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Abstract. Structural and mechanical properties of the tissues are de-
pendent on the physical linkage between cells. E-Cadherin is a key com-
ponent on this adhesion mechanism and mutations on its coding gene
may produce dysfunctional molecules that compromise the cell-cell link-
age and increase the risk of cancer.

The stationary distribution of E-Cadherin is characterized by a clear
increased concentration at the membrane where it plays its adhesion role.
However, for mutated molecules, the traffic dynamics of E-Cadherin is
disturbed and different distributions of E-Cadherin across the cell are
observed.

In this work a computational tool is proposed to semi-automatically
help in the segmentation of cells from microscopy images of fluorescence
with tagged E-Cadherin and to compute an image of radial profiles of the
molecule distribution from the center of the cell toward the membrane.

The image of radial intensity profiles of E-Cadherin distribution de-
pend on the location of the nucleus and on the specific geometry of each
cell which is not related with the functional role of the molecules.

In this paper the radial profiles are geometrically compensated, to
cope with shape and size differences among cells, and a representative
profile of the tissue is obtained for mutation detection purposes.

Examples with real microscopy images of fluorescence of epithelial
cells of the stomach are presented to illustrate the method.

1 Introduction

In epithelia, cell-cell adhesion is achieved by the establishment of homophilic in-
teractions between two adjacent cells. One of the pivotal molecules to attain this
homeostatic interaction between cells is the correct localization and function of
the transmembrane protein E- cadherin and its interaction with other members
of the adhesion complex [1].
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In cancer, somatic changes in the expression or function of E-cadherin have
been implicated in all steps of tumour progression, including detachment of tu-
mour cells from the primary site, invasion of the adjacent tissue, intravasation
into the blood stream, extravasation into distant target organs, and formation of
secondary lesions or metastasis [2].In hereditary forms of gastric cancer germline
E-cadherin mutations are causing events [3] In this lethal cancer disease patients
develop highly invasive isolated carcinomas that still pose a very important clin-
ical problem since no effective tools of image screening (endoscopy, MRI and
PET) are available yet.

Fig. 1. a)Healthy tissue (WT E-cadherin) b)Neoplasic tissue (mutated E-cadherin)

The distribution of WT E-Cadherin molecules in cells is mainly observed at
the membrane where they play its role in cell-cell adhesion. By this, in cells with
this type of functional E-Cadherin the intensity of imunofluorescence images
is stronger at the membrane. Additionally, the distribution of the molecules
in normal cells at the cytoplasm present a characteristic uniform distribution
related with the stable traffic pattern of the non mutated molecules. On the
contrary, the E-cadherin in mutated cells follow a different distribution. Large
concentrations in the cytoplasm or lack of E-cadherin signals in some locations
are common features for almost all mutations that are associated with loss of
cell-cell adhesion.This distribution, depending on the functional characteristics
of the molecule, is also dependent on the specific shape of the cells and on the
position of the nucleus within the cell, that is not always at the center of the
cell.

Geometric compensation is a common procedure in several image modalities,
mainly for registration purposes [4]. The main goal is making it possible the
comparison and alignment of objects with a wide range of shapes and sizes.

The general strategy in this type of algorithms consists in the estimation
of a geometric transformation, rigid or non-rigid [5], by optimizing a metric of
similarity in order to make the objects under alignment as similar as possible
from shape and size points of view [6].

Geometric compensation in images of microscopy is mainly related with seg-
mentation and tracking [7,8]
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In this paper a specific geometric compensation task is addressed in the scope
of the problem of the E-Cadherin distribution characterization and quantification
in the intracellular space, specially near the membrane, for mutation detection
and discrimination purposes. A method for geometric deviation compensation
of the cells shape from the perfect centred circular shape is proposed. The main
goal is averaging a large number of radial profiles extracted from different cells
from different plaques of each type of mutation and WT cells and obtain a
typical E-cadherin radial profile to characterize each mutation.The method is
performed in three main steps:i) Manual cell selection by the biologist and auto-
matic estimation of the centres of the selected cells, ii) profile extraction along
different angles (see Fig. 3.b)) and profile map building with these profiles as
shown in Fig. 3.c) and finally iii) geometric compensation, which is the key issue
of this paper. Typical images of imunofluorescence images used in this work are

Fig. 2. Typical imunofluorescence images used in this work

displayed in Fig.2. The profile extraction procedure is illustrated in Fig.3 where
it is clear the effects of the deviations from the ideal circular shape that would
lead to an horizontal straight line representing the intensity at the membrane.

