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Plaque Tissue Characterization and Classification in
Ultrasound Carotid Scans: A Paradigm for

Vascular Feature Amalgamation
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Abstract—The selection of carotid atherosclerosis patients for
surgery or stenting is a crucial task in atherosclerosis disease
management. In order to select only those symptomatic cases
who need surgery, we have, in this work, presented a computer-
aided diagnostic technique to effectively classify symptomatic
and asymptomatic plaques from B-mode ultrasound carotid im-
ages. We extracted several grayscale features that quantify the
textural differences inherent in the manually delineated plaque
regions and selected the most significant among these extracted
features. These features, along with the degree of stenosis (DoS),
were used to train and test a support vector machine (SVM)
classifier using threefold stratified cross-validation using a data set
consisting of 160 (50 symptomatic and 110 asymptomatic) images.
Using 32 features in an SVM classifier with a polynomial kernel
of order 1, we obtained the best accuracy of 90.66%, sensitivity
of 83.33%, and specificity of 95.39%. The DoS was found to be a
valuable feature in addition to other texture-based features. We
have also proposed the plaque risk index (PRI) made up of a
combination of significant features such that the PRI has unique
ranges for both plaque classes. PRI can be used in monitoring the
variations in features over a period of time which will provide
evidence on how and which features change as asymptomatic
plaques become symptomatic.
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I. INTRODUCTION

CAROTID ATHEROSCLEROSIS is a primary cause of
cardiovascular diseases like stroke and heart attack. The

World Health Organization estimates that, by 2030, almost 23.6
million people will die mostly from heart disease and stroke
[1]. It has been observed that symptomatic patients [who have
had retinal or hemispheric symptoms such as stroke, transient
ischemic attack (TIA), and amaurosis fugax (AF)] have more
frequent plaque ruptures that cause life-threatening emboliza-
tion. Plaque rupture was seen in 74% of symptomatic plaques
and in only 32% of plaques from asymptomatic patients [2].
The common treatment options such as carotid artery stenting
and carotid endarterectomy (CEA) carry considerable risk to
the patient [3]. Therefore, techniques are needed to effectively
select only those symptomatic patients at risk of stroke for
these procedures. When the degree of stenosis (DoS) based
on the European Carotid Surgery Trial criteria [4]–[6] was
greater than 80%, CEA was prescribed [6]. However, there
is evidence that plaques with relatively low stenosis degree
may produce symptoms [7] and the majority of asymptomatic
patients with highly stenotic atherosclerotic plaques remain
asymptomatic [8]. Therefore, there is a need for additional
plaque characterization techniques that can detect symptomatic
and asymptomatic groups.

The common carotid artery is routinely used to detect the
presence of plaques. Ultrasound is the most preferred modality
for the evaluation of the structural aspects of atheromatous
plaques such as the presence of surface ulceration, echogenic-
ity, and heterogeneity of the plaque content [9], [10]. However,
ultrasound is limited by low image resolution and artifacts.
Computer-aided diagnostic (CAD) techniques using data min-
ing frameworks can address these issues using preprocessing
algorithms [11]–[13]. Thus, the primary objectives of this
work are the following: 1) to develop a data mining-based
plaque characterization and classification framework to classify
plaques into symptomatic and asymptomatic types and 2) to
develop an integrated index based on the significant grayscale
features to more objectively classify plaques into the two
classes. The protocol of the proposed technique is in line with
several related studies in the literature [14]–[22]. These studies
(see Section VII) have exploited the use of texture features in
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Fig. 1. Block diagram of the proposed CAD technique for plaque
characterization.

addition to other features. In our technique, we have studied the
utility of several texture-based features described in Section III
along with the DoS.

The proposed CAD system is shown in Fig. 1. It consists
of an online system (shown on the right side of Fig. 1) which
processes an incoming patient’s test image. This system pre-
dicts the class label based on the transformation of the online
grayscale feature vector by the training parameters determined
by an offline learning system (shown on the left side of Fig. 1).
The offline classification system is composed of a classifi-
cation phase which produces the training parameters using
the combination of offline training features and the respective
offline ground-truth training class labels (0/1 for asymptomatic/
symptomatic). The ground truth is based on the prior history of
symptoms in the patient. In both systems, the grayscale features
are several texture-based features from the manually segmented
plaque regions of the input images. Significant features among
the extracted ones are selected using the t-test. We evaluated
the support vector machine (SVM) classifier as the offline
learning classifier. The aforementioned CAD system was de-
veloped using a k-fold cross-validation protocol. The predicted
class labels of the test images and the corresponding ground-
truth labels (0/1) were compared to determine the performance
measures such as sensitivity, specificity, accuracy, and positive
predictive value (PPV).

