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Abstract In the case of carotid atherosclerosis, to avoid

unnecessary surgeries in asymptomatic patients, it is nec-

essary to develop a technique to effectively differentiate

symptomatic and asymptomatic plaques. In this paper, we

have presented a data mining framework that characterizes

the textural differences in these two classes using several

grayscale features based on a novel combination of trace

transform and fuzzy texture. The features extracted from the

delineated plaque regions in B-mode ultrasound images

were used to train several classifiers in order to prepare them

for classification of new test plaques. Our CAD system was

evaluated using two different databases consisting of 146 (44

symptomatic to 102 asymptomatic) and 346 (196 symp-

tomatic and 150 asymptomatic) images. Both these dat-

abases differ in the way the ground truth was determined. We

obtained classification accuracies of 93.1 and 85.3 %,

respectively. The techniques are low cost, easily imple-

mentable, objective, and non-invasive. For more objective

analysis, we have also developed novel integrated indices

using a combination of significant features.
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1 Introduction

Carotid atherosclerosis is a degenerative disease resulting

in the formation of plaques in the carotid arteries [10] and

can lead to stroke. The World Health Organization esti-

mates that by 2030, almost 23.6 million people will die

mostly from heart disease and stroke [39]. Plaque rupture

was seen in 74 % of symptomatic plaques (Sym) and in

only 32 % of asymptomatic (Asym) plaques [9]. Since there

is a considerable risk for the patient undergoing either

carotid artery stenting (CAS) or carotid endarterectomy

(CEA) [8], only those symptomatic patients at risk of

stroke should be offered these procedures. When the

degree of stenosis (DoS) based on European carotid sur-

gery trial (ESCT) criteria was greater than 80 %, CEA

was prescribed [15]. However, there is evidence that

plaques with relatively low stenosis degree may produce

symptoms [29] and the majority of asymptomatic patients

with highly stenotic atherosclerotic plaques remain

asymptomatic [21]. Therefore, there is a need for efficient

plaque characterization techniques that can detect Sym

and Asym groups.

The common carotid artery (CCA) is examined to detect

the presence of plaques in the carotid artery [16]. The

preferred modality is non-invasive ultrasound in view of its

low cost and availability. Ultrasound-based interpretations

are limited by the need for experienced ultrasonographers,

low image resolution, and image artifacts. Computer aided

diagnostic (CAD) techniques can address these issues [36].

It was observed that plaque echogenicity from B-mode

ultrasound images could be used for Sym versus Asym

classification [18]. Several studies addressed the automated

segmentation of carotid plaque using ultrasound images [2,

3, 30]. Gray Scale Median values, used for quantitative

estimation of echogenicity, have been found to be low for

the Sym group [13]. Several studies have hence developed

CAD tools that utilize features quantifying the grayscale

changes in Sym and Asym images for plaque classification

[2, 3, 6, 11, 24, 25, 27, 34]. Such CAD tools use extracted

significant features from plaque images to train classifiers

which can then predict if an unknown-class image most

likely belongs to the Sym or Asym group. The ground truth

of whether a plaque is Sym or Asym is based on the prior

history of symptoms. Our study protocol is in line with

other related studies [2, 3, 6, 11, 24, 25, 27, 34] (as shown

in Sect. 7).

In this work, we have developed CAD techniques for two

plaque datasets (called as UK and Portugal). The Portugal

dataset has plaques that are confirmed Sym or Asym based on

longitudinal studies. The UK dataset was obtained in a cross-

sectional study, and hence, some Asym plaques may have the

characteristics of Sym plaques if they were imaged while

they were progressing towards the Sym type. We chose these

two datasets to demonstrate the effect of the ground truth

(based on the clinical symptoms) on the classification

accuracies. Thus, the objectives of this work were (1) to

develop a tissue characterization data mining framework

to classify plaques into Sym and Asym types, (2) to dem-

onstrate the importance of valid ground truth based

on patient’s clinical symptoms, and (3) to develop inte-

grated indices using grayscale features whose range can be

used to more objectively, easily, and quickly classify

plaques.

