
13 
 

 
 International Journal of Bioelectromagnetism www.ijbem.org 
 Vol. 15, No. 1, pp. 13 - 19, 2013  

  
 
 

Statistical Characterization of Actigraphy Data for 
Sleep/Wake Assessment 

Alexandre Dominguesac, Teresa Paivab and J. M. Sanchesac 

aInstitute for Systems and Robotics, IST, Lisbon, Portugal. 
bCentro de Electroencefalografia e Neurologia Clínica and Faculdade de Medicina da Universidade 

de Lisboa, Lisbon Portugal. 
cDepartment of Bioengineering, Instituto Superior Técnico / Technical University of Lisbon, Lisbon, 

Portugal. 
Correspondence: Alexandre Domingues, Instituto Superior Técnico, Torre Norte, 6º Piso, Sala 6.13, Av. Rovisco Pais, 1049-001 

Lisboa, Portugal. E-mail: adomingues@gmail.com, phone +351 218418199 
 

Abstract. Wrist actigraphy is a well established and very useful procedure for long term activity 
monitoring. Its lightweight and non-intrusive nature makes it not only a valuable tool in the detection of 
abnormal behavioral patterns, associated with certain sleep disorders, but also an unexpected source of 
basic information related with brain states, namely, wakefulness and sleep. 

Here, the activity in the different states is assumed to be intrinsically different. These differences are not 
simply related with magnitude and movement counting, but due to real differences on the statistical 
distributions describing the actigraphy data across different states. 

In this paper, the proposed methodology to characterize the actigraphy data is based on Autoregressive 
(AR) models. It is shown that the coefficients estimated in each state are organized into almost 
separable clusters on the feature space. This suggests the ability of the method to discriminate these 
states based only on the movements recorded on actigraphy data. 
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1. Introduction 
Sleep disorders form a class of medical conditions, pathological or not, affecting millions of people 

across the world. They are characterized by changes in the normal pattern of the circadian cycle and 
even sleep disruption, with severe consequences for the general health condition of the subjects [Lger et 
al., 2007]. The detection, characterization and diagnosis of these disorders is usually performed with 
polysomnography (PSG), an expensive, complex and very intrusive exam,where several physiological 
variables are monitored, usually during a single night. This technology is not appropriated for long term 
monitoring because it is uncomfortable for the patient and strongly interferes with his mobility and 
normal routines. 

For long term monitoring exams, alternative methods are preferred where other sources of data may 
be used, such as behavioral ones, e.g, Sleep and Dream diaries and Actigraphy.  

Actigraphy (ACT), in particular, has been used with success in the last years in the diagnosis of 
several disorders like Insomnia [Siversten et al., 2006] and Obstructive Sleep Apnea Syndrome (OSAS) 
[Hedner et al., 2004]. 

ACT data is obtained with non invasive and highly portable accelerometer sensors, usually placed 
at the non dominant wrist, that measure the motor activity of the subjects during several days and nights. 
It is a valuable tool to gather behavioral information about the patients or sleep parameters such as 
sleep continuity and times, with a minimum intrusion and interference on normal daily routines [Sadeh 
et al., 1995]. 
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It has been used with success in the estimation of the shape and characterization of the circadian 
cycle [Cole et al., 1992; Sadeh et al., 1994] but its use in the estimation of the sleep and wakefulness 
states is still an open discussion [Pollak et al., 2001]. 

In this paper we propose a statistical description of the movement based on Autoregressive models 
(AR) to show that movements during wakefulness and sleep states are intrinsically different. 

Purposeless is the key concept of the paper. While movements during sleep state are typically 
random and without purpose, movements during wakefulness state are coherent and correlated. This 
empirical observation suggests that movements recorded during different states, apparently similar from 
temporal and intensity points of view, may present relevant differences from spectral or statistical 
distribution points of view. 

Here, the work from [Domingues et al., 2010], where higher order statistics are computed with AR 
models, is refined to improve the discriminative power of the method for sleep staging purposes. 

2. Material and 
Methods

 

Figure  1 - Typical aspect of the actigraphy data recorded over one circadian cycle. 
 

Actigraphy data was collected with a Somnowatch device, from Somnomedics, placed at the non-
dominant wrist of the subjects with a sampling rate of 1Hz. The core of these devices is a 3D 
accelerometer that measure the acceleration along 3 orthogonal axis with a configurable output format. 
Here, the output of the actigraph is the acceleration magnitude. A typical time course of approximately 
one circadian cycle is displayed in Fig. 1. 