II. DESCRIPTION OF THE DATA

In this paper, we have used 160 plaques (110 asymptomatic
plaques and 50 symptomatic ones). Approval from the Institu-

Fig. 2. Carotid (S) symptomatic and (A) asymptomatic plaque images. (DS
and DA) Corresponding color Doppler images. (RS and RA) Corresponding
extracted plaque region of interests (zoomed).

tional Review Board and informed consent from patients were
obtained prior to conducting the study. Images were acquired
at the Instituto Cardiovascular de Lisboa, Lisbon, Portugal.
A plaque was considered symptomatic when the subject ex-
perienced AF or focal transitory, reversible, or established
neurological symptoms in the ipsilateral carotid territory in the
previous six months. If there were no symptoms, the plaque
was considered asymptomatic. Patients were selected consecu-
tively through neurological consultation which included nonin-
vasive examination with color-flow duplex scan of one or both
carotids. HDI5000 Philips US machine, with an L12-5 scan
probe (5–12-MHz broad-band linear array transducer) operat-
ing in B-mode, was used for image acquisition at 25 pixels/mm
resolution. In order to ensure that images acquired under differ-
ent conditions produce comparable and reproducible features,
image normalization was carried out using the technique re-
ported in [23]. The intensities of the resultant normalized image
were linearly scaled so that the adventitia and blood intensities
were in the ranges of 190–195 and 0–5, respectively. A region
of interest (ROI) containing the plaque was manually delineated
from the normalized images by drawing around the structure
of the plaque. The resultant ROI was evenly resampled and
smoothed using spline interpolation. Matlab software was used
for normalization and ROI selection.

In Fig. 2, (S) and (A) show typical symptomatic and asymp-
tomatic images that are cropped to omit the patient details
in order to conform to the Health Insurance Portability and
Accountability Act (HIPAA) requirements. (DS) and (DA)
show the corresponding color Doppler images. (RS) and (RA)
show the respective zoomed ROIs. The nature of the atheroscle-
rotic disease is focused on the vessel wall that specifically
changes the morphology of the lumen–intima interface from
slow gradual lipid formation and maturing into hard plaque or
loose island of hemorrhage [24]. Therefore, the young and old
plaques are all focused toward the vessel disease which yields
the information in the form of echogenicity in the ultrasound
image [25]. This focused ROI constitutes less than 25% of the
image frame, and hence, our goal is to characterize plaque in
this regional information.
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III. GRAYSCALE FEATURE EXTRACTION AND SELECTION

In the ultrasound images, heterogeneous plaques have more
than 20% of the overall plaque area differing from the rest of the
plaque by two or more echogenicity grades [26]. It was shown
that patients with 60% to 69% asymptomatic carotid stenosis
with heterogeneous plaques had a higher incidence rate of late
ipsilateral stroke, TIA, and progression to 70% stenosis than
patients with homogeneous plaques [27]. Thus, characterizing
these subtle differences in the image texture using grayscale
features will help in symptomatic versus asymptomatic classifi-
cation. In this section, brief descriptions of the various features
used are given.

A. LBP

The local binary pattern (LBP ) [26], [28], [29] was deter-
mined as a grayscale-invariant texture measure derived from
the texture in a local neighborhood. In this paper, a rotation-
invariant measure called LBPP,R using uniformity measure U
was calculated. Only patterns with U ≤ 2 were assigned the
LBP code as depicted in the following:

LBPP,R(x) =

{∑P−1
p=0 s(gp − gc) if U(x) ≤ 2

P + 1 otherwise
(1)

where s(x) =

{
1, x ≥ 0
0, x < 0

.