The proposed CAD system consists of an off-line train-

ing system depicted by all the blocks outside the dotted

shaded rectangular box in Fig. 1 and an on-line real-time

system depicted by all the blocks within the shaded rect-

angular box. In the off-line system, the training images are

pre-processed and manually segmented, and grayscale

features are extracted from plaque regions, based on com-

bination of trace transform and fuzzy texture. Further, sig-

nificant features are selected. These features and the ground

truth are used to train several supervised learning-based

classifiers. The output of this off-line training system is the

training parameters for each classifier. These off-line

training parameters are then used to transform the feature

Fig. 1 Block diagram of the proposed CAD technique for plaque

characterization. The blocks outside the dotted shaded rectangular
box represent the flow in the off-line training system, and the blocks

within the dotted box indicate the on-line system
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vectors estimated on-line from a test image to determine

its class. This predicted class is compared with the ground

truth class to obtain the performance measures like accu-

racy, sensitivity, specificity, and positive predictive value

(PPV).

The information in this paper is organized as follows. In

Sect. 2, we describe the datasets used, and we present the

feature extraction and selection techniques in Sect. 3 and

classification methodology in Sect. 4. The integrated indi-

ces are described in Sect. 5, and the selected features and

classification results are presented in Sect. 6. Section 7

includes a discussion on the results, and presents the fea-

tures and limitations of our proposed technique. We con-

clude the paper in Sect. 8.

2 Description of data

For both datasets, approval from Institutional Review

Board and ethics committee and consent from patients

were obtained prior to the study.

2.1 Portugal dataset

In the literature, there are studies that have collected

multiple views of the same anatomy to increase the sample

size [32], and hence, we have obtained 146 carotid bifur-

cation plaque images from 99 patients (75 males and 24

females; 102 Asym and 44 Sym; mean age: 68.) The data

collection was done at Instituo Cardiovascular de Lisboa in

Lisbon, Portugal. A plaque was considered Sym when the

subject experienced Amaurosis Fugax (AF) or focal tran-

sitory, reversible or established neurological symptoms in

the ipsilateral carotid territory in the previous 6 months.

If there were no symptoms, the plaque was considered

Asym.

Patients were selected consecutively through neurolog-

ical consultation which included non-invasive examination

with color-flow duplex scan of one or both carotids.

HDI5000 Philips machine, with a L12-5 scan probe with

5–12 MHz broadband linear array transducer operating in

B-mode, was used for image acquisition. The images were

sampled at a density of 25 pixels/mm. Image normalization

was carried out [13] and the intensities of the normalized

image were linearly scaled so that the adventitia and blood

intensities would be in the range of 190–195 and 0–5,

respectively. The normalized image was used to segment

the plaque region(s) of interest (ROI) in the image. The

medical practitioner delineated the plaque by drawing

around its structure. The resultant contour was evenly

resampled and smoothed using spline interpolation. Matlab

software was used for normalization and ROI selection.

Figure 2 shows typical Sym and Asym carotid images, their

corresponding Color Doppler images, and the respective

zoomed ROIs.

2.2 UK dataset

This set consisted of 346 images (150 Asym and 196 Sym)

collected from patients (mean age ± SD: 69.9 ± 7.8; 61 %

male) referred to the Saint Mary’s Hospital, UK for diag-

nostic carotid ultrasound. The plaques from subjects who

had retinal or hemispheric symptoms such as stroke, tran-

sient ischemic attack (TIA), and AF in the previous 6 months

were classified as Sym. Asymptomatic patients were referred

because of hyperlipidemia, the presence of a cervical bruit,

or for screening prior to cardiac surgery. Subjects with car-

dioembolic symptoms or distant symptoms ([6 months)

Fig. 2 Portugal dataset. Carotid

symptomatic plaque (PS) and

asymptomatic (PA) images;

corresponding color Doppler

images (PDS and PDA);

corresponding extracted plaque

region of interests (Zoomed)

(PRS and PRA)
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were eliminated. Surgery was found to be highly beneficial

for plaques with 70–99 % DoS and moderately beneficial for

50–69 % degree [33]. Therefore, we included plaques with

greater than 50 % DoS.