The proposed geometric compensation method is based on a novel approach
where the image profiles are modelled as a continuous field in R2 estimated
from the original profiles adjusted along an iterative procedure. The algorithm,
contrary to what usually happens, adjusts of observation locations driven by the
minimization of an energy function.

2 Problem Formulation

The goal of this work is the creation of a standard intensity profile of the
E-Cadherin distribution along radial directions of the cell nucleus center in
microscope images of imunofluorescence for functional/dysfunctional discrimi-
nation purposes.

In the first step of the pre-processing procedure the relevant cells in each
plate (see Fig. 2) are manually selected by the biologist by using a graphic user
interface (GUI) developed to this project. This process is crucial for the success
of the method because cells where the transfection [9] process did not perfectly
occurred should not be taken into account for the profile definition.
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Fig. 3. Pre-processing procedure. a) Original image of imunofluorescence, b) nuclei
segmentation and c) Cartesian image of polar profiles.

In a second step, radial profiles, from the centre of the nuclei, for differ-
ent angles, θ, are extracted from the selected cells, as shown in Fig.3.b) and
are organized in columns of a profile image, as shown in Fig.3.c). In an ideal
radial distribution of the E-Cadherin, on a spheric cell, this profile image is an-
gle invariant (across columns) presenting only information along the distance
direction, ρ.

The third step of the method is the core of this work. In this step, the columns
of the image of profiles are non rigidly distorted and adjusted in order to minimize
the norms of consecutive columns to make them as similar as possible. This is
an ill posed problem [10] and regularization is needed. An iterative algorithm
optimizes an energy function where the original locations of the observed pixels
are moved under constraints in to stabilize the iterative process and prevent
divergence.

This iterative procedure is performed in two alternate steps: i) vector of coeffi-
cients estimation, ĉk, describing each column as smoothed continuous functions
under similarity constraints between columns and ii) observation location ad-
justments, xk(i), in a column wise basis, to the smooth functions estimated in
the previous step.

Each column, representing each angle profile, is described by a finite dimension
continuous function

fk(x) =

N−1∑

i=0

ck(i)φk(x) (1)

where φk(x) are triangular interpolating functions and ck = {ck(i)} is a vector
of coefficients estimated by minimizing an energy function [11]

ck = argmin
c

E(xk,yk, ck) (2)

where E(xk,yk, ck) = Ey(xk,yk, ck) + Ep(ck). The data fidelity term, that
pushes the solution toward the data, is Ey(xk,yk, ck) =

∑
j (fk(xk(j))− yk(j))

2
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and the prior term used to stabilize the iterative process and smooth the so-
lution is Ep(ck) = α

∑
k,j (ck(j)− ck(j − 1))2 = α‖ck‖2 where α is the prior

hyper parameter. Using matrix notation this energy function is

E(xk,yk, ck) = (Φc− y)T (Φc − y) + α(θc)T (θc) (3)

where Θ is a difference operator. The minimizer of (3) is computed by finding
its stationary point, ∇cE = 0,that leads to the following solution,

c0 = (ΦTΦ+ αΘ)−1ΦTy; (4)

where Θ = θT θ.
In the second step of the iterative process a prior term is added to the expres-

sion of the energy of the system with the purpose to force similarity between
columns. The energy will become: E(xk,yk, ck) = Ey(xk,yk, ck) + Ep(ck) +
Ep(ck, ck−1) where β is the new prior hyper parameter and Ep(ck, ck−1) =
β
∑

k,j (ck(j)− ck−1(j))
2 . Using matrix notation this energy function becomes:

E(x,y, z) =
∑

k

(Φc − y)T (Φc− y) + α(θck)
T (θck) +

β(ck − ck−1)
T (ck − ck−1) (5)

The minimization of (5), results in:

ΦT (Ψck − yk) + αΘck + β(ck − ck−1) + β(ck − ck+1) = 0 (6)

which can be rewritten as:

Σ(xk)ck − βCPk = ΦT (xk)yk (7)

where Σ = (ΦTΦ + αΘ + 2βIN ) , β(ck−1 − ck+1) = βCPk , C is the matrix
containing in the kth column the actual ck and Pk the kth column of a shift
matrix. Rearranging the terms in order to calculate the ck of each column we
finally obtain:

ck = Σ(xk)
−1(βCPk + ΦT (xk)yk) (8)

In the third and last step, the observations position will be adjusted after the
computation of the vectors of coefficients, ck. The energy function of this step
is E(xk,yk, ck) = Ey(xk,yk, ck) + Ep(xk) where Ep(x) = γ

∑M
j=1(xj − xj−1)

2.
In this case the minimization of this expression is with respect to x, ∇xE = 0,
which leads to

2(fk(xr)− yr)ḟk(xr) + 2(xr − xr−1) + 2(xr − xr+1) = 0 (9)

Rearranging the terms, xk(i) can be calculated making:

xk(i) = 1/2

(
Zk(i)

γ
+ (XT

k ∗ ΨT
k )T

)
(10)
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where Zk(i) = (fk(xk(i)) − yk(i))ḟk(xk(i)), Xk is the actual kth column of the
matrix which collects the actual positions of the observations and Ψk the kth

column of a difference matrix operator. The iterative method of geometric com-
pensation begin with the initialization of C0 (see (4)) and afterwards alternates
the recomputation of Ck forcing similarity between columns and the reposition-
ing of the observations (see (10)).

Fig. 4. Results with synthetic data. a) Radial profile, b) interpolated image after
geometric compensation and c) displacement maps.

3 Experimental Results

The proposed algorithm was implemented in Matlab@ and synthetic and real
data were used for illustrative purposes.

3.1 Synthetic Data

In this experiment two 256 × 130 gray scale synthetic image containing a half
arc of cosine with different levels of noise (see Fig.4 left ) are used to illustrate
the application of the proposed algorithm. These synthetic images aim to sim-
ulate the concentration of E-Cadherin at the membrane of non ideal spherical
cells, where the radial profiles would be perfect horizontal lines. The results of
geometric compensation applied to this images are shown in Fig. 4 in middle
and right columns.

All the profiles were correctly compensated showing that the algorithm is stable
for different intensities of backgroundnoise.The displacementmaps (Fig.4, left col-
umn ) show higher displacements in areas where the curvature is higher (extremes
of the half cosine) as expected. Also the increase of noise increases the number of
observations displaced due to local corrections which results in a denoising effect.
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3.2 Real Data

The real data are images, displayed in Fig.2, of imunofluorescence of CHO cells,
transfected [9] with vectors encoding the wild type E-cadherin, where the dis-
tribution of the molecules can be observed in the intra and inter cellular space
and mainly at the membrane.

For illustrative purposes a single radial profile created from a region of interest
of a fluorescence microscopy image (see Fig. 6 a)).The results are displayed in
Fig.5 and Fig.6.

Fig. 5. Geometric compensation algorithm.a) Initial radial profile and compensated
image profile after (b) 300, c) 700 and d) 1000 iterations.

Fig. 6. a) Initial radial profile, b) real image after geometric compensation and c) real
image obtained from repositioning of the initial observations, without interpolation

Fig. 5 shows the evolution of the image during the algorythm of geometric
compensation. The image is rearranged in order to minimize the distance be-
tween observations with similar intensity creating a peak in the middle of the
image, as expected. Fig. 6 b) is the grayscale result of the geometric compen-
sation of 6 a) radial profile. The result in 6 c) is the imaged recriated with the
displacement of the original obervations (and the interpolation of the empty re-
mained empty pixels). This result also shows a peak of intensity in the middle
of the image in coherence with what was expected.
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4 Conclusion

In this paper a semi-automatic segmentation procedure of cells from fluorescense
microscopy images with tagged E-Cadherin, is described as well as the algorithm
to extract the radial intensity profiles of them for distribution characterization
purposes.These profiles are affected by geometric differences between cells that
are not perfect spheres, and are confound factors in the process of E-Cadherin
mutation detection and discrimination.

In this paper an algorithm to compensate for these differences is described.
The method is based on the estimation of a continuous field in R2 based on
moving observations driven by the minimization of an energy function contain-
ing specific priors that regularize the estimated field along the distance to the
centroid of the cell. The presented algorithm of geometric compensation can be
applied for instance in cases of biological variety in geometry. A future goal is
to denoise the images to increase the stability range of this method.
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