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Classification and Staging of Chronic Liver Disease
From Multimodal Data
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Abstract—Chronic liver disease (CLD) is most of the time an
asymptomatic, progressive, and ultimately potentially fatal disease.
In this study, an automatic hierarchical procedure to stage CLD
using ultrasound images, laboratory tests, and clinical records are
described. The first stage of the proposed method, called clini-
cal based classifier (CBC), discriminates healthy from pathologic
conditions. When nonhealthy conditions are detected, the method
refines the results in three exclusive pathologies in a hierarchical
basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) de-
compensated cirrhosis. The features used as well as the classifiers
(Bayes, Parzen, support vector machine, and k-nearest neighbor)
are optimally selected for each stage. A large multimodal feature
database was specifically built for this study containing 30 chronic
hepatitis cases, 34 compensated cirrhosis cases, and 36 decompen-
sated cirrhosis cases, all validated after histopathologic analysis by
liver biopsy. The CBC classification scheme outperformed the non-
hierachical one against all scheme, achieving an overall accuracy
of 98.67 % for the normal detector, 87.45% for the chronic hepatitis
detector, and 95.71% for the cirrhosis detector.

Index Terms—Chronic liver disease (CLD), cirrhosis, classifica-
tion, ultrasound-based textural features.

I. INTRODUCTION

HRONIC liver disease (CLD) is a significant cause of mor-

bidity and mortality in developed countries and is com-
monly caused by viral hepatitis and alcohol abuse [1]-[3]. The
initial stages of CLD are usually asymptomatic such as hep-
atitis or steatosis. Hepatitis, a liver inflammation, may lead
to cell damage and/or destruction [1]. Repeated cycles of in-
flammation (fibrosis), necrosis, and hepatocellular regeneration
contribute to the development of liver cirrhosis [2], [3]. This is a
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potentially fatal process with a high probability of hepatocellu-
lar carcinoma development [2].

It is possible to distinguish two phases in liver cirrhosis: a
stable form, called compensated cirrhosis, that is frequently
asymptomatic and unsuspected; and a more dangerous form
related to liver failure, called decompensated cirrhosis [4].

Liver biopsy is the gold standard for the evaluation and stag-
ing of CLD. However, its invasive nature prevents its general-
ized usage in the first stages of the diagnosis process. By this,
noninvasive methods for CLD diagnosis with similar accu-
racy [5], [6] have been proposed in the literature.

Typical noninvasive methods [7], [8] are the APRI (aspartate
aminotransferase (AST)/platelet ratio index), the Forns index
(based on age, platelets, gamma-glutamyl transferase (gGT) and
cholesterol), the FibroTest (FT), FibroMeter (FM), Hepascore
(HS), and new ultrasound-based technologies, such as transient
elastography (TE).

FT is proprietary commercial test [9] available in many,
but not all, clinical institutions. The authors of [9] reported a
sensitivity of about 75% and a specificity of 85%. FM com-
bines hyaluronate, prothrombin time, platelets, AST, alpha2
macroglobulin, urea, and age [10]. The FM formula is adjusted
based on the cause of liver disease [11], and it has been shown
to be an accurate predictor for chronic viral hepatitis [9]. HS
combines bilirubin, gGT, hyaluronic acid, alpha2 macroglobu-
lin, age, and gender [11]. Isolated usage of APRI index does not
provide information equal to the one provided by liver biopsy
in most patients with CLD [9]. TE induces an elastic shear
wave that is detected by pulse-echo US as the wave propagates
through the organ and estimates liver stiffness. A metaanalysis
study stated promising results for the detection of cirrhosis but
revealed great variability in the detection of severe fibrosis [9].

The combination of these markers in a sequencial basis per-
forms better than each marker alone. The sequential algorithm
for fibrosis evaluation (SAFE) biopsy is a decision tree classi-
fier trained in hepatitis C virus (HCV) patients [12], [13]. The
SAFE algorithm integrates APRI test and FT, and for inconclu-
sive results biopsy is suggested. The authors of [8] propose the
combination of TE and FT as first line assessment of fibrosis
and when both indicators do not agree, biopsy is used.

These methods, however, are not reliable alternatives to
biopsy, because they present several limitations and they do
not meet consensus in the medical literature.

In this study, inspired by the clinical practice, we pro-
pose a classification strategy, called the clinical-based classi-
fier (CBC), for the assessment of CLD based on a multimodal
feature approach, extracted from ultrasound (US) images, labo-
ratory tests, and clinical data. We also evaluate the influence of
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Fig. 1. US liver images variability in different CLD stages. Normal liver
samples are represented in the first column, the second column presents samples
from chronic hepatitis, and compensated and decompensated cirrhosis appear
in the third and fourth column, respectively.