The ultrasonographers who acquired the plaque images

knew the reason for referral, as they performed routine

diagnostic testing. However, the persons who subsequently

did the image normalization and analysis were blind to the

class of the plaques. The ultrasound images were acquired

used a standard image acquisition procedure [26] using an

ATL HDI 3000 duplex scanner with a linear broadband

width 4–7 MHz (multi-frequency) transducer. The images

were sampled at a density of 20 pixels/mm. The Plaque

Texture Analysis software [19] was used for normalization

and plaque ROI selection. Post-normalization, the median

gray level intensity of blood was in the range of 0–5 and that

of adventitia layer was in the range of 180–190. To select

the plaque ROI, medical practitioners outlined the plaque

with the mouse and saved it as a new file. Figure 3 shows

typical Sym and Asym carotid images, their corresponding

Color Doppler images, and the respective zoomed ROIs.

3 Grayscale feature extraction and selection

In the ultrasound images, plaques are characterized by

echodensity (homogeneous and heterogeneous). Studies

have shown that patients with hypoechoic [29] and heter-

ogeneous plaques [1] will be at an increased risk of future

stroke. These variations in the echodensity level can be

captured using texture features which quantify the pixel

intensity variations in the image.

3.1 Trace transform

The acquired ultrasound images may be slightly different

due to various acquisition angles and gain settings. Trace

transform allows us to extract features that are invariant to

transformations like rotation, translation, and scaling. In this

method, the Trace Transform Matrix is first obtained by

applying a trace functional T along line tracing the input

image. Here, the image is transformed to a ð/; p; tÞparameter

space. Then, a diametric functional P is applied along the

columns of the trace transform matrix (p direction) to get a

string. Finally, a circus functional U is applied along the

string (/ direction) to obtain a single number feature, called

the triple feature [23]. p is the distance of the centre of the

image from the tracing line. The value of the p chosen in this

work is 2. The value of the circus function U varies from 1� to

180�. t is the sampling intervals of tracing lines. In this work,

we have chosen t = 0.5. Thus, the triple feature Pðf ; IÞof

image f(x,y) in image space I can be defined as

Pðf ; IÞ ¼ UðPðTðf ðI; p;/; tÞÞÞÞ: ð1Þ

Fig. 3 UK dataset: carotid

symptomatic (US) and

asymptomatic (UA) images;

corresponding color Doppler

images (UDS and UDA);

corresponding extracted plaque

region of interests (Zoomed)

(URS and URA)
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In this work, we calculated two triple features (2) and

(3) using the invariant functionals IF1, IF2, and IF3 defined

in [23].

P1 ¼ ðT ! IF1;P! IF2;U! IF3Þ ð2Þ
P2 ¼ ðT ! IF3;P! IF2;U! IF1Þ ð3Þ

where P1is the normalized version of the triple feature

formed by using IF1, IF2, and IF3 for functionals T, P, and

U, respectively in (1). P2uses IF3, IF2,and IF1 for func-

tionals T, P, and U, respectively.

3.2 Fuzzy gray level co-occurrence matrix (FGLCM)

Typically, there are no crisp boundaries separating the

various regions in an image. Hence, we used fuzzy-logic

based features in this work. Gray level co-occurrence

matrix (GLCM) is made up of the frequency of appear-

ance of a gray level in a specified linear relationship with

another gray level within the neighborhood of interest.

The FGLCM [22] of an image I of size L 9 L is given

by

Fdðm; nÞ ¼ ½fmn�L�L ð4Þ

where fmn corresponds to the frequency of occurrence of a

gray value ‘around m’ separated from another pixel, with

gray value ‘around n’, by a distance d in a specific direction

h. In this study, we used rotational invariant co-occurrence

matrix Fd, obtained by averaging the four symmetrical

fuzzy co-occurrence matrices computed with h = 08, 458,
908, 1358 and d = 20. The following FGLCM-based

features were obtained:

Energy : Efuzzy ¼
X

m

X

n

Fdðm; nÞ½ �2 ð5Þ

Contrast : Cfuzzy ¼
X

m

X

n

ðm� nÞ2Fdðm; nÞ ð6Þ

Homogeneity : Gfuzzy ¼
X

m

X

n

Fdðm; nÞ
1þ ðm� nÞ2

ð7Þ

Entropy : Hfuzzy ¼ �
X

m

X

n

Fdðm; nÞ ln Fdðm; nÞ ð8Þ

Correlation : Corrfuzzy

¼
X

m

X

n

½mnFdðm; nÞ� � lmln=rmrn ð9Þ

where

lm ¼
X

mFdðm; nÞ; r2
m ¼

X
m2Fdðm; nÞ � l2

m ð10Þ

ln ¼
X

nFdðm; nÞ; r2
n ¼

X
n2Fdðm; nÞ � l2

n ð11Þ

Moments M1, M2, M3, and M4:

Mg
fuzzy ¼

X

m

X

n

ðm� nÞgFdðm; nÞ: ð12Þ

The similarity between two pixels that are ðDm;DnÞ
apart is measured by the homogeneity feature and the local

variation between those two pixels is captured by the

contrast feature. The density and the degree of disorder are

measured by energy and entropy features. Maximum

entropy is achieved when all elements of the co-

occurrence matrix are the same.

Difference statistics is defined as ‘‘the distribution of the

probability that the gray-level difference is k between the

points separated by d in an image’’ [37]. The difference

statistics vector can be obtained from FGLCM as [37]

FdðkÞ ¼
X

m

X

n

Fdðm; nÞ

jm�nj¼k

ð13Þ

where k = 0, 1,…c - 1, c is the number of grayscale

levels [14], and d is d ¼ ðDm;DnÞ. Based on the acquired

vector, we obtain the following difference statistics-based

features [38]:

Angular second moment : ASMdiff ¼
Xc�1

k�0

FdðkÞ2 ð14Þ

Mean : ldiff ¼
Xc�1

k�0

kFdðkÞ ð15Þ

Contrast : Cdiff ¼
Xc�1

k�0

k2FdðkÞ ð16Þ

Entropy : Hdiff ¼ �
Xc�1

k�0

FdðkÞ log FdðkÞ ð17Þ

When the Fd(k) values are very similar, ASM is small.

When Fd(k) values are concentrated near the origin, mean

is small. Entropy is largest when Fd(k) values are equal.

The above-mentioned features were calculated for d = (0,

1), (1, 1), and (1, 0), and the mean values for the four

features were taken.

The FGLCM contains information about the positions of

pixels having similar gray level values. However, the dif-

ference statistics-based features are derived from the vector

based on absolute differences between pairs of gray levels.

Thus, even though the definitions of features like contrast

[(6) and (16)] and entropy [(8) and (17)] are similar, they

are calculated on different matrices/vectors that quantify

the texture of the image in different ways.

3.3 Fuzzy run length matrix (FRLM)

The run length matrix, Fhðm; nÞ, consists of the number of

elements where gray level value i has the run length j

continuous in direction h [17]. Often the direction h is set

as 0�, 45�, 90�, and 135�. The features listed below were

calculated for analysis and classification:
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Short run emphasis : SREfuzzy

¼
X

m

X

n

Fhðm; nÞ
n2

,
X

m

X

n

Fhðm; nÞ ð18Þ

Long run emphasis : LREfuzzy

¼
X

m

X

n

n2Fhðm; nÞ
,
X

m

X

n

Fhðm; nÞ ð19Þ

Gray level non - uniformity : GLNUfuzzy

¼
X

m

X

n

Fhðm; nÞ
( )2,X

m

X

n

Fhðm; nÞ ð20Þ

Run length non - uniformity : RLNUfuzzy

¼
X

n

X

m

Fhðm; nÞ
( )2,X

m

X

n

Fhðm; nÞ ð21Þ

Run percentage : RPfuzzy ¼
X

m

X

n

Fhðm; nÞ
,

A ð22Þ

where A is the area of the image of interest.

3.4 Feature selection

We tested the UK and Portugal dataset-based features

using Q–Q plot and Kolmogorov–Smirnov test to check

whether the features had normal distribution. Since they

were normally distributed, we used the Student’s t test to

assess whether the means of a feature from two classes are

significantly different [7]. We observed that all the features

had a normal distribution, which is a necessary condition

for applying the t test.

