each patient. All
the values of SE fell within the range 75%–85%. These values
are below the typical values found in healthy subjects, usually
above 85% [31], which indicated sleep disturbances, although
not necessarily pathological.

The normalization step applied to the data reduces the vari-
ability observed in the datasets recorded with distinct devices.
This step also contributes to the generalization of the described
algorithm to the data acquired with different models/brands of
actigraph devices.

B. ACT Data Characterization

The nocturnal ACT data are highly unbalanced from a state
distribution point of view. This can be confirmed in Table III
where experimental conditional distribution means and stan-
dard deviation values, computed from the relative frequencies
observed in the real hypnograms are displayed.

As expected, during movement periods, the most frequent
state is wakefulness, P (w|m) = 0.58, although closely fol-
lowed by sleep, P (s|m) = 0.42. During quietness periods, the
gap between the two states is larger, P (s|q) = 0.85 against
P (w|q) = 0.15. This observation suggests high correlations be-
tween movement and wakefulness state and quietness and sleep
state, respectively, but in fact, the probability of a patient mov-
ing during wakefulness is much smaller than the probability of
not moving, as can be seen from P (m|w) and P (q|w). This fact
illustrates the main limitation of nocturnal ACT for S/W state
estimation: although the methods are based on the recorded
movements, they only occur during 6 ± 3% of the time in the
whole register.

The information from Table III clarifies why simple empirical
classification rules can actually lead to apparently impressive

TABLE IV
PERFORMANCE OF TWO NAIVE CLASSIFICATION POLICIES: M1) ALL DATA ARE

SCORED AS SLEEP AND M2) MOVEMENT IS SCORED AS wakefulness AND
QUIETNESS IS SCORED AS sleep

TABLE V
MEAN AND STANDARD DEVIATION OF THE Ssb, Spec AND Acc AND G-MEAN

OBTAINED FOR THE DIFFERENT COMPONENTS OF THE MSD

performances. The traditional FOMs, accuracy, sensitivity, and
specificity, are not able to cope with the type of unbalanced data
present on the nocturnal ACT.

The classification results displayed in Table IV, obtained with
two naive methods, are used to illustrate the previous point.

The method M1 classifies all the data as sleep resulting in
a surprising global accuracy of 80.4%. This result is relevant
because it shows that a good accuracy is not a good indicator
of the performance of the method since it has no ability to
detect wakefulness state. The second method, M2, classifies all
the quietness periods as sleep and all the movement periods as
wakefulness. Even by misclassifying all the sleep epochs during
movement periods, the method is able to achieve a sensitivity
of 97.2% and global accuracy of 84.8%. The limitation of both
the methods is revealed by the low specificity and G-mean.

C. S/W Classification

Table V summarizes the results obtained with the individual
LDC classifiers, LDC(θ∗) and LDC(θ∗M ), the results of the
intermediate MCS (which is the combination of both LDC’s)
and the final MSD. Some results are presented for two distinct
scenarios; 1) when all the data are considered in the classification
and 2) when only movement data are considered (τ(n) = m).

The LDC(θ∗) classifier achieves a global accuracy of 75.9%
with sensitivity, specificity, and G-mean in the same range. The
limitation of this classifier arises when only the movement data
are considered, with the sensitivity falling to 15.8%. This means
that during movement periods the classifier tends to classify all
epochs as wakefulness.
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TABLE VI
MEAN AND STANDARD DEVIATION OF THE Ssb, Spec, AND Acc OBTAINED

FOR THE THREE CONSIDERED METHODS IN TWO CONDITIONS: I) COMPLETE
DATA SET AND II) ONLY MOVEMENT DATA

The LDC(θ∗M ) is only evaluated for the movement segments.
It achieves a G-mean of 68.7%, approximately 30% higher than
the LDC(θ∗) during the same periods. On the other hand, the
specificity drops to 63.4% due to the wakefulness periods mis-
classified as sleep.