To include the local image texture contrast, we used a
rotation-invariant measure of local variance given by

V ARP,R =
1

P

P−1∑
p=0

(gp − μ)2, where μ =
1

P

P−1∑
p=0

gp. (2)

In this paper, we determined the three LBP images over
different scales (R = 1, 2, and 3 with the corresponding pixel
count P = 8, 16, and 24, respectively). The mean (LBP1− 3),
variance (LBP4− 6), and local contrast (LBP7− 9) of these
three images were used as texture descriptors.

B. FGLCM

The boundaries separating the various regions in an image
are generally not sharp. Therefore, we used fuzzy features
to quantify the textural changes. The fuzzy gray-level co-
occurrence matrix (FGLCM) [30] of an image I of size L× L
is given by

Fd(m,n) = [fmn]L×L (3)

where fmn corresponds to the frequency of occurrence of a
gray value “around m” separated from another pixel, with a
gray value “around n,” by a distance d in a specific direc-
tion θ. Herein, we used the rotational invariant co-occurrence
matrix obtained by averaging the four symmetrical fuzzy co-
occurrence matrices computed with θ = 0◦, 45◦, 90◦, 135◦, and
d = 20 to calculate the following texture features. The pyrami-

dal membership function μm̃I(x,y),ñI(x,y±d) used to build these
matrices had a support of 11 × 11 pixels.

GLCM Energy : EneT

=
∑
m

∑
n

[Fd(m,n)]2 (4)

GLCM Contrast : ConT

=
∑
m

∑
n

(m− n)2Fd(m,n) (5)

GLCM Homogeneity : HOM

=
∑
m

∑
n

Fd(m,n)

1 + (m− n)2
(6)

GLCM Symmetry : SYM

=
∑
m

∑
n

[Fd(m,n)− Fd(n,m)]2 (7)

GLCM Correlation : CORR

=

N−1∑
m=0

N−1∑
n=0

(m,n)Fd(m,n)− μmμn

σmσn
(8)

where

μm =
∑

mFd(m,n), σ2
m =

∑
m2Fd(m,n)− μ2

m

μn =
∑

nFd(m,n), σ2
n =

∑
n2Fd(m,n)− μ2

n

GLCM Entropy : EntT

= −
∑
m

∑
n

Fd(m,n). lnFd(m,n) (9)

GLCM Moments m1,m2,m3 and

m4 :mg
=

∑
m

∑
n

(m− n)gFd(m,n). (10)

Difference statistics is defined as “the distribution of the
probability that the gray-level difference is k between the points
separated by δ in an image” [31]. The difference statistics vector
can be obtained from FGLCM as [32]

Fδ(k) =
∑
m

∑
n

|m−n|=k

Fd(m,n) (11)

Angular Second Moment : A2M

=

N−1∑
k=0

Fδ(k)
2 (12)

Mean : DM =
N−1∑
k=0

kδ(k). (13)

Difference statistics entropy : EntD

= −
N−1∑
k=0

Fδ(k) lnFδ(k) (14)

Difference statistics contrast : ConD

=
N−1∑
k=0

k2Fδ(k) (15)

Difference statistics energy : EneD

=
N−1∑
k=0

[Fδ(k)]
2 (16)

where k = 0, 1, . . . N − 1, N is the number of grayscale level
[30], and δ is d = (Δm,Δn).
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C. FRLM

The fuzzy run length matrix (FRLM) Fθ(m,n) [32] con-
tains all the elements which represent the frequency that j
pixels with gray-level intensity i continue in the direction θ.
The direction θ is set as 0◦, 45◦, 90◦, or 135◦. In this paper, we
calculated the following features based on the run length matrix

SRE =

∑
m

∑
n

Fθ(m,n)
n2∑

m

∑
n
Fθ(m,n)

(17)

Long Run Emphasis : LRE

=

∑
m

∑
n
n2Fθ(m,n)

∑
m

∑
n
Fθ(m,n)

(18)

Gray-Level Nonuniformity : GLNU

=

∑
m

{∑
n
Fθ(m,n)

}2

∑
m

∑
n
Fθ(m,n)

(19)

Run Length Nonuniformity : RLNU

=

∑
n

{∑
m

Fθ(m,n)

}2

∑
m

∑
n
Fθ(m,n)

(20)

Run Percentage : RP

=

∑
m

∑
n
Fθ(m,n)

A
(21)

where A is the area of the image. The index i runs over the
gray-level values, and the index j runs over the run length.

