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An Ultrasound-Based Computer-Aided Diagnosis
Tool for Steatosis Detection
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Abstract—Liver steatosis is a common disease usually associated
with social and genetic factors. Early detection and quantification
is important since it can evolve to cirrhosis. In this paper, a new
computer-aided diagnosis (CAD) system for steatosis classification,
in a local and global basis, is presented. A Bayes factor is computed
from objective ultrasound textural features extracted from the liver
parenchyma. The goal is to develop a CAD screening tool to help
in the steatosis detection. Results showed an accuracy of 93.33%,
with a sensitivity of 94.59% and specificity of 92.11%, using the
Bayes classifier. The proposed CAD system is a suitable graphical
display for steatosis classification.

Index Terms—Classification, computer-aided diagnosis (CAD),
steatosis, textural features, ultrasound (US).

I. INTRODUCTION

H EPATIC steatosis (HS) is a liver disease that occurs when
hepatocytes fat content increases [1]. Predominantly as-

sociated with obesity, insulin resistance, and alcohol [2]–[4], it
is considered the hepatic pandemic of the XXI century [4]. Early
detection is important, since HS is a biomarker for the develop-
ment of liver cirrhosis or even hepatocellular carcinoma [3].

The high prevalence of HS creates the need for a noninvasive
screening tool aimed to diagnose and quantify HS. Liver biopsy
(LB) remains the gold standard in HS diagnosis [3], [4]. How-
ever, its invasive nature, low social acceptance, and sampling
errors do not make LB suited for screening. New noninvasive
techniques have been proposed, where imaging methods are
commonly baseline tests [3]. In clinical practice, ultrasound
(US) is the first method used for HS diagnosis [4]. This imaging
technique shows appreciable advantages such as its noninva-
siveness, low price, accessibility, and nonionizing nature.

Manuscript received April 9, 2013; revised July 29, 2013 and September 08,
2013; accepted September 30, 2013. Date of publication October 7, 2013; date
of current version June 30, 2014. This work was supported by the FCT project
[PEst-OE/EEI/LA0009/2011].

R. T. Ribeiro is with the Institute for Systems and Robotics, Lisbon, Portugal
and also with the Escola Superior de Tecnologia da Saúde de Lisboa, Lisbon
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Visual detection of HS from US images is based on a gradual
increase in liver echogenicity and US beam attenuation [5].
However, US-based diagnosis is often related to a subjective
interpretation of US findings, which may also be present in
other liver disorders [6]. As reported by [3], the majority of US
studies, focused to detect HS, are based on subjective visual
criteria.

Several strategies [7]–[12] have been proposed to detect
and quantify HS. In this paper, a multifrequency approach
is adopted, where a monogenic decomposition (MD) is used
for feature extraction. The performance of the proposed
algorithm is assessed by several feature sets described in the
literature [7], [8], [11]. Bayes classifier is used in the binary
classification and the underlying Bayes factor (BF), computed
in a local basis, and is overlapped on the US image to provide lo-
cal evidence of the disease. A computer-aided diagnosis (CAD)
tool is designed and implemented to display this evidence map
and help in the diagnosis and quantification of HS. This interac-
tive tool is particularly useful for the appropriated selection of
the region of interest (ROI) for which the method is sensitive.

The remainder of this paper is organized as follows. Section II
introduces the problem formulation and is divided in a prepro-
cessing step and feature extraction procedure (see Section II-A),
the global detection of HS (see Section II-B), feature selection
and the classification procedures; and, subsequently (Section II-
C), in the local detection approach as well as the framework used
to build the CAD system. Section III describes the used dataset,
experimental tests, and the classification results. In Section IV,
a discussion of the results from the proposed algorithm is given
and conclusions are provided.

II. PROBLEM FORMULATION

Here, two different formulations of the HS detection problem
are presented: 1) Global approach, where five different sets
of features are presented to classify HS. A brief theoretical
motivation is given, regarding feature selection and the Bayes
classifier. 2) Local characterization that creates a confidence
map, built from the BF results, related to the disease evidence.