4 Classification

The objective of a data mining technique is to determine

the optimal combination of feature set and classifier that

gives the best classification accuracy. We have, therefore,

evaluated some of the most commonly used classifiers,

namely, support vector machine (SVM), gaussian mixture

model (GMM), radial basis probabilistic neural network

(RBPNN), decision tree (DT), k-nearest neighbor (KNN),

Naı̈ve Bayes classifier (NBC), and fuzzy classifier, in this

work. We used stratified threefold cross validation data

resampling technique to evaluate the classifiers. In this

technique, the dataset is randomly split into three equal

parts. Two parts are used for training the classifiers that

yield the training parameters. During the testing phase,

these training parameters are used on the remaining one

part, and the resultant class labels are used to calculate

accuracy, sensitivity, specificity, and PPV. This process is

repeated two more times, using a different part for testing

each time, ensuring that no test image is in the training

set. The average of the performance measures (sensitiv-

ity, specificity, accuracy, and PPV) obtained over all the

three folds are reported as the final performance

measures.

We describe only those classifiers that presented the

highest accuracies. The objective of SVM classifier is to

find a separating hyperplane that separates the training

samples belonging to the two classes with a maximum

margin between the hyperplane and the sample closest to

the hyperplane [12]. In the case of nonlinearly separable

data, kernel functions are used to map the original feature

space to a higher dimensional feature space where the

features become linearly separable [28]. The polynomial

kernels of varying orders and the radial basis function

(RBF) kernels have been used in this work. The NBC is a

simple probabilistic classifier which works on the

assumption that the features are independent. Class prior

probabilities and feature probability distributions used in

the Naive Bayes model are determined from the training set

using maximum likelihood algorithm. This model is then

used along with a maximum a posteriori decision rule to

determine the class label of new test samples [20]. In the

case of fuzzy classifier, a subtractive clustering technique is

used to generate a fuzzy inference system [31], which

contains set of fuzzy rules which are used to perform fuzzy

inference calculations of the test data. In this work, we used

the Sugeno technique [35].

5 Clinical indices for screening

Tables 1 and 2, in the next section, indicate the number of

significant features for the Portugal and UK datasets,

respectively. It would be difficult to individually keep track

of the variations in each of the features. Therefore, for each

dataset, we have empirically determined a single integrated

index that is a unique combination of the respective fea-

tures that results in a unique range for both the classes.

These non-dimensional indices can be more comprehend-

ible to the physicians than the classifiers which are most

times black boxes that directly output the class label. When

continuously monitored, the variations in the indices can

throw light on how the asymptomatic plaques become

symptomatic over time. PlaqueindexP, given by (23), was

calculated using the features in Table 1. Here, the value of

vP was taken to be 35. PlaqueindexU, given by (26), was

calculated using the features in Table 2. The value of vU

was taken to be -10.

PlaqueindexP ¼ aP

bPð�1� 10vPÞ ð23Þ
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where

aP ¼ EfuzzyðPÞ � CfuzzyðPÞ �M2
fuzzyðPÞ �M4

fuzzyðPÞ
� ASMdiffðPÞ � CdiffðPÞ � ldiffðPÞ � HdiffðPÞ
� LREfuzzyðPÞ � RLNUfuzzyðPÞ ð24Þ

bP ¼
Y

1

ðPÞ �
Y

2

ðPÞ ð25Þ

PlaqueindexU ¼ aU

bUð�1� 10vU Þ ð26Þ

where

aU ¼ GfuzzyðUÞ � HfuzzyðUÞ � CfuzzyðUÞ � CorrfuzzyðUÞ
� ASMdiffðUÞ � CdiffðUÞ � ldiffðUÞ � HdiffðUÞ
� SREfuzzyðUÞ � LREfuzzyðUÞ � RPfuzzyðUÞ
� GLNUfuzzyðUÞ � RLNUfuzzyðUÞ ð27Þ