US-based features in the classification of CLD, comparing with
the classification based on laboratory and clinical features.

It has been shown that US data, together with laboratory
and clinical information, are useful in the characterization of
CLD. Additionally, US scanners are available in almost all med-
ical and clinical facilities and its noninvasive and nonionazing
nature makes it a very appealing technology for widespread
CLD diagnosis and follow-up protocols. In [1], it is shown
that echogenicity, texture analysis, and surface morphology of
the liver parenchyma are effective US features to stage CLD.
Echogenicity is related to the echo gray level of the US im-
age [14]. On the other hand, it is expected that textural analysis
of the liver parenchyma contains information about fibrotic de-
velopment, since tissue acoustic properties change [15].

Normal liver parenchyma appears homogeneous in US im-
ages, interrupted by normal blood vessels, bile ducts, and lig-
aments [14], [16]. Repeatedly, hepatic inflammation, described
in chronic hepatitis and compensated cirrhosis, may lead to
a coarse heterogeneous parenchyma [15]-[18], or maintain a
normal appearance [14]-[16], with increased echogenicity. De-
compensated cirrhosis is characterized by a coarse heteroge-
neous parenchyma with increased echogenicity and irregular
contour [14]-[19].

The visual variability of US images in different stages of
CLD, displayed in Fig. 1, justify the need of objective methods
in feature extraction and classification, based on a computer
assisted diagnosis (CAD) framework. Several studies use ob-
jective features extracted from US images and propose classifi-
cation procedures to assess CLD [20]-[28]. This topic will be
discussed in detail in Section II.

The key idea behind CBC is that the discriminative power of
each classifier can be greatly improved if the disease’s natural
evolution is taken into account. The CBC stages are optimized
from a feature and classifier point of view, in order to select the
best combination that leads, at each stage, to the higher accuracy.

The remainder of this paper is organized as follows.
Section II introduces the study design and explains the
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Fig. 2. CBC decomposition strategy design for CLD classification.

procedures of feature extraction and selection, as well as the
classifiers and the dataset used in this study. In Section III,
the results are presented and in Section IV their discussion are
explored. Section V concludes this paper.

II. METHODS

The CBC aims to discriminate normal and three main patholo-
gies in the scope of CLD: 1) chronic hepatitis (CH); 2) compen-
sated cirrhosis (CC); and 3) decompensated cirrhosis (DC). In
clinical practice, the diagnosis of these pathologies is normally
based on several sources of medical data such as US images, lab-
oratory analysis, and clinical indicators recommended by well
established and accepted medical guidelines [4]. The diagnosis,
however, is obtained by integrating all the information with a
subjective criteria and experience of the medical doctor.

The CBC is a hierarchical strategy, which mimics the hier-
archical approach of differential diagnosis followed in clinical
practice, to stage CLD. CBC is a more informative classifica-
tion strategy that combines clinical, serologic, and histologic
features [3]. This strategy has replaced CLD staging based only
on the degree of hepatic fibrosis, as suggested in [21], [24],
[29]-[31].

Instead of a one against all (OAA) strategy using a multiclass
classifier [32], e.g., k-nearest neighbor (kNN), Bayes, Parzen,
or support vector machine (SVM), the hierarchical approach,
represented in Fig. 2, is used. In this strategy, several partial
binary decisions are taken according to the disease natural evo-
lution. The architecture of CBC is based on the transition rate
between CLD stages and live expectancy. The transition from
CH to CC and CC to DC occurs at a rate of 1-5% and 5-7%
per year, respectively [33], [34]. The transition rate from CC to
death and DC to death occurs at a rate of 3.4% and 57% per
year, respectively [33].

The CBC'’s first classification step (CS I) discriminates
healthy from pathologic livers. If a liver is classified as patho-
logic in the first step, discrimination of CH and cirrhosis (CS 1I)
is attempted. In the last step (CS III), CC and DC are discrim-
inated. The DC class is assumed to be the end stage of CLD
before hepatocellular carcinoma or death.

The design of the CBC approach is composed by three com-
ponents: 1) features computation from multimodal sources;
2) design and training of a specific suitable classification strategy
that takes into account the CLD specificities; and 3) diagnosis
and validation of the method. For each CS, CBC is optimized
at two levels (see Fig. 2): 1) feature selection and 2) classifier
type and parametrization tuning.
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Four types of classifiers, kNN, Bayes, Parzen, or SVM [32],
are tested at each CS. The performance of each classifier, at
each CS, is evaluated by means of leave-one-out cross vali-
dation (LOOCYV) method. This method is useful in cases with
small amount of available data, as normally observed in medi-
cal problems. Under LOOCY, the available data (V) is divided
into N disjoint sets; N models are trained, each on a different
combination of N — 1 partitions and tested on the remaining
partition [35].

