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Abstract. Arterial Spin Labeling (ASL) is a non-invasive technique for
generating perfusion images of the brain. Following an alternating la-
beling/control acquisition sequence, the small magnetization difference
between labeled and non-labeled images is usually detected by perform-
ing image subtraction. In order to increase the Signal to Noise Ratio
(SNR) a large number of trials is needed to observe these signal differ-
ences. In this work, the magnetization difference estimation problem is
formulated in a Bayesian framework, where spatio-temporal priors are
used to deal with the ill-posed nature of the estimation task. The a priori
assumption that no drastic signal variations are expected along the same
tissue, except at the organ boundaries, is modeled by Gibbs distribution
functions. To evaluate the performance of the proposed algorithm, the
results obtained using synthetic data were compared against the two
most common subtraction methods usually discribed in the literature.
The results are very encouraging. A real data set is used to illustrate
the application of the method and the results are consistant with the
traditional methods.

Keywords: arterial spin labeling, bayesian approach, perfusion, mag-
netization, spatio-temporal priors.

1 Introduction

Cerebral Blood Flow (CBF) is a measure of the volume of blood passing through
a point in the brain circulation per unit of time and, in a healthy individual,
alterations in neural activity lead to changes in local CBF[1]. If the volume of
the tissue is taken into account, the perfusion can also be measured, as the CBF
per unit volume of tissue. In fact, perfusion is the process by which the nutrients
in the blood stream are delivered to the tissues through the capillary bed.

Arterial Spin Labeling Magnetic Resonance Imaging (ASL MRI) perfusion im-
age modality is an emerging brain imaging technology since the last two decades.
In the ASL technique, the blood passing by a given region (upstream from the
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region of interest) is labeled with an inversion pulse, and after a certain time
interval (TI), when the blood reaches the region of interest, an image is ac-
quired. If a control image, where no labeling was performed, is subtracted from
the labeled acquisition, the resulting image has a small magnetization difference
caused by the exchange of labeled water molecules from the blood to the sur-
rounding tissue, which can be used to quantify CBF[2]. Since the magnetization
difference is a very small fraction of the tissue signal (approximately 1-2%), a
set of label-control acquisitions has to be performed to increase SNR.

In this work, pair-wise subtraction and surround subtraction[3] will be used
to assess and compare the results obtained by the algorithm.

2 Problem Formulation

In this paper, an alternative method to the traditional image subtraction strate-
gies is proposed.

Let Y (t) be a sequence of L Pulsed ASL (PASL) images with N ×M pixels.
The observation model adopted in this paper is

Y (t) = F +D(t) + v(t)ΔM + Γ(t) (1)

where t ∈ {1, 2, ..., L} is an image index, Y (t) is the tth noisy image within the
sequence, F is a time invariant N×M image describing the static magnetization
of the tissues, D(t) is a slow variant image describing the baseline fluctuations
of the signal along time, called Drift, and ΔM is the magnetization variation in
the tissues caused by the alternate inversion process occurring at each inversion
time (TI), as described by the general kinetic model proposed by Buxton and
colleagues[4], illustrated in Figure 1. v(t) is a binary signal indicating the labeled
periods related with the inversion process. The image Γ(t) = {ηi,j(t)} is assumed

Fig. 1. Schematics of PASL technique. The rectangular signal (purple) represents v(t),
and its value is equal to one for labeling acquisition and zero for a non-labeling ac-
quisition. TI is the instant where the acquisition is made, and TR is the time period
before another sequence of labeling or non labeling can occur.

to be Additive White Gaussian Noise (AWGN) where ηij(t) ∼ N (
0, σ2

y

)
are

stationary independent and identically distributed (iid) random variables with
Gaussian distribution.
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In order to simplify the problem formulation and algorithm design let us con-
sider the following alternative formulation for the observation model described
in equation 1,

Y = fuT +D+ΔMvT +N (2)

where the tth columns of Y = {yi(t)}, D = {di(t)} and N = {ηi(t)} are vec-
torized versions of the corresponding images, arranged by lexicographic order of
their pixel index [5]. In practice, these image sequences, after vectorization, are
arranged in NM × L matrices. The time invariant images F and ΔM, after
vectorization, give rise to the NM × 1 column vectors f and ΔM , respectively.
The signal v(t) is arranged in a L column vector, v, and u is a constant vector
of ones with the same dimension.