D. Trace Transform

The ultrasound images may be slightly different due to
various acquisition angles and gain settings. Therefore, we
used trace transform to obtain features which are invariant to
rotation, translation, and scaling [33]. T , the trace functional, is
first applied along lines tracing the image in order to transform
the image into the (φ; p; t) parameter space and to obtain the
trace transform matrix. Next, P , the diametrical functional,
is applied on the matrix (p-direction) to get a string. Finally,
a circus functionalΦ is applied along the string (φ-direction)
to obtain a single-valued triple feature [33]. The triple feature
Π(f, I) of image f(x, y) in image space I can be defined as

Π(f, I) = Φ (P (T (f(I; p, φ, t)))) . (22)

In this paper, we calculated two triple features (23) and (24)
using the invariant functionals IF1, IF2, IF3 defined in [33].

Π1 =(T → IF1, P → IF2,Φ → IF3) (23)

Π2 =(T → IF3, P → IF2,Φ → IF1) (24)

where Π1 is the normalized version of the triple feature formed
by using IF1, IF2, and IF3 for functionals T , P , and Φ,
respectively, in (22). Π2 uses IF3, IF2, and IF1 for functionals
T , P , and Φ, respectively.

E. HOS Features

Higher order spectrum (HOS) analysis is a powerful tool
for the nonlinear dynamical analysis of physiological signals
which are generally nonlinear, nonstationary, and non-Gaussian
in nature [34], [35]. HOS is the spectral representation of
moments and cumulants of the third and higher orders. Since
the HOS of Gaussian signals is statistically zero, this analysis
can separate a non-Gaussian signal from an additive mixture of
independent non-Gaussian signals and Gaussian noise. Thus,
HOS techniques provide high noise immunity. The images
were first subjected to the Radon transform [36] before the
aforementioned HOS features were extracted. In this paper, we
calculated the bispectrum B(f1, f2), which is the third-order
cumulant generating function. It is given by

B(f1, f2) = E [X(f1)X(f2)X(f1 + f2)] (25)

where X(f) is the Fourier transform of the signal x(nT ),
n is an integer index, T is the sampling interval, and E[.]
is the expectation operator. The bispectrum gives the cross-
correlation between frequency components in a 2-D frequency
plot. The following H parameters, calculated in this work, are
related to the moments of the bispectrum. The sum of the
logarithmic amplitudes of the bispectrum H1 is given by

H1 =
∑
Ω

log (|B(f1, f2)|) . (26)

The sum of the logarithmic amplitudes of the diagonal ele-
ments in the bispectrum H2 is given by

H2 =
∑
Ω

log (|B(fk, fk)|) . (27)

The first-order spectral moment of the amplitudes of the
diagonal elements of the bispectrum H3 is

H3 =
N∑

k=1

k log (|B(fk, fk)|) (28)

H4 =

N∑
k=1

(k −H3)
2 log (|B(fk, fk)|) . (29)

All the aforementioned features are defined over a princi-
pal domain Ω [35]. We also calculated the bispectral phase
entropy

Ph =
∑
n

p(ψn)logp(ψn) (30)

where

p(ψn) =
1

L

∑
Ω

l (φ (B(f1, f2)) ∈ ψn) (31)

ψn = {φ| − π + 2πn/N ≤ φ < −π + 2π(n+ 1)/N} ,
n = 0, 1, . . . , N − 1 (32)

where L is the number of points within the region Ω, φ is the
phase angle of the bispectrum, and l(.) is an indicator function
which gives a value of 1 when the phase angle is within the
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range depicted by Ψn in (32). We extracted the aforemen-
tioned features for every 1◦ of the Radon transform between 0
and 180◦.

F. FS Descriptor

In order to quantify the changes in the image edges, we chose
the Fourier spectrum (FS) descriptor. The FS descriptors are
coefficients of the discrete Fourier transform (DFT) of the
complex vector s(k) formed by K edge points in an image.
It is given by

F (u) =
K−1∑
k=0

s(k)e−j2πuk/K . (33)

In this paper, we have used Fourier energy, which is the
square of the DFT magnitude, as the FS descriptor. Fourier
descriptors are not invariant to scaling and translation.