In each CS, the feature selection procedure is based on the
stepwise regression analysis method [36] (criterion to add:
p < 0.05; to remove: p > 0.1). To evaluate the redundancy
between the selected features, we also calculate their mutual
correlations (MC) [32]. The features selected in the preceding
method were only retained if they produced an MC value lower
than a threshold, set at 0.4.

The classifier selection is performed with an ROC analy-
sis by means of Youden’s index (J) [32], where the sensitivity
(sens) and the specificity (spec), in an LOOCYV basis, are jointly
maximized

{fc,é,f} = argmax J(k,0(k), f(k)) (1
k.0(k),f(k)
where k is a classifier from the tested set of classifiers,
K ={kNN, Bayes, Parzen, SVM}, @(k) are the parameters of
the corresponding classifier, and f (k) are the selected features
for each classifier. Youden’s index is defined as follows:

J(k, 0(k), f(k)) = sens(k, 0(k), f (k)
+ spec(k, O(k), f(k)) — 1. (2)

The kNN classifier classifies a test sample according to the
majority of its neighbors in the feature space by using the mini-
mum Euclidean distance criterion [37], [38].

The Bayes classifier assumes that the vector of features are
multivariate normal distributed [21], [24] with different means,
{41, 12 } and covariance matrices, {1, X5 }. The corresponding
quadratic discriminant function

1

1
gT(X) = _i(x - /I’T)TZT(X - MT) - 510g |ZT‘ + logP(wT)
3

with 7 € {1,2} is used in the classification of a given feature
vector x according to

{1 if g1(X) > g2(%X) @

2 otherwise.

The Parzen classifier is very similar to the Bayes one but it
does not assume a Gaussian distribution of the data. Instead,
estimates the distribution density of the samples that constitute
each class by summing the distance-weighed contributions of
each sample in a class and classify a test sample by the label
corresponding to the maximum posterior [32].

The SVM classifier aims at finding a decision plane that
has a maximum distance (margin) from the nearest training
pattern [21], [38]. This is performed by mapping the feature
vector in a higher-dimensional space. In this new space the SVM
finds a hyperplane to separate the two classes with a decision
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boundary set by support vectors [21], [38]. The computationally
intensive mapping process can be reduced with an appropriate
kernel function. In this paper, the polynomial kernel is used.

The CBC performance is assessed by comparing at each clas-
sification step with the common OAA binary classifier, using
one-way analysis of variance (ANOVA) with p < 0.01.In OAA,
the classification problem is decomposed in several binary clas-
sification procedures, each per class.

A. Features

The features extracted from multimodal sources are some of
the most discriminative ones for diagnosis, as described in the
following sections.

Ultrasound Features: Some specific features can be natural
candidates to be used in the feature selection procedure [20]-
[28], such as:

Co-Occurrence: The elements of the co-ocurrence tensor,
Co = {c; ;(A;, A)}, describe the gray level spatial interrela-
tionship in the image [39]. More precisely, element ¢; j (A;, A,)
represents the joint probability of the pixel intensities ¢ and j in
the relative spatial position of (A;, A.) [39] and can be com-
puted as follows:

N

Zi{l if (e =) A

. 0 otherwise.

Ale+Ae =]
c” Al, (771+ lc+Ac J)

(5)
For a pixel distance of 6, we have four angular [0°,45°,
90°, 135°] co-occurrence tensors for (A;,A.) € {(0,6),
(—6,6),(—6,0), (—6,—6)}, where we calculate the most com-
monly statistical features, based on [40], namely contrast, cor-
relation, energy, and homogeneity.

Wavelet Transform: The Wavelet Transform (WT) pro-
vides multiscale features from the US images. The decomposi-
tion is performed according to a sequence of low pass (G) and
high-pass, (H), filtering operations followed by down-sampling
the results, | 2. This method generates a pyramidal representa-
tion of the original image with decreasing resolution comprising
a lower resolution low-pass component (approximation compo-
nent) (LL), and three high-pass components (detailed compo-
nents) along the horizontal (HL), vertical (LH), and diagonal
directions (HH). An example of a multiscale WT analysis using
a US liver image is provided in Fig. 3. High-pass components
(H) contain image detailed information at different resolution
scales along three directions, while low-pass versions (L) con-
tain the approximation component.