The probability of Y is a multivariate Gaussian distribution with mean μ =
fuT + D + ΔMvT and covariance diagonal matrix, σ2

yI, because the noise is
white,

p(Y) ∼ N (μ, σ2
yI). (3)

The Maximum Likelihood (ML) estimation of the unknown images,
θ = {f ,D,Δm}, may be formulated as follows

θ = argmin
θ

Ey(Y,v, θ) (4)

where the energy function

Ey(Y,v, θ) = − log p(Y |θ,v) (5)

= ||fuT +D+ΔmvT −Y||2 + C

is called Data Fidelity Term. The optimization task described in equation (4)
is an ill-posed problem [6] and regularization is needed. By using the maximum
a posteriori (MAP) criterion the regularization is introduced by the prior dis-
tribution of the parameters. In this approach, the new energy function to be
minimized is E(Y,v, θ) = − log p(Y|θ,v)p(θ) and the estimation process is
formulates as follows,

θ = argmin
θ

E(Y,v, θ) (6)

where

E(Y,v, θ) = Ey(Y,v, θ) + Eθ(θ) (7)

with Eθ(θ) = − log p(θ). Assuming independence in the parameters f , D and
Δm in θ, the prior term can be decomposed as follows,

Eθ(θ) = Ef (f) + EΔM (Δm) + ED(D) (8)
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Here, the parameter images f , D and Δm in θ are considered Markov Random
Fields which means its priors are Gibbs distributions [6],

p(τ ) =
1

Zτ
e−ατU(τ ) (9)

where U(τ ) is called Gibbs energy with τ ∈ {f ,D,Δm} and ατ are the prior
hyper-parameters. The Gibbs energy for 2D images is

U(τ ) =
∑

i

(
δ2h(i) + δ2v(i)

)
(10)

where i is the index of each pixel of the image and δh(i) and δv(i) are the
differences of the ith pixel to its horizontal and vertical neighbors respectively.

In case of time varying Drift imaged, D, a third term is added to account for
the temporal dimension

U(D) =
∑

i,t

(
δ2h(i, t) + δ2v(i, t) + δ2t (i, t)

)
(11)

where δt(i, t) = di(t)− di(t− 1).
Equation (7) can be written in the matricial form:

E (Y,v, θ) =
1
2 Tr[(fuT +D+ΔmvT −Y)T (fuT +D+ΔmvT −Y)] +

αf [(φhf)
T (φhf ) + (φvf)

T (φvf)] +

αm [(φhΔm)T (φhΔm) + (φvΔm)T (φvΔm)] +

αD Tr[(φhD)T (φhD) + (φvD)T (φvD)] +

αDt Tr[(Dφt)(Dφt)
T ] (12)

where φh, φv and φt are M × M , N × N and L × L matrices respectively,
used to compute the horizontal and vertical first order differences. Tr stands
for the trace of a matrix. αf , αm, αD and αDt are the priors corresponding to
the tissue static magnetization (F ), magnetization variation (ΔM) and baseline
signal fluctuations, both spatial and temporal (D and Dt).

Equation (12) can be simplified as follows

E (Y,v, θ) = (13)
1
2 Tr[(fuT +D+ΔmvT −Y)T (fuT +D+ΔmvT −Y)] +

αff
TΨf + αmΔmTΨΔm+ αDTr[DTΨD] + αDtTr[DΨtD

T ]

where Ψ = φT
h φh + φT

v φv and Ψt = φtφ
T
t . The minimizers of (14) are the roots

of the gradients of E with respect to f and Δm,
{ ∇fE = (fuT +D+ΔmvT −Y)u+ αfΨ

Tf = 0
∇ΔmE = (fuT +D+ΔmvT −Y)v + αmΨTΔm = 0

(14)

Defining the following auxiliary variables
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Af = lI + αfΨ
T (15)

af = (Y − D)u (16)

am = vTu (17)

Ab = (vT v)I + αmΨT (18)

am = Y − Dv (19)

af = uTv (20)

the following simplified version of (14) is obtained,

{
Af f + amΔm = af
af f +AmΔm = am

(21)

The solution to this system is

{
Δ̂m = (afamI −AfAm)−1(afaf − Afab)

f̂ = (amafI −AmAf )
−1(amam − Amaf )

(22)

The stationary point of E w.r.t. D is computed by finding the roots of the
gradient of E (see (14)) with respect to D,

∇DE = (D + fuT + ΔmvT − Y ) + αDΨTD+ αDtDΨt = 0 (23)

Defining the following auxiliary variables

A = ξI + αDΨT (24)

B = ((1 − ξ)I + αDtΨt) (25)

C = −Y − fuT − ΔmvT (26)

and considering ξ = 1/2, equation (23) can be re-written as follows

AD + DB + C = 0 (27)

which is the well known Sylvester-Lyapunov equation, commonly used in control
theory [6,7].