G. Other Features

Apart from these features, we also used the grayscale mean
(GSM ) of the histogram representing the distribution of pixel
intensities. The percentile 40 (P40) is the percentage of pixels
with gray levels below 40 that can determine the amount of
dark regions within the plaque. It provides an assessment of
the echogenicity of the plaque and has been found to be a
significant feature [37]. Several studies have indicated that the
DoS may be a major determinant of stroke in both symptomatic
and asymptomatic cases [4], [38], [39]. We quantified the
DoS using color-flow duplex-scan criteria: cross-sectional area
measurement combined with hemodynamic assessment [40].

H. Feature Ranking and Selection

All extracted features were checked for possibly highly
correlated features. This process assists in removing any bias
toward certain features which might afterward affect the clas-
sification procedure. Approaches based on t-test, divergence
measure, and the Chernoff bound and Bhattacharya distance
were used for feature ranking between the symptomatic and
asymptomatic classes.

Independent Sample t-Test: We used the Student’s t-test to
assess whether the means of a feature from two classes are
significantly different [41]. A low p-value (< 0.01/0.05) indi-
cates that the feature is significant. All features had a normal
distribution, which is a necessary condition for this test.

KL Divergence Measure: An approach which is based on the
summation of the divergence measure for each feature between
the symptomatic and asymptomatic cases was adopted for rank-
ing the features. An advantage of using the Kullback–Leibler
(KL) divergence function for inspecting feature separability is
that it places no prior assumption on class-conditional densities
and has a direct relation with the Bayes error [42], which can
be defined by the following formula:

Di(fi) =

nc∑
k=1

nc∑
l>k

(σk,fi − σl,fi)
2 (1 + σk,fi + σlfi)

2σk,fiσl,fi

(34)

where nc is the number of classes and σk,f and σl,fi are
the standard deviations of the feature for classes k and l,
respectively. Next, the features are ranked in a descending
order according to their corresponding divergence values. The
features with the higher divergence are the most significant as
they maximize the separability between the groups.

Chernoff Bound and Bhattacharya Distance: The minimum
attainable classification error of the Bayes classifier [43] for two
classes ω1 and ω2 can be written as

Pe =

α∫
−α

min [P (ωi)p(x|ωi), P (ωj)p(x|ωj)] dx. (35)

However, an upper bound can be derived. The derivation is
based on the inequality

min[a, b] ≤ asb1−s for a, b ≥ 0, and 0 ≤ s ≤ 1. (36)

Combining (35) and (36), we get

Pe ≤ P (ωi)
sP (ωj)

1−s

α∫
−α

p(x|ωi)
1−sdx ≡∈CB . (37)

∈CB is known as the Chernoff bound. The minimum bound
can be computed by minimizing ∈CB with respect to s. A
special form of the bound results for s = 1/2

Pe ≤∈CB=
√

P (ωi)P (ωj)

α∫
−α

√
p(x|ωi)p(x|ωj)dx. (38)

For Gaussian distributions N(μi,
∑

i) and N(μj ,
∑

j), we
obtain

∈CB=
√

P (ωi)P (ωj) exp(−B) (39)

where

B =
1

8
(μi − μj)

T

(∑
i +

∑
j

2

)−1

(μi − μj)

+
1

2
ln

∣∣∣∣
∑

i
+
∑

j

2

∣∣∣∣√
|
∑

i|
∣∣∣∑j

∣∣∣
(40)

and | • | denotes the determinant of the respective matrix. The
term B is the Bhattacharya distance, and it is used as a class
separability measure. This was used for feature ranking.

IV. CLASSIFICATION

SVM

SVM is a supervised classifier whose main objective is to
find a separating hyperplane that separates the training samples
belonging to the two classes with a maximum margin between
the hyperplane and the samples closest to the hyperplane (called
the support vectors) [44], [45]. In this paper, we have evaluated
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the SVM classifier with polynomial kernels of varying orders
and the radial basis function (RBF) kernels.

