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Abstract. Model for End-stage Liver Disease (MELD) is a common
score used in clinical practice to estimate the prognostic outcome of
cirrhotic patients. This score is obtained from laboratory results.

Here a novel method is proposed to estimate the MELD score based on
textural information extracted from normalized ultrasound (US) images
of liver parenchyma. The information obtained from the co-ocorrence
matrix and the monogenic decomposition of the image is linearly com-
bined to compute the score. The application of US data for prognosis
purposes is also a noteworthy novelty of this paper.

A dataset of 82 cirrhotic patients is used in this work. An optimal
cut-off from a ROC analysis lead to an accuracy of 80% and an AU-
ROC of 0.801 in the prognosis prediction. No statistical differences were
found between the MELD score and the proposed US score and a strong
correlation (0.65 p < 0.01) was attained.
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1 Introduction

Chronic liver disease (CLD) is a major public health problem [1]. CLD final stage
is cirrhosis, which in most cases evolves to hepatocellular carcinoma (HCC) [1].

CLD staging is based on clinical, biological and morphopathological evalu-
ation, obtained from liver biopsy. Liver biopsy is considered a key role in the
diagnosis and follow-up of CLD [2,3]. The need for biopsy reduction, due to its
invasive nature and the potential for sampling errors, has led to the develop-
ment of noninvasive methods [2,3]. US has gained particular interest, since it is
widely available, inexpensive, non-ionizing [3]. It is already the screening choice
for HCC in cirrhotic patients.

In this spectrum, the majority of the studies have been focused on the role
of US in the detection of cirrhosis. However, beyond diagnosis, prognosis is an
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essential part of the baseline assessment of any disease [4]. Accurate estimation
of CLD prognosis is highly important since it can be used as a guide for ordering
additional tests and selecting appropriate therapies.

Liver transplantation is the proposed treatment for end-stage cirrhosis. There-
fore, a reliable prognostic model for organ allocation on the liver transplantation
waiting list is needed [5]. MELD score has been widely applied, replacing other
models, and accurately predicts a broad spectrum of liver disease [5].

MELD correctly ranks cirrhotic patients according to their risk of death over
a 3-month time period. [6] showed that the mortality increased in proportion to
the increase of MELD. In [7] a strong correlation (ρ = 0.768) between an US
quantitative scoring system and the MELD score is shown. However, some of
the proposed features are based on visual inspection, thus less objective.

This paper is organized as follows: Section 2 describes the CLD patients char-
acterisitics (2.1) and introduces the US decomposition algorithm, US feature
extraction and selection of the polynomial fitting model (2.2). In section 3 the
experimental results of the tested models are presented and concluding remarks
are discussed in Section 4.

2 Materials and Methods

Here, we outline patients clinical characteristics, the procedure for data acquisi-
tion and the methodology used to develop the prognostic model from US images.

2.1 Data

Eighty two (82) patients with cirrhosis who had been in referred to the Depart-
ment of Gastroenterology of Santa Maria Hospital affiliated to Lisbon Medicine
Faculty were evaluated. Based on liver biopsy results and clinical diagnosis, 35
patients were diagnosed as compensated cirrhosis and 47 as decompensated cir-
rhosis, as summarized in Table 1. Patients with history of HCC were excluded.

For each patient, MELD score was calculated using the original formula [6],
MELD = 9.6× ln (creatinine) + 3.8× ln (bilirubin) + 11.2× ln (INR) + 6.43.

To decrease intra-patient variability, all patients underwent US and biochemi-
cal tests in the same day. A Philips CX c© 50 US scanner was used, with a broad-
band curved array transducer C5-1 c©. Images were captured in a 1024x1024 pixel
matrix, DICOM format, with a grey level resolution of 8 bits/pixel.