A normalization and decomposition procedure is adopted be-
fore analysis. This procedure minimizes the results dependence
on the specific US parameters used during data acquisition and
on the subjective criteria of the operator.

A. Preprocessing and Feature Selection

To guaranty the reproducibility of the results, the procedure
described in [13] is used to separate the textural and intensity
information of the US images where the radio frequency (RF)

2168-2194 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



1398 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 18, NO. 4, JULY 2014

envelope, rf(i, j), is estimated from the observed B-mode im-
age, y(i, j). The estimation of this envelope image is performed
based on physical considerations about the data generation pro-
cess, namely, by taking into account the US scanner parameters
tuned by the clinician during the US exam.

The estimated RF image is decomposed in despeckled and
speckle fields according to the following model [13]:

rf(i, j) = s(i, j)η(i, j) (1)

where s(i, j) and η(i, j) are called despeckled and speckle
fields, respectively.

The de-speckled field, s(i, j), containing mainly intensity
and echogenicity information about tissues and organs, is not
used because it was concluded that is not relevant for steatosis
detection.

The speckle field, on the contrary, contains useful information
for steatosis detection. The pixels η(i, j) are assumed indepen-
dent and identically distributed (i.i.d.) random variables with
Rayleigh distribution [14]. This noise model described in (1) is
truly multiplicative, in the algebraic sense, where the variance
is signal dependent [13]. The speckle field is used for extracting
the following textural features that are related to the microstruc-
ture of the hepatic parenchyma:

1) first-order statistics—mean (µ), standard deviation
(σ)/variance (σ2), skewness (S), and kurtosis (K),

2) second-order statistics—first-order two-dimensional
(2-D) autoregressive (AR) coefficients [15], a0,1 , a1,0 ,
a1,1 , are computed as suggested by [16].

These statistics are calculated from the image decomposition
fields obtained with two different approaches: Haar wavelet
transform (WT) [17] [vertical (LH), horizontal (HL), and diag-
onal (HH) detail fields] and image MD (magnitude, A, and two
phase fields, θ and ψ).

A monogenic representation of a 2-D signal [18], [19], f(x),
x ∈ R2 , is defined by the following triplet:

fm (x) = ((f(x), Re(R(x)), Im(R(x))) = (f, f1 , f2) (2)

where R(.) denotes the Riez transform [18], [19].
The local amplitude, A, local orientation, θ, and phase, ψ, of

fm , are defined as follows:

A =
√

f 2 + f 2
1 + f 2

2 (3)

f = A cos ψ

f1 = A sin ψ cos θ,

f2 = A sin ψ sin θ. (4)

The following feature sets, some proposed in the literature, are
tested for optimization purposes:

1) (Wavelet based)—{a0,1 , a1,0 , a1,1 , ϵ, µ} extracted from
the first and second WT detail decomposition levels,
{(HL,LH,HH)1,2}, in a total of 30 feature scalars.

2) (Monogenic based)—{a0,1 , a1,0 , a1,1 , ϵ, µ} features ex-
tracted from the three fields of the first three MD decom-
position levels, {(A,ψ, θ)1,2,3}, in a total of 45 features.

3) (Wavelet and monogenic based)—Features A and B plus
four first-order statistic features extracted directly from
the speckle field in a total of 79 scalars.

4) (Features from [8])—median, standard deviation, and in-
terquartile range of the first- and second-level decompo-
sition details of the Daubechies 3 WT, in a total of 18
scalars.

5) (Acoustic attenuation coefficient [7])—slope of the linear
regression of the mean image intensity along the depth
direction (rows).

Automatic feature selection from sets A, B, and C was per-
formed, using the stepwise regression analysis [20] (criterion
to add: p < 0.05; to remove: p > 0.1) to minimize the peaking
phenomenon, also known as overfitting. Four optimal features
for set A and six for sets B and C were obtained, after this step,
to feed a Bayes classifier.