Threefold stratified cross-validation data resampling tech-
nique was used to evaluate the classifiers. Herein, the data
set is randomly split into three equal parts, each containing
the same proportion of samples from each class. Two parts
(106 images) are used for training the classifiers to obtain the
classifier parameters that best relate the input feature set and the
corresponding ground-truth class label (symptomatic or asymp-
tomatic). During the testing phase, these training parameters
are used to classify the remaining one part (54 images), and
the resultant class labels are compared with the actual ground-
truth class labels in order to calculate accuracy, sensitivity,
specificity, and PPV. This process is repeated two more times,
using a different part for testing each time, ensuring that no test
image is in the training set. The averages of the performance
measures obtained from the test set over all the three iterations
are reported as the final performance measures.

V. PRI

We have empirically formulated a single integrated index,
called the plaque risk index (PRI), which is a unique combi-
nation of the features in such a way that the index has a unique
range for both the classes. PRI is more comprehendible to the
physicians than the classifiers which are most times black boxes
that directly output the class label. PRI can also be adequately
monitored over time to better understand which features get
affected as asymptomatic plaques become symptomatic. PRI
is given by (41), where η = −30

PRI =
β × χ

(α× γ)10η
(41)

where

α =H1(180
◦)×H2(135

◦)×H1(135
◦)×H4(180

◦)× Pe

β =LBP2 + LBP3 + LBP5 + LBP6 + LBP7

+ LBP8 + LBP9

χ =LRE ×A2M × EntD × EneT ×RLN × EntT

× SRE ×M4×M2× ConT ×GNU ×DM

× ConD ×HOM × CORR× TT1× FS

γ =GSM × P40×DoS.

VI. RESULTS

A. Feature Ranking and Selection

Among all three ranking methods, we observed that the
KL divergence-based method provided higher accuracy (see
Table II). In this method, the features are ranked in a descending
order according to their corresponding divergence values. The
features with the higher divergence are most significant. Table I
summarizes the mean ± standard deviation (SD) of these
significant features and the corresponding divergence value.
Based on the divergence values, 36 features were ranked and

TABLE I
RANKED FEATURES (MEAN±STANDARD DEVIATION)

BASED ON DIVERGENCE VALUE

chosen. In Table I Feature Set A, the features have been listed
in descending rank order (LRE = rank 1; RP = rank 36).

B. Classification Results

We calculated the average accuracy, PPV, sensitivity, and
specificity values by using various combinations of features
in different classifiers, namely, probabilistic neural network,
decision tree, and SVM using different feature ranking meth-
ods. Since SVM provided higher accuracies, we have presented
the results obtained using SVM alone in Table II. Among all
the three feature ranking techniques, the significant features
selected using the KL divergence feature ranking technique
when used in the SVM classifier with the linear kernel and poly-
nomial kernel of degree 1 resulted in the highest performance
measures: sensitivity of 83.33%, specificity of 95.39%, PPV of
89.71%, and accuracy of 90.66%. It is evident that the inclusion
of DoS for training effectively increases the accuracy (see
Table II). Analysis shows that the inclusion of 32 features (29
from Feature Set A and 3 from Feature Set B; see Table I) in the
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TABLE II
SVM CLASSIFICATION RESULTS USING FEATURES OBTAINED

USING KL DIVERGENCE FEATURE RANKING METHOD

SVM classifier gives the best sensitivity of 83.33%, specificity
of 95.39%, and accuracy of 90.66%.

C. Integrated Index

The range (mean ± standard deviation) of the PRI for the
symptomatic class was 1.40 ± 0.01, and that for the asymp-
tomatic class was 21.71 ± 0.01. Thus, the index has a signif-
icantly distinct range for the two classes. The asymptomatic
images have a higher value because of the presence of the
stenosis feature (which has a lower value for the asymptomatic
plaques) in the denominator of (41).

VII. DISCUSSION

Kyriacou et al. [14] reviewed CAD techniques for plaque
characterization and classification in terms of the methods for
image segmentation and denoising, morphological analysis,
and plaque detection. The 61 texture and shape features from
230 plaque ROIs were classified using a modular neural net-
work. A classification accuracy of only 73.1% was obtained
[15]. Kyriacou et al. [16] used ten texture and morphological
features in neural and statistical classifiers and obtained an
accuracy of around 71.2%. In 2007, the same group [17] em-
ployed multilevel binary and grayscale morphological analyses
for plaque categorization. Using pattern spectra features from
274 plaques in an SVM classifier, they obtained an accuracy
of 73.7%. Seven texture and motion patterns obtained from ten
symptomatic and nine asymptomatic cases were used in a fuzzy
c-means classifier [18]. An accuracy of only 84% was obtained.
In our previous work [19], we used texture features alone
(standard deviation, entropy, symmetry, and run percentage)
from plaque ROIs (150 asymptomatic and 196 symptomatic)
and obtained an accuracy of only 82.4% using SVM with the
RBF kernel. The aforementioned studies are limited either by
low accuracies and/or by the higher number of features used.