An acquisition preset was set using the following parameters: fundamental fre-
quency of 3.5 MHz, without the use of harmonics or compounding technologies,
depth of 15cm and two focal zones were used and set at the central portion of the
image (7.5 cm). The dynamic range was set in 70 dB and the gain was variable,
according to the patient biotype. Time gain compensation was set to its central
position and kept constant. US images were acquired in the right liver lobe and
according to patient biotype different transducer orientation angles were per-
formed, using as protocol the same liver anatomical landmarks. Patients were
positioned in supine, comfortable and asked to breath gently, avoiding major
patient motion.
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Table 1. Demographic, clinical and biochemical features of the studied population

All
patients (n=82)

Compensated
Cirrhosis (n=35)

Decompensated
Cirrhosis (n=47)

Demographic (mean±SD)
Age (yr) 61±12 60±10 61±13

Aetiology (%)
Alcohol 40.24 17.14 57.45
HBV 7.32 11.43 4.26
HCV 23.17 40.00 10.64

Alcohol + HBV 1.22 - 2.13
Alcohol + HCV 10.98 2.86 17.02
Other causes 13.41 22.86 6.38

Biochemical (mean±SD)
Albumin (g/dL) 2.82±1.23 2.66 ± 1.77 2.9±0.54

Serum bilirubin (mg/dL) 2.87±4.61 1.53 ± 1.94 23.85±5.69
Serum creatinine (mg/dL) 1.29±1.81 0.97± 0.48 1.52±1.50

INR 1.29±0.47 1.18 ± 0.61 1.37±0.31

MELD (mean±SD)
12.42±7.33 8.72 ± 5.50 14.98±7.39

HBV - Hepatitis B virus; HCV - Hepatitis C virus

2.2 Prognostic Model

To assemble an accurate, objective and realistic model from US images, the
following steps are used:

US Image Pre-processing

To eliminate the influence of the US scanner and operator, US images are normal-
ized and decomposed. The procedure described in [8] to separate the textural
and intensity information within US images is here adopted. In this, an esti-
mation of the radio frequency (RF) raw data is firstly done based on physical
considerations about the data generation process, namely, by taking into account
the US scanner parameters tuned by the clinician during the US exam.

The estimated RF image is decomposed in de-speckled and speckle fields ac-
cording to the following model [8]

y(i, j) = x(i, j)η(i, j), (1)

where η(i, j) are considered independent and identically distributed (i.i.d.) ran-
dom variables with Rayleigh distribution. This image describes the noise and
textural information and is called speckle field. In this model, the noise is multi-
plicative in the sense that its variance, observed in the original image, depends on
the underlying signal, x(i, j). Figure 1 illustrates an example of the decomposi-
tion methodology in a US liver image of a patient with decompensated cirrhosis.

US Feature Extraction and Selection

From each speckle field, a ROI, of 128x128 pixels, is manually selected by an
expert operator along medial axis with the criteria: i) representative of liver
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(a) (b) (c) (d)

Fig. 1. Decomposition procedure of US liver parenchyma. a) Observed B-mode US
image. Estimated b) envelope RF image, c) de-speckle and d) speckle fields.

parenchyma; ii) avoid major vessels and ligaments; and iii) as superficial as
possible, to avoid US beam distortions. The following features are then extracted.

The elements of the Co-ocurrence matrix, Co = {ci,j(Δl, Δc)}, describe im-
age gray level spatial inter-relationship [9]. More precisely, element ci,j(Δl, Δc)
represents the joint probability of the pixel intensities i and j in relative spatial
position of (Δl, Δc) [9] and can be computed as follows

ci,j(Δl, Δc) =

N∑

l=1

M∑

c=1

{
1 if(ηl,c = i) ∧ (ηl+Δl,c+Δc = j)
0 otherwise

(2)

For a pixel distance of 1, we have four angular [0o, 45o, 90o, 135o] Co-occurrence
tensors for (Δl, Δc) ∈ {(0, 1), (−1, 1), (−1, 0), (−1,−1)}, where the following fea-
tures are calculated: Contrast, Correlation, Energy and Homogeneity.