B. Global Detection of Liver Steatosis

The discriminant functions computed to quantify the evidence
of steatosis, with the BF (Λ),

Λ(x) = log
(

gHS(x)
gN(x)

)
(5)

are defined under the assumptions of multivariate normal dis-
tribution of the features [21], [22] with means µHS and µN
and covariance matrices, ΣHS and ΣN , for HS and Normal (N)
classes, respectively:

gτ (x) = −1
2
(x − µτ )T Στ (x − µτ ) − 1

2
ln |Στ | + ln P (ωτ )

(6)
with τ ∈ {HS, N}. P (ωτ ) is the prior probability of each class,
computed as follows:

P (ωτ ) =
Nτ

NS
(7)

where Nτ is the number of samples within the class ωτ and Ns

is the number of samples of the population.
Positive values of Λ are interpreted as evidence of HS,

whereas negative ones mean evidence of a normal tissue. Small
absolute values, |Λ| ≈ 0, indicated no evidence of HS or normal
tissues.

Global characterization of the liver is obtained by selecting
a representative region of the liver parenchyma from which the
feature vector, x, in (5), is computed. In this situation, evidence
of steatosis or normal liver is easily obtained if Λ > 0 or Λ < 0,
respectively.

The accuracy of the results depends on the location of the
ROI. Better results are obtained with ROIs extracted from the
vicinity of the medial axis of the image, as superficial as pos-
sible, to avoid beam distortions, representative of the hepatic
parenchyma and should not contain major blood vessels and
ligaments.

An ideal 128 × 128 ROI (ROI0) for global liver charac-
terization is displayed in Fig. 1, in red, corresponding to
a 45.7 mm × 45.7 mm window size in a 3-pixel/mm image
resolution.
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Fig. 1. Example of ROI positions used in the experiments. ROI0 is displayed
in red color, ROI1 in blue, and ROI2 in green.

Also in Fig. 1, two nonideal ROIs are displayed, in different
locations, to illustrate this dependence:

1) ROI1 , extracted at the same depth of ROI0 but with a right
horizontal shift, in blue, and

2) ROI2 , extracted as deep as possible and with a left shift
from the original ROI, in green.

The two-sample t-tests (p < 0.01) [22] and the Bhattacharyya
distance [23] are used to compare and analyze the results ob-
tained with ROI0 , ROI1 , and ROI2 1.

C. Local Characterization

The same strategy, used for the global characterization, can
be used to characterize the liver parenchyma in a local basis
[24], [25].

Let us consider the following confidence map, S = {s(i, j)},

s(i, j) = Λ(x(i, j)) (9)

where Λ(x(i, j)), defined in (5), is computed with optimum
set of features and parameters (µτ ,Στ ) obtained in the training
step. Feature vector, x(i, j), is computed from a N × N sliding
window centered at a given (i, j)th pixel.

This map aims at characterizing HS in a local basis by de-
tecting foci of fat accumulation in the hepatic parenchyma. To
make easy the interpretation and visualization of this informa-
tion a new image, called diagnosis map (DM), is created. DM is
obtained, DM = {d(i, j)}, by merging S with the original US
data, as follows:

d(i, j) =
{

αs(i, j) + (1 − α)y(i, j) if s(i, j) > 0
y(i, j) otherwise

(10)

where y(i, j) is the original US B-mode image and α is a trans-
parency parameter. In this merging process, the original US
B-mode image is represented by using a gray-scale color map,
whereas S is displayed with the color map represented in Fig. 2.

1The Bhattacharyya distance (B) [23] is defined as

B =
1
8

(µi − µj )T
(Σi + Σj

2

)−1
(µi − µj ) +

1
2

ln
|Σ i +Σ j

2 |√
|Σi ||Σj |

(8)

where classes are assumed multivariate Gaussian distributed with parameters
ωi (µi , Σi ), ωj (µj , Σj ). | · | denotes the determinant of the respective matrix.

Fig. 2. BF categories [25] and corresponding color map used in the CAD
system interface.