Plaque echogenicity characteristics of 54 plaques from both
classes were quantified using 21 significant first-order statisti-
cal features and Laws’ texture energy. On evaluating a novel
hybrid neural network, an accuracy of 99.1% was reported
[20]. However, this study is limited by the smaller sample
size. In 2009, our group [21] extracted 114 features (based
on morphological, histogram, and Rayleigh parameters and
image texture) from several image sources, namely, normal-

ized, envelope, noiseless, and speckle images of plaques (102
asymptomatic and 44 symptomatic). We obtained an accuracy
of around 99.2% using the Adaboost classifier, although at
an increased computational cost due to the large number of
features. Recently [22], a multiresolution approach for texture-
based classification of plaques was proposed. The mean and
standard deviation of the various detail subimages obtained
on decomposing the images with several multiresolution-based
decomposition schemes were used as features. An accuracy
of 90% was obtained on using ten features based on wavelet
packet transform in an SVM classifier.

In the proposed technique, we have used a unique novel pow-
erful combination of 29 texture-based features, DoS, GSM ,
and P40 to obtain a good classification accuracy of 90.66%.
The process, particularly the feature extraction part, is fast
and simple due to the direct extraction of features from the
plaque ROIs without a prerequisite for any complex image
preprocessing or modeling. Since we have used the commonly
acquired ultrasound images for classification, the technique
can be afforded by any hospital. The implementation of the
technique as a software application is easy, and downloading
and installation do not incur any extra cost. The proposed CAD
tool is robust as it has been developed using threefold stratified
cross-validation technique. Hence, the classifier is reliable in
classifying unseen new plaque images. The proposed novel
PRI can be used in objectively assessing the nature of the
plaque and in monitoring how the features vary over time. If
only a few features vary significantly over a period of time, our
future systems can use only those features for classification.

Even though a high accuracy has been obtained with a
manageable number of features, we intend to improve it by
using other features like the fractal dimension which was found
to be significantly different [46]. Moreover, in this work, we
have used manually delineated plaques. Even though such a
task is easy for experienced radiologists and sonographers, it
is difficult for less skilled personnel leading to interobserver
variabilities and errors. Therefore, in future, we intend to
make the plaque ROI segmentation process automatic. Since
the ground truth is based on the patient’s history of clinical
symptoms, there is a probability of error if the patients do
not accurately recollect the symptoms or when asymptomatic
plaques get labeled as symptomatic when the symptoms might
have actually occurred due to plaque in the heart than in the
carotid artery. Moreover, some asymptomatic plaques which
are in the process of becoming symptomatic tend to have the
textures typical of symptomatic plaques. In such cases, our
algorithm will classify them as symptomatic when the ground
truth is in effect asymptomatic. This may be one of the reasons
for the lower accuracy. These issues can be addressed if the
ground truth is based on pathological studies.

VIII. CONCLUSION

In this paper, we have proposed a CAD technique for plaque
characterization using a unique combination of texture fea-
tures. We have also incorporated a classification step which
classifies the plaques into symptomatic or asymptomatic with
the aid of the grayscale features and the DoS. Our novel
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feature combination coupled with SVM with polynomial kernel
function of order 1 resulted in a good accuracy of 90.66%.
Such a good accuracy, along with the fact that the technique
is noninvasive, cost-effective, fast, objective, and robust, makes
the technique a suitable adjunct tool for physicians to use in
order to make a confident call on the nature of the plaque and,
subsequently, the treatment protocol. The proposed novel PRI
can also be used to objectively classify the plaques using a
single-valued number and to monitor the feature variations over
time. Additional studies are needed in future to establish the
robustness of the proposed technique and the PRI using more
databases.
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