Liver tissue characterization based on WT multiresolution
analysis has been performed in several works [21]-[24]. This
approach is effective in the morphological characterization of
the image from the approximation fields and at the same time
in a textural characterization at several resolution scales from
the detailed fields. In the present study, a second-order decom-
position with Haar wavelet is used. For each subimage (H L, »,
LH, >, and HH, ), the coefficients of the first-order 2-D au-
toregressive model are computed, {a; 1, a1,0,a01}, as well as
the energy and the mean.



RIBEIRO et al.: CLASSIFICATION AND STAGING OF CHRONIC LIVER DISEASE FROM MULTIMODAL DATA

Fig. 3. Wavelet pyramidal decomposition example from a US liver image.

Autoregressive Model (AR): The AR model approach has
been used for a long time with success in several applications
of engineering where identification and characterization of sys-
tems and processes are needed [41]. In the canonical definition
of a 1-D p-order AR model each sample is modeled as a linear
combination of the previous p samples with unknown coeffi-
cients, a; [27]

xz(n) = Z a;jx(n—1)+r(n) 6)

where the residue signal r(n) is assumed to be white and zero
mean normal distributed. For image applications the following
2-D formulation of the (p, ¢)-order AR model is used [28]

p q

x(n,m) = ZZ aijje(m—i,n—j)+r(n,m) (7)

i=0 j=0

where x(n, m) is the """ th pixel of the image and ag o = 0.

There are many algorithms to compute AR parameters: Levin-
son Burg, least-squares, gradient based, lattice filter, and Kalman
filter [42]. In this study, we use the most popular, the least-
squares algorithm [28].

The order of the model (p, q) controls the error associated
with the AR signal approximation [26]. Small orders ignore the
main and long-term statistical properties of the original signal
while larger ones may lead to overfitting effects [25], [26].
Therefore, selecting the order of the model is a key problem
and there are several methods to do it [25]—[28]. Here, the first-
order model was adopted because it was confirmed by [43] that
in this scope it leads to the minimum error probability.

Laboratory and Clinical Features: Besides image-based fea-
tures, several clinical data and laboratory tests are useful for
evaluating and managing patients with hepatic dysfunction.
These features are selected according to their purported clin-
ical and pathophysiological role in CLD [33]. The clinical and
pathophysiological characteristics of CLD can be grouped in
hepatic insufficiency, portal hypertension, hyperdynamic cir-
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culation, liver inflammation, necrosis and fibrosis, as well as
etiologic factors [33], [34], [44].

Hepatic insufficiency is suggested by the Child—Pugh score,
albumin, total bilirubin, prothrombin time expressed as inter-
national normalized ratio (INR) [33], and portosystemic en-
cephalopathy [45]. Portal hypertension is usually accessed by
the presence of ascites, esophageal varices, and gastrointesti-
nal (GI) bleeding. Creatinine and sodium are variables used for
the study of hyperdynamic circulation [33]. Liver inflammation,
necrosis, fibrosis, and histology can be evaluated based on AST,
eGT, lactate dehydrogenase (LDH), and alanine transaminase
(ALT) [10], [33].

Laboratory changes reveal, particularly, liver dysfunctions in
CLD patients. Changes in AST and ALT reveal leakage from
damaged hepatocytes; gGT and bilirubin are related to cholesta-
sis and decreased hepatocyte and renal excretory function; al-
bumin and INR report a decrease in hepatic production; and
sodium imbalance reveals an inability to excrete free water via
the kidneys [5]. Marked increase of LDH is found in patients
with neoplasms with hepatic involvement, but is considered to
be an insensitive index for hepatocellular injury [34]. Hyper-
glycemia is a comorbidity in patients with cirrhosis [33].

In a patient with CLD, relevant clinical characteristics are
recorded, such as age, gender, etiology of CLD, CHILD, and
clinical complications. CLD can have different etiologies, such
as viral hepatitis (B, C, and D), alcohol, metabolic, disturbed
immunity, toxins, therapeutic agents, and others [34]. Disease
cause feature reports to CLD etiology and, in this study, patients
were classified as follows: 1) no disease; 2) alcohol; 3) hepatitis
B virus (HBV); 4) hepatitis C virus (HCV);5) alcohol and HBV;
6) alcohol and HCV; and7) other cause. The Child—Pugh score
is a prognostic model used to predict mortality in cirrhosis and
it is by far the most used in clinical practice and clinical research
[33]. It uses five features: ascites, encephalopathy, prothrombin
time, and serum levels of bilirubin and albumin [46]. Patients
were classified with value 1 (class A), 2 (class B), or 3 (class C)
inrelation to best (A), moderate (B), or worse (C) prognosis [46].