TABLE I
BAYES CLASSIFIER RESULTS, DETECTION RATE, AND OA FOR THE TESTED

FEATURE SETS

In the DM image, yellow to red color regions indicate high
probability of fat presence, the green region indicates no evi-
dence to support the classification, and the light to dark blue
regions indicate normal liver tissue, as shown in Fig. 2.

The CAD system, used to process and visualize this informa-
tion, contains ROI selection tools. This interactive framework
allows the physician to specify the location and size of a liver
region.

III. EXPERIMENTAL RESULTS

Results obtained with real data are presented in this section.
A total of 74 US liver images, acquired by expert operators,

were obtained from 36 patients with HS and 38 control subjects,
enrolled in the experiments. All patients were outpatients in
the Gastroenterology Department of the Santa Maria Hospital,
Lisbon, with known diagnosis, based on the clinical and US
criteria [1]. The study protocol was approved by the hospital
ethic committee and informed consent was obtained from each
subject.

The acquisition conditions were predefined to guarantee the
reproducibility of the results. For each patient, an US B-mode
image was acquired using a general-purpose clinical US equip-
ment (CX50, Philips, Amsterdam, the Netherlands), coupled
with a convex array transducer (Philips C5-1, Amsterdam, the
Netherlands). The US acquisition protocol was set with 3.5 MHz
(transmitted frequency), depth of 18 cm, focal zone at 9 cm,
dynamic range at 75 dB, and only the gain was left variable,
according to the patient morphotype. US images were acquired
from the right liver lobe and the same anatomical landmarks
were used.

The results were assessed with a cross-validation-based strat-
egy, since when the number of samples is small, this is the pre-
ferred approach to assess the performance of a classifier [26].
In the present study, a five-fold leave-one-out cross-validation
method is used. Here, the performance criteria are the overall
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TABLE II
MEAN AND STANDARD DEVIATION OF THE SELECTED FEATURES AND THE INFLUENCE OF DIFFERENT ROIS

Fig. 3. BF probability density function for the normal and HS class, in ROI0 .

Fig. 4. BF probability density function at different ROI positions (ROI1 and
ROI2 ).

accuracy (OA):

OA =
TP + TN

TP + FN + FP + TN
(11)

the sensitivity (sens),

sens =
TP

TP + FN
(12)

Fig. 5. Examples of normal US samples displayed in the developed CAD
system interface, that were correctly classified.

and specificity (spec),

spec =
TN

FP + TN
(13)

where TP, FP, FN, and TN denote the true-positives, false-
positives, false-negatives, and true-negatives, respectively.

The performances of the Bayes classifier with the five sets of
features are listed in Table I. Comparison between the perfor-
mances of the classifier is focused on the sensitivity, because it
reveals the capability of correctly detecting HS. Feature set C
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Fig. 6. Correct classified HS US samples with the proposed CAD system
interface.

outperforms feature sets A and B, as well as the sets proposed
in the literature, D [8] and E [7]. This set, C, achieves an OA of
93.33% and a detection rate of 92.11% and 94.59% for normal
and HS class, respectively.

The mean BF value for the normal class was −11.17 ± 5.25
and the mean BF value for the HS class was 10.70 ± 7.75.
Data from the feature set C, extracted in the global detection
step, are used to train the classifier in the local analysis. This
feature vector is composed of three wavelet coefficients, a1,1
(HL1), a1,1 (LH1), and ϵ (HL2), kurtosis, and three features
from the MD, µ(θ1), a0,1 (A3), and a1,1 (θ3), all extracted from
the speckle field.

Table II summarizes the mean and standard deviation of
each selected feature, at different ROIs. Relevant differences
(p < 0.01) in feature values are observed for different ROIs,
mainly between central and peripheral locations. For both pe-
ripheral ROIs (ROI1 , ROI2), BF shows smaller confidence in the
classification result. In ROI1 , normal and HS class attained
−0.611 ± 1.01 and 0.25 ± 1.04, respectively. Similar results
are observed in ROI2 , with −0.95 ± 1.36 and 0.58 ± 1.39, for
normal and HS class, respectively. This result is not surprising
because the classifier was trained with data from ROI0 region.