US features are also extracted from the monogenic decomposition (see Figure
2). Given a two dimensional signal f(x), x ∈ R

2, [10] define the three-component
monogenic signal as

fm(x) = (f(x), Re(Rf(x)), Im(Rf(x))) = (f, f1, f2), (3)

where Rf(x) is the Reisz transform, the local amplitude of the signal is given by
A(x) = ‖fm(x)‖ =

√
f2 + f2

1 + f2
2 while its local orientation θ and local phase

ψ are specified by the following relations

f = A cosψ, f1 = A sinψ cos θ, f2 = A sinψ sin θ. (4)

(a) (b) (c) (d)

Fig. 2. Monogenic decomposition of an US image. (a) speckle field, (b) local amplitude
(A), (c) local orientation (θ) and (d) local phase (ψ).
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Here, a 3 level monogenic decomposition is used with the algorithm proposed by
[11]. From each component (A, θ, ψ), at each level, the autoregressive (AR) coeffi-
cients of a first order 2D model {a1,1, a1,0, a0,1}, energy and mean, are extracted.

A total of 61 features were extracted from each US image. To avoid overfit-
ting, feature selection is performed with the stepwise regression analysis method
(p < 0.05 to add; p > 0.1 to remove) [12]. An optimal subset of 2 features was
produced: F1: Contrast (-1,-1) and F2: a1,1ψ1.

Model Selection and Accuracy

The polynomial model is used to fit MELD (M) score data and it is defined as
follows,

M̂(F1, F2) =

D∑

i=0

D∑

j=0

wi,jF
i
1F

j
2 . (5)

In this study, we tested the polynomial model raging the degree, D, from D =
1, ..., 4. The coefficients of each tested model are calculated in a least squares
sense. The following goodness of fit tests are used to assess the adequacy of a
model and by comparing it with order models under consideration.

Sum of squares due to error (SSE). Measures the total deviation of the
response values from the fit to the response values.

SSE =
∑

(Mi − M̂i)
2 =

∑
e2i . (6)

Root mean square error (RMSE). Estimates of the deviation of the ran-
dom component in the data.

RMSE =

√∑
(Mi − M̂i)2

n− 2
(7)

R-square(r2). Measures how successful the fit is in explaining the variation of
the data.

r2 =

∑
(Mi − M̄i)

2 −∑
(Mi − M̂i)

2

∑
(Mi − M̄i)2

(8)

Adjusted R-square(r2a).

r2a = r2 − 1− r2

n− 2
. (9)

Assessing the Prognostic Outcome

MELD is an objective score, measured by widely available laboratory tests [5].
USscore (M̂) does not intend to replace MELD score, but to use it as a reference.

Even at low MELD scores (< 15) differentiation in prognosis survival can be
made, leading to different clinical approaches and surveillance. Patients with a
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MELD score < 9 experienced a 1.9% mortality and with MELD ≥ 10 a mortality
rate superior to 6% at 3 months [6]. Two classes are defined: ωRRD - reduced
risk of death (MELD< 9) and ωIRD increased risk of death (MELD≥ 10).

To optimize the cut-off (c) value of the USscore for the defined mortality
classes receiver operator characteristic (ROC) analysis is performed. ROC curve
provide a graphical representation of the tradeoff between sensitivity (sens) and
specificity (spec). The ROC curve can be defined as a parametric curve, s(c) :
R → R2, where s(c) = (1− spec(c), sens(c)). The optimal cut-off value is based
on the c value that maximize the area under the ROC curve (AUROC).

3 Experimental Results

Table 2 summarizes the performance of each model, computed in a leave-one-
out cross-validation basis. Linear model is the best choice overall, achieving the
lowest SSE and RMSE of 267.4 and 2.044, respectively, a r2 of 0.919 and a r2a
of 0.917. In the linear model, described as

M̂ = w1 × F1 + w2 × F2 + w3, (10)

the estimated coefficients (with 95% confidence bounds) were found to be w1 =
3.99(3.07, 4.92), w2 = −42.43(−48.1,−36.75) and w3 = 29.58(26.84, 32.32). A
Pearson correlation coefficient of 0.65 was achieved and no statistical differences
were observed between the MELD (M) value and the proposed USscore (M̂)
(p < 0.01). Figure 3 projects the fitting surface of M̂ .