The equations (22) and (27) are iteratively computed until convergence is
achieved. In each iteration, equation (27) is solved by optimized public routines
available in Matlab R©[8].

Pair-Wise and Surround Subtractions Implementation

Based on equation (1), pair-wise subtraction was implemented as

Δm =

∑l−1
i=1,2 Y (i)− Y (i+ 1)

l/2
(28)
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and the surround subtraction as

Δm =
Y (1)− Y (2) +

∑l−1
i=3,2 (Y (i)− Y (i−1)+Y (i+2)

2 )

l/2
(29)

The slow drift removal for the two subtraction methods was performed using a
high-pass filter.

3 Experimental Results and Discussion

Tests with synthetic and real data are presented to illustrate the application of
the method.

3.1 Synthetic Data

Synthetic ASL data were generated based on a test object with structure similar
to the human brain: one axial slice of a real brain mask, segmented into two
main regions, White Matter(WM) and Gray Matter(GM) was used, as shown in
Figure 2.

The value of the noise (σ) was set to 1, which adds AWGN with mean value
and standard deviation equal to 1, and the magnetization difference (ΔM) was
set to 1 for the GM and 0.5 for the WM. This represents a noise intensity similar
to the intensity of the signal. The drift signal (D) is a slow-varying cosine,
between -1 and 1, and the background intensity of the image (F) is 10000. The

Fig. 2. On the left:synthetic data test object, derived from a real brain mask (64× 64
matrix size). The two different regions, colored in white and gray, represent the gray
and white matter of the human brain, respectively. Center and right: A control and a
labeled acquisition using synthetic data.

proposed algorithm was then tested against the two subtraction methods and
the results are displayed in Figure 3. In this Figure, it is evident the reduction
of the noise corrupting the image. Image areas with the same intensity are more
homogeneous in the image obtained with the proposed algorithm. The edges
remain visible and easier to identify. The mean values of Improved SNR (ISNR)
and Mean Error (ME) for this test are given in Table 1. In this case, the proposed
algorithm obtained an higher value of SNR, approximately 3dB, and reduced the
overall ME by 7%.
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Fig. 3. Perfusion maps obtained with the proposed algorithm using the optimized prior
(left), pair-wise subtraction (middle) and surround subtraction (right)

Table 1. Mean values of ISNR and ME for the test realized with the optimized prior

Method ISNR (dB) Mean error (%)

Proposed algorithm 16.990 17.807

Pair-wise subtraction 14.026 24.492

Surround subtraction 14.103 24.269

3.2 Real Data

The real data were acquired from an healthy subject, on a 3T Siemens MRI
system (Hospital da Luz, Lisboa) using a PICORE-Q2TIPS PASL sequence,
with the following parameters: TI1/TI1s/TI2 = 750ms/900ms/1700ms; GE-EPI
readout with TR/TE = 2500ms/19ms; 201 repetitions; 9 contiguous axial slices
positioned parallel to the AC-PC line, with spatial resolution of 3.5 × 3.5 × 7.0
mm3 and matrix size 64 × 64 × 9.

The first results obtained are depicted in Figure 4 and were obtained with
200 iterations of the proposed algorithm. They are compared with the images
obtained by pair-wise subtraction and surround subtraction.

Fig. 4. Images obtained with the proposed algorithm (left), pair-wise subtraction (cen-
ter) and surround subtraction (right)

Analyzing Figure 4, the image obtained with the proposed algorithm presents
less noise corruption and better distinction of different brain details. The level
of smoothing of the image can be controled by changing the values of the priors
parameters. Higher values of priors lead to more rigid constraint, hence greater
image smoothing.
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4 Conclusion

Currently, the perfusion maps from ASL data are usually obtained by image
subraction methods. The method here proposed incorporates a priori knowledge
onto the estimation equation and the averaging procedure is not explicitly done.
The trials are put together in a single discrete signal to be used in the estimation
of the perfusion map.

As shown in experimental results section, the method proposed outperforms
the traditional ones with an increase of 3dB and a reduction of 7% mean squared
error. Tested with a set of real data, the images (depicted in Section 3.2) present
less noise corruption, as the smoother shape and sharp frontiers suggest.

To improve even further image processing or explore the possibilities, some
points of particular interest may be approached in future research, such as auto-
matic prior calculation, so that the algorithm could calculate, on each iteration,
the optimal value of the prior.

Validation tests on empirical data are necessary in order to achieve the
algorithm validation. In particular, it would be of interest to test the perfor-
mance of the proposed algorithm in terms of the intra- and inter-subject repro-
ducibility of the perfusion estimates, compared to the most common subtraction
methodologies.
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