The MCS combines the scores from the two LDC’s. It
achieves a G-mean of 72.8%, when the complete data are con-
sidered (the decrease in specificity is due to reason explained
before) and the performance during movements is similar to the
LDC(θ∗M ).

Finally, the performance of the MSD clearly reflects the im-
provement obtained with the HMM. It achieves a G-mean of
78.5% when all the data are considered and 73.7% when lim-
ited to movement data.

It is important to stress the balance of Sens and Spec achieved
with the proposed method in global terms but especially during
movement periods. These results can be very useful when ACT
is used together with other physiological data, e.g., electrocar-
diography, whose sensors are typically sensitive to movement
artefacts.

In order to assess the generalization capability of the algo-
rithm, the following procedure was performed:

1) Ten datasets were randomly selected from the pool of 29
available datasets.

2) From these ten datasets, five were randomly selected to
train the algorithm.

3) The remaining five datasets were used to test the algorithm
and the average G-mean was computed.

This procedure was repeated 15 times resulting in an average
G-mean of 76.3 ± 2%. This value is only 2% smaller than the
G-mean reported in Table V and, together with the low standard
deviation, suggests that the reported results should be extensible
to other datasets.

The sensibility of the method, to small variations on the MD
threshold, was assessed by forcing random variations of ±20%
on each dataset threshold. The variation in the G-mean’s for 1)
All the data and for 2) Movement data (see Table V) was less
that 1% in average.

Table VI compares the results obtained with the MSD with
the two comparative methods. Using the complete datasets,
MSD achieves higher sensitivity, specificity, global accuracy,

and G-mean than the considered methods. While the difference
in global Acc is relatively small (≈ 3%), the increase in the
G-mean is 10.5% and 7.4%. This result clearly illustrates the
limitation of using the global accuracy as the only performance
metric. When only movement periods are considered the MSD
clearly outperforms the comparative methods, which present
a bias to classify the movement periods as wakefulness, thus,
achieving a low Sens.

D. Final Remarks

The nocturnal ACT can be roughly clustered in two classes of
1) quietness periods, when only background activity and noise
are recorded, and 2) movement periods.

During the periods of quietness the relevant information for
S/W state estimation lies on the intermovement durations, whose
statistics are shown in Fig. 7(a), and on the a priori correlation
knowledge about activity and state, described in Table III. The
ACT signal magnitude itself does not provide useful information
during these periods.

On the contrary, during movement periods the magnitude
of the ACT signal is relevant for state estimation but the a
priori information (P (s|m) = 0.42 and P (w|m) = 0.58) is not
so important for estimation process as in the quietness periods
(P (s|q) = 0.85 and P (w|q) = 0.15).

The magnitude characterization in these periods can be per-
formed in a spectral and statistical basis, namely, with first and
second order statistics, displayed in Fig. 6.

IV. CONCLUSION

This paper describes a state estimation algorithm (MSD) from
the nocturnal ACT data, focused on movement periods obtained
from an MD.

The method uses an extended set of features related to the
signal magnitude and time events. Two LDC’s, trained with the
magnitude related features, provide a first state estimation that
is refined with a HMM-based algorithm that takes into account
time events and a priori information about movements and states
correlation.

Relevant novelties presented in this paper are related to the
optimization strategy in the training process based on the G-
mean metrics. The goal is to improve simultaneously the per-
formance in movement and quietness periods as well as the
balance between specificity and sensitivity which improves the
wakefulness detection rate.

A new database of the ACT data was built specifically for
this project. With these data, the MSD yields a global accuracy
of 77.8%, a sensitivity of 75.6%, and a specificity of 81.6%,
revealing a balance in the detection of both the sleep and wake-
fulness states, a key issue of this paper. Additionally, under the
G-mean metrics the proposed method clearly outperforms the
other tested methods. During the movement periods, the method
achieves an accuracy of 75.5%, sensitivity of 73.8%, specificity
of 73.5%, and G-mean 73.7%.
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