Clinical complications, such as ascites, GI bleeding, en-
cephalopathy, infection, and tumor, were clinically assessed ac-
cording to their presence or absence. Changes in any of these
clinical complications can mark the transition between CLD
stages (CH to CC or CC to DC). Ascites is a fluid accumulation
in the peritoneal cavity and its presence reveals clinically signif-
icant portal hypertension. GI bleeding from varices or mucosal
congestion was defined by the presence of one of the following
historical features: hematemesis, melena, hematochezia, or any
combination of the above. GI bleeding can also precipitate hep-
atic encephalopathy. The presence of hepatic encephalopathy
was made according to [47] after exclusion of intracranial le-
sions, metabolic, traumatic disorders, or drug intoxication. The
presence of infections, particularly bacterial infections, is fre-
quent and exacerbates hepatic dysfunction, encephalopathy, and
portal hypertension [5]. The same behavior is observed when
tumors are detected. The development of hepatocellular carci-
noma may accelerate the course of the disease at any stage [33].

In [45], it is demonstrated that HCV chronic patients,
with no decompensation episode, have a slow evolution to
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cirrhosis. Esophageal varices, INR, gGT, bilirubin, and albu-
min were associated with an increased risk of clinical decom-
pensation. By multivariate analysis, only esophageal varices
and bilirubin were associated with increased risk of decom-
pensation [45]. Several fibrosis indices and models have been
developed using routine laboratory tests. Eighty-seven studies
propose models to predict hepatic fibrosis in CH patients based
on laboratory serum tests [48]. Using logistic regression, [49]
identified platelet count, spider nevi, AST, and male gender as
independent predictors of cirrhosis. APRI, the Forns Index, and
the FT model (described in Section I) are also based on common
laboratory tests [48]. Patients with alcoholic hepatitis demon-
strate a wide range of clinical features [19]. Alcoholic cirrho-
sis range from asymptomatic to decompensated liver function
with ascites, variceal hemorrhage, and encephalopathy. These
patients have higher AST and ALT levels, hypoalbuminemia,
hyperbilirubinemia, and prolonged prothrombin time [19].

A total of 68 features were extracted for each patient, 47
from the US image (first-order statistics, co-occurrence ma-
trix, Haar wavelet decomposition, first order 2-D AR model
coefficients), 11 from the laboratory tests (bilirubin, INR, albu-
min, creatinine, AST, ALT, gGT, glycemia, sodium, urea, and
LDH) and 10 from clinical data (disease cause, tumor, ascites,
encephalopathy, gastro-intestinal bleeding, infection, alcoholic
habits, Child-Pugh score, age, and gender).

All features were available in each CS and no a priori se-
lection was performed. The feature selection procedure, using
stepwise regression with the MC criterion, produced an optimal
subset of five features for CS I, six features for CS II, and ten
features for CS III, as listed in Table II. This topic is further
discussed in Section III.

B. Dataset

A new dataset with liver information, medically validated,
was built. A total of 100 patients with CLD, registered at the
Liver Unity, Gastroenterology Department, of the Santa Maria
Hospital in Lisbon, Portugal, were enrolled in the study. Patients
were selected with known diagnosis according to the results
from liver biopsy. Patients were excluded if they presented other
liver disease or underwent treatment within the previous six
months.

Based on CLD staging, 30 patients were diagnosed with CH,
34 diagnosed with CC, and 36 with DC. CLD was caused by
virus infection in 39 patients (HBV = 11 and HCV = 28), by
alcohol in 32 patients, combination of both in 14 and by other
causes (n = 15). A control group of 48 volunteers was set as
the Normal class, where the inclusion criterion was to not have
any known liver disease.

For each sample of the database (n = 148) laboratory tests,
clinical history and US images were collected in the same day.
A total of 148 US liver images, from 148 patients, were in-
volved in the experiments. Laboratory tests were performed in
the referred hospital, with the following reference to normal
values: bilirubin (<1.0 mg/dL); albumin (3.7-5.8 g/dL); crea-
tinine (0.5-1.1 mg/dL); AST (0-34 U/L); ALT (10-49 U/L);
¢GT (<38 U/L); glycemia (70-110 mg/dL); sodium (135-
145 mmol/L); urea (10-50 mg/dL); and LDH (208-378 U/L).
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The criteria used for the assessment of the clinical features
were similar to [45]. Ascites was diagnosed via clinical exam-
ination and/or US and encephalopathy is detected according
to the usual clinical parameters. GI bleeding is positive if he-
matemesis and/or melena is observed and whenever possible,
confirmed by endoscopy. Tumor and infections are assessed via
specific biochemical markers.