To define the best cut-off value, a ROC analysis was performed with three
coefficients combinations: model fit 1 - best fitting result (29.58 + 3.99 × F1 −
42.43 × F2), model fit 2 - coefficients of the lower confidence bounds (26.84 +
3.072 × F1 − 48.1 × F2) and model fit 3 - coefficients of the higher confidence
bounds (32.32 + 4.923× F1 − 36.7× F2). The results are resumed in Table 3.

Table 2. Goodness of fit results of the tested models

Model SSE R-square Adjusted R-square RMSE
Linear (d=1) 267.4 0.919 0.917 2.044

Quadratic (d=2) 2115 0.363 0.311 5.89
d=3 1992 0.400 0.305 5.91
d=4 1244 0.625 0.524 4.89

Table 3. USscore model performance with three different set of estimated coefficients

Model AUROC(95% CI) cut-off OA (%) Sens(%) Spec(%) PPV (%) NPV(%)
fit 1 0.80 (0.70 - 0.91) 10.8 80 74.4 85.9 87.9 70.6
fit 2 0.79 (0.69 - 0.90) 11.6 79.1 76.9 82.1 85.7 71.9
fit 3 0.70 (0.69 - 0.90) 17.4 79.1 76.9 82.1 85.7 71.9

AUROC, area under the ROC curve; CI, confidence interval; OA, overall accuracy;
PPV ad NPV, positive and negative predictive values
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Fig. 3. The linear model describing MELD score as a function of the US features: (a)
F1 and (b) F2 view

Linear model fit 1 achieved the best performance with an AUROC of 0.801,
a PPV of 87.9% and a NPV of 70.6%. The cost-effective cut-off was set at 10.8,
leading to a detection rate of 74.4% for ωIRD and 85.9% for ωRRD. USscore

accurately predicted, based on the MELD values, 66 of the 82 patients with
cirrhosis, yielding an overall accuracy of 80.59%.

4 Discussion and Conclusions

The aim of this study was to develop an US computer-aided diagnosis (CAD)
tool to predict the outcome of cirrhotic patients. The underlying hypothesis is
that the morphological changes detected by US are correlated with the changes
in liver function and metabolism. The proposed approach was based on the
prediction of MELD, which as acquired particular interest due to its objective
scoring system. It is calculated from three biochemical variables and accurately
predicts 3-month mortality in liver cirrhosis.

Stepwise regression model selected two US features (a1,1 ψ1 and contrast
Co(-1,-1)), that best describes the heterogeneous pattern of cirrhotic livers. The
monogenic decomposition enhanced different US patterns, most often impercep-
tible to the human eye, since the local amplitude and phase includes intensity
and structural information, respectively. Also, the use of the speckle field proved
to be an appropriate approach, since it highlight the textural pattern and elim-
inate the influence of US scanner parameters.

Several polynomial models were then tested. The linear model achieved the
best performance with a low RMSE and high R-square. A strong positive cor-
relation coefficient with MELD (0.65, p < 0.01) was also found, similar to cor-
relation report in [7] of 0.76 (p < 0.05).

To work as a prognostic tool in a first line assessment of cirrhosis outcome,
two classes were set: patients with reduced risk of death (ωRRD) and patients
with increased risk of death (ωIRD) in a 3 months window. By means of the ROC
analysis an optimal cut-off was selected and an accuracy of 80% was attained.
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In future studies the influence of US scanner parameters and ROI location will
be assessed. Also an integrated support system for clinicians will be developed
and a wider cirrhotic population will be used.

In conclusion, a new and objective algorithm as been proposed for the assess-
ment of cirrhotic patients outcomes based on US liver images. This algorithm
is built upon monogenic signal and co-occurrence US features, allowing a rapid
analysis of liver function without the need for further laboratorial tests apart
from an common US scanner.
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