The actigraphy data used in this study was jointly acquired with PSG data for validation purposes. 
The hypnogram, obtained from the PSG data by trained technicians, is used as ground truth to identify 
the sleep and wakefulness states in each epoch. 

2.1. Pre-processing 
Two pre-processing operations are performed on the data: i)Magnitude normalization and 

ii)activity segmentation. The proposed method is not intensity dependent, magnitude normalization is 
needed to minimize the interpatient and intra-patients variability effects. The normalization step is 
simply a mean subtraction and variance normalization procedure according to  

Y

Ynynx
V

P�
 

)()(   (1) 

where YP  and YV   are the mean and standard deviation of the data, respectively. 
The second operation, movement segmentation, is performed since the large segments of 

immobility are useless for activity characterization and sleep staging. They constitute a source of noise 
and confound factors in the training process of the staging classifier. 

A simple threshold based detector was implemented to detect movement and extract the 
corresponding actigraphy data. Fig. 2 displays an example of pre-processed data. Fig. 2.a) shows the 
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normalized actigraphy signal and the movement indicator and Fig. 2.b) the corresponding hypnogram 
segment. 

 

Figure 2: a) Actigraphy data and detected movements (top) and  
b) Hypnogram (bottom) 

 
Data acquired from ten patients was used for analysis. After normalization and movement detection 

the segments corresponding to sleep, s, and wakefulness, w, states were concatenated into two large 
arrays respectively.  

2.2. Correlation measures 
As explained in Section 1 the work developed was based on the assumption that movements during 

sleep and wake states have different statistical properties. This claim can be easily confirmed by two 
simple measures; the auto-correlation and power spectral density of the two (s/w) arrays. 

Fig. 3 shows the plot of the autocorrelation coefficients for the two arrays, obtained for a maximum 
delay of 300 seconds. It is clear that wakefulness movements are more correlated than sleep movements. 

 
 

 

Figure 3 - Autocorrelation coefficient for sleep and wakefulness states. 
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Fig. 4 shows the Power Spectral Density (PSD), estimate via Yule-Walker’s method [Takalo et al., 
2005]. It can be seen that the bandwidth for wakefulness movements is higher than for sleep movements, 
thus confirming the initial guess. 

 

 
 

Figure 4 : Power Spectral density of the ovements during wakefulness (red) and 
sleep (blue) states. 

 

2.3. Autoregressive coefficients estimation 
The coefficients of Autoregressive models (AR) constitute the set of features used for 

sleep/wakefulness detection, a method already proposed before by the authors in [Domingues et al., 
2010] to roughly discriminate sleep and wakefulness states from actigraphy data. 

The estimation of the AR coefficients described in the previous work is performed on a block basis, 
introducing a heavy filtering effect. Here, the AR coefficients estimation is performed on a per sample 
basis, thus increasing time resolution and a ground truth (hypnogram) is available to quantify the 
performance of the method. 

The overall idea is to estimate the coefficients of a p order AR model based on the current sample, 
on the 1�p  previous samples and on the previous estimated set of coefficients, obtained in the 
previous sample. By doing this, the estimation of the coefficients are strongly guided by the previously 
estimated coefficients, incrementally updated with the information provided by the new sample. 

Let us consider )(ny , the nth actigraph sample, generated according to the following ẚ-order AR 
model  

 

y �n���
k�1

p

ak �n� x �n�k ��ά�n��x p
T �n�a �n��ά�n�   (2) 

 

where x p��x �n�1� , x �n�2� ,... , x�n�p��T  is a column vector containing the p Ώ

previous samples, a �n���a1�n� , a2�n� , ... , a p�n��
T

 is the column vector of coefficients to be 
estimated at sample time n Ώand )(nH  is the residue.  