This study was approved by the Ethics Committee of the
referred hospital and an informed consent was obtained in ac-
cordance with the declaration of Helsinki principles.

The US liver protocol used in the hospital was adopted. For
sake of reproducibility, consistency and diagnosis accuracy, we
incorporate in this protocol the procedures proposed in [37].
Three main concerns were taken into account: 1) US scanner
parameters; 2) patient position and cross-section selection; and
3) ROI selection.

The same US scanner (Philips CX50, Amsterdam, the Nether-
lands) was used for all acquisitions tuned with the same preset
configuration, the commonest one used in clinical practice. A
broadband curved array transducer (Philips C5-1, Amsterdam,
the Netherlands) was used in all acquisitions with a central fre-
quency of 3.5 MHz, an image depth of 150 mm and two focal
zones were set at the central portion of the image (75 mm). The
dynamic range is 75 dB, the depth gain compensation was set
to its central position and the default grayscale colormap was
used. A fixed set of anatomical landmarks on the right liver
lobe are used in all acquisitions to capture equivalent liver cross
sections. Patients were in supine position, comfortably installed
and gently breathing to avoid movements.

Images were stored in DICOM format, 3 pixel/mm and
8 bit/pixel resolution. A ROI, of approximately 128 x 128
pixels (45.7 x 45.7 mm) extracted by the operator from each
image along the medial axis at a mean depth of 53 mm, should
be representative of the liver parenchyma, free of major blood
vessels and liver ligaments. It should also be as superficial
as possible, to avoid US beam distortions [24], [37]. These
requirements often prevent the ROI extraction from the ideal
location, the focal zone.

III. RESULTS

In this section, the results from real data, described in
Section II-B, are presented to validate the proposed CBC
method. All results were obtained with the MATLAB toolbox
for pattern recognition, PRTools 4.1 [50].

For each CS, one out of four classifiers, KNN, Parzen,
Bayes, and SVM, is selected according to the optimality cri-
terion of minimum classification error. Different parameteri-
zations of each classifier are tested. For kNN classifier, nine
different neighborhood configurations were tested, correspond-
ingto k=1,...,9. The SVM polynomial kernel was trained
with the cost (c¢) ranging ¢ = 1, 10, 100, 500, and degree (d),
d=1,2,3,4,5. Only the best results (¢ = 1) are presented.

CBC Strategy Versus OAA Strategy: To validate the CBC
strategy, a comparison with the OAA strategy was performed,
using the same experimental conditions.

The binary combination in the normal detector (CS I) is equal
in both decomposition strategies and the results are resumed in
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Fig. 4(a). The best result is achieved with the kNN, k£ = 1, and
the SVM, d = 1. For computational efficiency reasons, k = 1
is adopted. With this classifier, the detection accuracy for the
Normal class is 97.92% and 99.02% for the pathology liver class
(J =0.97).

Chronic hepatitis detector results are summarized in Fig. 4(b).
CBC exhibits the best results. A detection rate (DR) of 76.67%
is achieved for CH class with the Bayes classifier (J = 0.68)
and a DR of 91.43% for the cirrhosis class.

CBC outperforms the results of OAA strategy for CS III, as
shown in Fig. 4(c). For the cirrhosis detector, the best result is
achieved with the Bayes classifier (J = 0.91). The individual
performances showed an accuracy rate of 94.12% and 97.22%
for CC and DC class, respectively. In the OAA strategy, the best
classification result is for CC (J = 0.57) and DC (J = 0.86)
classes.

Statistical differences (p < 0.0001) were observed between
the results of CBC and OAA.

US Features Integration in the Traditional Laboratorial and
Clinical CLD Classification: The importance of US-based fea-
tures in CBC accuracy was studied by comparing the results
from the multimodal feature approach (US, laboratory and
clinical data) and the ones from the laboratory and clinical
features.

High DRs (100%) were achieved for the normal class in
both feature sets. The best overall result for CS I (J = 0.97)

TABLE I
CBC BEST RESULTS WITH THE TESTED FEATURE SETS (FS): (A) MULTIMODAL
AND (B) LABORATORY + CLINICAL APPROACH

Best Performance

[os [ B | o b ros e TT T e
. A Pgttl]il;)l‘ll‘:)aglic g;:gi 98.67 | 097 1;1111\1
B atholege o600 ] 730 | 096 | 0 reupem
. A Cirglz)sis éz%‘ 8745 | 0.8 Bk:;s
B Cirrhosis | 67.14 7000 | 044 k=1
. A §§ g‘f% 9571 | 091 - Bayes |
B 5C oy 9143 | 086 polynomial

was achieved with the kNN classifier (kK = 1), as illustrated in
Fig. 4(d). This result showed an OA of 98.67%, with a DR
of 97.92% and of 99.02% for the normal class and pathologic
class, respectively (see Table I).