Fig. 3 presents the histograms of the BF values for each
class, obtained with ROI0 . In this location, relevant inter-
class separability is observed, indicating high confidence in the

classification. To illustrate that the ROI location influences the
performance of the classifier, in Fig. 4, similar histograms are
shown. In this case, BF histograms are highly overlapped and
with lower BF values, revealing low confidence.

Figs. 5 and 6 display examples of the CAD system interface
for normal and HS samples, respectively. BF and its graphical
representation are useful tools for the quantification and detec-
tion of fat accumulation within the liver parenchyma, in the
sense that it allows a graphical correlation between the classifi-
cation evidence and its localization in the US image.

IV. DISCUSSION AND CONCLUSION

In this study, a CAD tool for the detection and quantification
of HS in a global and local basis using US images is described.

The proposed algorithm is able to quantify the subjective
visual criteria, used in clinical practice, providing an objective
measure of HS. The results showed an OA of 93.3% and a sensi-
tivity of 92.1% and 94.6% for normal and HS class, respectively.

Similar experiments, described in [6], report a sensitivity and
specificity ranging from 60.0% to 94.0% and 84% to 95%,
respectively. Other studies report similar results [7], [8], [11],
[27], which support our method.

An important result from this study is that the AR coefficients,
extracted from the multiscale Haar wavelet decomposition and
MD, are relevant US features in HS discrimination. These fea-
tures are mathematical and objective characterizations of the
visual pattern recognition used to classify steatosis.

The study of [28] describes that textural features, based on
power spectrum analysis, allows good discrimination between
normal liver and steatosis. The differences were found in the
region of high frequencies. This result is in accordance with
our study. Wavelet-based features have been proposed in the
studies of [8], [29] and [30] for this problem. A novelty of this
study is the inclusion of the MD as a feature extractor for the
US tissue characterization. The results show that the amplitude
(A) and local orientation (θ) contain key information for this
discrimination problem. It should be stressed that all the features
were extracted from the speckle field of the US image.

The increased interest in liver evaluation by noninvasive
methods has led to the development of new diagnostic modal-
ities, such as gradient echo magnetic resonance imaging
(DGE-MRI) [31], acoustic radiation force impulse (ARFI) elas-
tography, [32] or transient elastography (Fibroscan) [4]. Al-
though these methods have been used for the assessment of
liver fibrosis, they may also be used to characterize HS.

DGE-MRI shows high accuracy in HS detection, attaining a
sensitivity of 90.9% and a specificity of 94% [31]. However,
this technique is limited when fibrosis is present [4] and has low
accessibility [31].

ARFI parameters, shear wave velocity, and attenuation are
strongly correlated with the degree of HS in animal stud-
ies [33], [34]. With human samples, studies have shown that HS
has no statistical influence [35] or correlation [32] with ARFI re-
sults, in contrast to Fibroscan [32], [35], [36]. Fibroscan allows
the extraction of the controlled attenuation parameter (CAP), a
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relatively new parameter, that measures objectively liver attenu-
ation (expressed as dB/m) [4]. CAP achieves a sensitivity of 90%
in the detection of HS, with a cut-off value of 215 dB/m [37].
Despite being the most promising tool to monitor HS, Fibroscan
still faces consistency issues [4] and low availability.

US is still the best way to assess HS in clinical practice [4].
Thus, the proposed CAD tool could lead to a more accurate
patient surveillance or to the need of further diagnostic exams.

Also, the proposed local characterization of liver parenchyma
helps the detection of HS in cases of nonhomogeneous distri-
bution of fat infiltration, that may be deposited in one well-
circumscribed region (focal fatty infiltration) or, alternatively,
discrete areas of liver parenchyma remain uninvolved when the
remainder of the liver is diffusely infiltrated with fat (focal fatty
sparing) [6].

To maintain the reproducibility and accuracy of the method,
ROI should be always selected from the central part of the US
image without artifacts.
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