The vector of coefficients is obtained by minimizing the energy of the residue 
 

ά2�n��� y�n��x p
T �n�a �n��2   (3) 

 
which is an ill-posed problem [Curtis et al., 2002], thus a regularization term is needed. 
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Let us consider the following energy function with regularization 
 

E �n��� y�n��x p
T �n�a �n��2�Ψ�a�n��a �n�1��2

2
  (4) 

 
where the quadratic term, �a�n��a �n�1��2

2
 , is a prior that forces similarity between 

consecutive model parameters. The constant D Ώtunes the strength of that similarity and was selected to 
be 150 on a trial and error basis. The stationary point of (4) with respect to )(nD  is computed as 

 
0)]1()([))()()(()()(  ������ � nnnynnnE T

ppna aaaxx D                          (5) 
leading to  

ϒa �n��� x p�n� x p
T �n��Ψ I p�

�1� x p�n� y �n��Ψ a�n�1��   (5) 

Where pI   is the ppu Ώidentity matrix. 
The optimal order of the model, p = 50, was obtained using Akaike information criterion [Akaike, 

1969], allowing a good fit of the model to the data and an acceptable computation time. 
By stacking the NΏ vectors )(ˆ na , obtained for each sample, from (6), and for each state, 

wakefulness and sleep, two pN u  matrices are obtained, },{, sw WWA .Each line Nnnl dd0),(Wa , 

corresponds to the vector of pΏ coefficients computed for the nth
 sample and each column 

pinc dd0),(Wa , corresponds to the ith
 coefficient computed for the NΏsamples. 

For the sake of computational efficiency, a data dimensionality reduction is performed. For that, the 
3 most discriminative components of  )(ˆ na  were selected performing an adapted forward search 
[Novovicov et al., 1994] according to the following procedure. 

Let us consider the following metric function to measure the distance between specific sets of 
homologous columns, ac

w �i1,. .. , ir� and ac
s �i1,. .. ,i r� from matrices Aw and As respectively, 

 

d �i 1,i 2,. .. , ir��
�γac

w�i 1,. .. , ir��γac
s�i1,. .. , ir��

�Ρac
w�i 1,. .. , ir��F

��Ρa c
s�i 1,. .. , ir��F

  (6) 

 
where γ Ώand  Ρ are the mean and the covariance matrix of the selected columns and �x�F  is 

the Frobenius norm.  
In the first step of this feature selection procedure, the most discriminative coefficient is obtained 

by finding the two most distant homologous columns,  
i1�arg maxi d � i�   (7) 

and  in the next steps, the k th
 most discriminative coefficient is obtained by 

ik�arg maxi d �i1, i 2,i k�1 , i�   (8) 

where },...,,.{\},...,1{ 121 �� kiiipi . 

3. Results 
The algorithm was first tested independently for each patient, two data sets were removed due to 

the lack of movement during sleep and noisy actigraphy data. The remaining 8 data sets were finally 
used to obtain the matrices of coefficients WA  .  

The three most significant coefficients, columns (50ṖΏ22ṖΏ23), are plotted in Fig.5 where the clouds 
of both states are clearly distinguishable.  
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Figure 5 - The three most discriminative coefficients of the AR model yield almost separate clouds for 
Sleep (blue) and Wakefulness (red) states. 

 
The separability and clustering nature of these clouds allows to use simple discriminative classifiers 

to discriminate the state and revels intrinsic differences on the movement characteristics between 
classes, which confirms the results obtained in [Domingues et al., 2010]. 

The modification of the algorithm to process the data on a per sample basis removes the lag and 
filtering effect on the previous method, allowing to detect subtle state changes. 

The described method is robust but contains some user adjustable parameters, such as the 
movement detector threshold and model order, which strongly influences the results. 

Although a special effort has been placed in the acquisition process and data selection, 
classifications errors in the hypnogram may persist. This is mainly related with human errors and inter 
operator variability Although a typical Polysomnography exam generates a large amount of data, only a 
small fraction, corresponding to movement periods, was used. Nevertheless, the eight data sets used in 
this study contained enough movement data to produce relevant results. 

The obtained results are remarkable in the sense that using a simple device such as an actigraph, it 
is possible to do a rough estimation of the sleep/wake state of the patient. While these results alone are 
not sufficient for a standalone platform, they can be incorporated in existing frameworks to help 
improve the accuracy of sleep/wakefulness classifiers. 

4. Conclusions 
In this work the intrinsic properties of the movements during sleep and wakefulness are explored 

towards the development of a simple, portable and accurate sleep/wake estimator, based on actigraphy 
data and other physiological information. 

AR coefficient based features and a Forward Search feature selection approach are used to 
discriminate wakefulness and sleep stages from actigraphy data. 

With this method, it is shown that the movements during sleep and wakefulness states present 
different temporal correlation which is the basis for their discrimination. 

Future work will combine the present work and features extracted from cardio-respiratory signals . 
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