The results in Fig. 4(e) and Table I show that CS II had low
DR. The best classification was reported with the Bayes clas-
sifier, where the proposed multimodal approach achieved the
best results (J = 0.68). Despite these results, a closer inspec-
tion reveals that the inclusion of US-based features improved
CS II. The DR of cirrhosis class was enhanced from 67.14%
(laboratory and clinical set) to 91.43%.
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TABLE II
MEAN, STANDARD DEVIATION (SE), AND MUTUAL CORRELATION (MC) OF
THE SELECTED FEATURES

Features sl
Normal Pathology

mean SE MC mean SE MC
ap,1 (HH1) -0.28 0.14 0.10 -0.16 0.19 0.37
Glycemia 120.65 48.22 0.07 122.86 61.01 0.16
LDH 419.13  207.81 0.10 284.07 268.77 035
Disease Cause 0.06 0.23 0.05 2.65 1.87 0.19
Ascites 0.07 0.26 0.12 0.32 0.47 0.31
Features o

CH Cirrhosis

mean SE MC mean SE MC
20,1 (USimage) 0.86 0.08 0.34 0.85 0.07 0.20
ag,1 (LHy) 0.06 0.23 0.36 -0.09 0.20 0.17
aj o (HL2) 0.10 0.09 0.19 0.07 0.07 0.14
aj,o (LH2) 0.15 0.07 0.18 0.11 0.07 0.15
ALT 131.00 23942  0.26 66.11 72.82 0.12
Age 52.85 16.19 0.17 61.34 12.01 0.07

CS I

Features cc DC

mean SE MC mean SE MC
29,1 (USimage) 0.88 0.07 0.37 0.81 0.06 0.21
E (HL1) 15.40 6.67 0.13 25.70 15.94 0.21
ag,1 (LH1) 0.06 0.17 0.37 -0.22 0.13 0.23
aj,1 (HHp) -0.37 0.07 0.25 -0.26 0.08 0.18
ag,1 (HL2) 0.43 0.09 0.34 0.37 0.12 0.19
INR 1.20 0.62 0.26 1.44 0.31 0.24
Bilirubin 1.59 1.98 0.18 3.54 4.66 0.15
Ascites 0.06 0.24 0.17 0.74 0.44 0.13
GI Bleeding 0.06 0.24 0.29 0.49 0.51 0.12
Alcoholic habits 0.12 0.33 0.13 0.57 0.50 0.17

In CS III, the multimodal approach predominantly achieved
the best results, as displayed in Fig. 4(f). The best performance
(see Table I) was designed with the Bayes classifier, attaining an
OA of 95.71%, with a DR of 94.12% and 97.22% for CC and
DC, respectively.

In CS I and II, significant differences (p < 0.01) were ob-
served in the results of the two feature sets. In CS III, similar
OA results were attained, but when analyzing the DR of each
class, CC class reveal significant differences (p < 0.01).

Feature Set for Each CS: The CBC strategy enabled the iden-
tification of the most relevant features for each stage of CLD (see
Table II), based on the proposed feature selection procedure.

The Normal detector (CSI) is characterized mainly by clin-
ical information. The knowledge of the disease cause and the
presence of ascites are determinant in this binary discrimina-
tion. Laboratory and US features reveal, based on the mean and
standard deviation (SE) values, class overlap.

In CS 11, the stepwise regression method selected ALT (lab-
oratory feature), age (clinical feature) and four US features, all
related to the AR coefficients computed from the WT decom-
position (3) and the original US image (1).

The discrimination in CS III, regarding CC and DC, is
achieved by the selection of a subset of ten features, where
five are US-based textural features, two from laboratory data
(INR, bilirubin), and three related to the clinical knowledge of
ascites, GI bleeding, and alcoholic habits.

IV. DISCUSSION

The proposed CBC algorithm for CLD diagnosis and staging
was tested with a database containing multimodal data from
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148 patients specifically built for this project. The selection
of the appropriated features, from different sources, to each
classification step enables an optimization of the discriminative
power of CBC

Biochemical tests are the most discriminative features to de-
tect initial liver disease, which confirms the usual approach used
in clinical practice. However, this discriminative advantage de-
creases in the higher stages of CLD characterization, where the
significance of US features increases.

Age can be clinically relevant, since patients with CH (in-
fected by HCV) have a slow progression to cirrhosis, if no com-
plication is observed [45]. Results suggest that cirrhotic patients
are 10 years older than patients with CH. On the contrary, ALT
may lead to unclear conclusions since any type of cell injury in
the liver can cause ALT elevation [3], [5].

The selected clinical and laboratory features for the cirrhosis
detector (CS III) are considered important prognostic indicators,
namely INR, bilirubin, and ascites [33]. These features are used
to calculated the Child-Pugh and the model for end-stage liver
disease (score, that accurately predict the outcomes of cirrhotic
patients [46].

The inclusion of US features improves CBC performance.
US textural features extracted from the first-order AR model
coefficients and the multiscale Haar WT analysis (level 1) are
particularly relevant. This result is in accordance with the results
of [21], [23]-[25]. WT [21], [23], [24] and AR coefficients [25]
based features have high discriminative power in the assessment
of CLD stages. 2-D WT allows spatial frequency and orientation
selectivity [32]. The use of AR coefficients in WT decomposi-
tion highlight the textural pattern by showing the development
of thickened bands of connective tissue which is associated
with architectural distortion of liver cells. In CS III, the vertical
component (ay,1) of different WT decompositions is the main
discriminative factor.

In general terms, CBC hierarchical approach outperforms the
OAA strategy and the results improve when US features are
integrated with laboratory and clinical features. It should be
stressed that when CLD is detected (CS I), CBC outperforms
the results reported in [21], [24], [37].

In [21], it is referred the difficulty to classify liver fibro-
sis stages from US images. When addressing the CH detector,
authors in [21] reported an OA of 72%, with a sensitivity of
60% for CH patients (fibrosis grade III) and 88.6% for cirrhotic
patients (fibrosis grade IV). CBC improved these results, at-
taining an OA of 86.00% with a detection rate of 73.33% and
91.43% for CH and cirrhosis class, respectively. [8] showed
slightly superior performance with an OA of 87.7% for HCV
patients.

Reports indicate that SAFE biopsy method achieves, in the
cirrhosis detector, an OA that range from 88.7% [8] to 92.5%
[13] in HCV patients. For CC class, [12] attained a detection
rate of 92.7%, in an OAA scheme. Further investigation, con-
ducted in [7], improved this result to 94%. In a wider CLD cause
spectrum, CBC achieved better results with an OA of 95.71%
and a DR of 94.12% for the CC class. The feature synergy cre-
ated by CBC allows a detection rate in DC of 97.22%, improving
the result of 82.2% reported in [4].
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CBC classification process is independent of prior cut-off
values and is not limited to one cause of CLD, whereas the re-
sults from the Castera and SAFE biopsy algorithms only include
HCYV patients. TE (Fibroscan) has shown promising results, but
its usage is limited in patients with ascites [6], [48]. CBC over-
comes this limitation and the integration of ascites in CS III is
considered an advantage over TE method. The CBC is clearly
a valuable tool for CBC detection and screening where multi-
modal data usually used in different approaches is integrated in
a single CAD framework.

To minimize false-negative rates, steatosis and focal liver
lesions, benign (hemangioma), or malignant (hepatoma or hep-
atocellular carcinoma), were not included in CBC. This is ac-
ceptable because it is assumed that focal lesions does not affect
the parenchyma outside the lesion area and steatosis coexist
with the pathologies detected by the CBC. In future studies,
hepatic steatosis and, in a wider spectrum, nonalcoholic fatty
liver disorders (NAFLD) should be considered in a hierarchical
scheme in relationship with CBC.

In the clinical environment, US liver images acquisition
should follow the proposed protocol to minimize the sensitivity
of the method to the US scanner and ROI selection [24] param-
eters. The normalization procedures, as proposed in [51], can
be very useful to increase the reliability of CBC.

V. CONCLUSION

In this study, a classification and staging strategy for CLD
based on the natural evolution of the disease is proposed. The
method, called the clinical based classifier, undergoes a pipeline
of binary classification stages that mimic the differential diag-
nosis approach used in clinical practice. Each CS is optimized
with respect to the classifier and feature set. Results show that
CBC outperforms the OAA strategy and other noninvasive CLD
tests. The main goal of CBC is to provide a useful diagnosis tool
which may reduce, but does not replace, liver biopsy.

The strength of CBC relies on the multimodal approach,
which stress the concept of combining medical data sources,
and on the classification strategy that takes into account the
natural evolution of CLD.

Future evolutions of the method are being considered and
a CAD tool is under development to be used in clinical
environment.
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