bU ¼
Y

1

ðUÞ �
Y

2

ðUÞ �M2
fuzzyðUÞ �M4

fuzzyðUÞ: ð28Þ

6 Results

6.1 Selected features

Table 1 presents the significant features obtained for the

Portugal dataset [indicated as feature(P)] and Table 2 for

the UK dataset [indicated as feature(U)]. It is evident that

all the features have p values less than 0.05 deeming them

significant. In both tables, no single feature is distinctively,

highly different between the two classes. This implies that

a combination of these features have to be used for training

the classifiers. Moreover, between the two datasets, there is

no uniformity in the feature variations. For instance,

Table 1 Portugal dataset: range

(mean ± standard deviation) of

the significant features that had

a p value less than 0.05

Feature Symptomatic Asymptomatic p value

Q
1(P) 3.08 ± 0.43 2.72 ± 0.40 \0.0001

Q
2(P) 1.04 9 1003 ± 3.34 9 1002 1.19 9 1003 ± 2.83 9 1002 0.0034

Efuzzy(P) 2.03 9 1005 ± 1.39 9 1005 2.75 9 1005 ± 1.94 9 1005 0.0193

Cfuzzy(P) 72.89 ± 13.11 66.85 ± 15.39 0.0171

M2
fuzzyðPÞ 1.80 9 1004 ± 3.32 9 1003 1.65 9 1004 ± 3.91 9 1003 0.0170

M4
fuzzy Pð Þ 1.15 9 1009 ± 2.11 9 1008 1.05 9 1009 ± 2.48 9 1008 0.0170

ASMdiff(P) 3.57 9 1007 ± 4.82 9 1007 6.71 9 1007 ± 8.68 9 1007 0.0181

Cdiff(P) 8.48 9 1005 ± 4.19 9 1005 1.01 9 1006 ± 4.28 9 1005 0.0253

ldiff(P) 3.43 9 1003 ± 1.70 9 1003 4.10 9 1003 ± 1.76 9 1003 0.0237

Hdiff(P) -39.96 ± 38.72 -64.26 ± 58.07 0.0077

LREfuzzy(P) 56.02 ± 46.10 97.68 ± 136.51 0.0372

RLNUfuzzy(P) 4.20 9 1002 ± 1.72 9 1002 3.54 9 1002 ± 1.31 9 1003 0.0092

Table 2 UK dataset: range

(mean ± standard deviation) of

the significant features that had

a p value less than 0.05

Feature Symptomatic Asymptomatic p value

Q
1(U) 3.41 ± 0.66 3.80 ± 0.59 \0.0001

Q
2(U) 9.36 9 1002 ± 3.40 9 1003 1.09 9 1003 ± 3.98 9 1002 \0.0001

Gfuzzy(U) 0.48 ± 0.06 0.55 ± 0.08 \0.0001

Hfuzzy(U) 1.53 ± 0.15 1.32 ± 0.22 \0.0001

Cfuzzy(U) 63.41 ± 18.39 40.86 ± 26.23 \0.0001

Corrfuzzy(U) 0.01 ± 0.00 0.01 ± 0.00 \0.0001

M2
fuzzyðUÞv 1.57 9 1004 ± 4.65 9 1003 10 9 1003 ± 6.63 9 1003 \0.0001

M4
fuzzyðUÞ 9.97 9 1008 ± 2.95 9 1008 6.35 9 1008 ± 4.21 9 1008 \0.0001

ASMdiff(U) 8.68 9 1007 ± 1.43 9 1008 5.23 9 1007 ± 7.30 9 1007 0.0071

Cdiff(U) 1.01 9 1006 ± 6.44 9 1005 5.25 9 1005 ± 5.29 9 1005 \0.0001

ldiff(U) 4.09 9 1003 ± 2.60 9 1003 2.15 9 1003 ± 2.12 9 1003 \0.0001

Hdiff(U) -69.08 ± 72.65 -46.85 ± 45.99 0.0011

SREfuzzy(U) 0.58 ± 0.22 0.87 ± 0.03 \0.0001

LREfuzzy(U) 242.07 ± 277.69 39.50 ± 31.53 \0.0001

RPfuzzy(U) 0.33 ± 0.25 0.62 ± 0.26 \0.0001

GLNUfuzzy(U) 5.03 9 1003 ± 7.40 9 1003 1.08 9 1004 ± 6.91 9 1003 \0.0001
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Cdiff(P) is higher for symptomatic plaques and Cdiff(U) is

higher for asymptomatic plaques. Such nonuniformity

reflects the difference in the plaques recorded in both

datasets. The reason for this difference is given at the end

of this section.

6.2 Classification results

Table 3 presents the classification results obtained using

both the datasets. To develop a classification framework for

the UK dataset, the classifiers were trained with data from

the UK dataset only. Similar is the case for the Portugal

dataset. In the case of the Portugal dataset, the fuzzy

classifier was chosen as the optimal classifier as it not only

presents the highest accuracy of 93.1 % but also has

equally good sensitivity of 99.0 % and specificity of 80 %.

In the case of the UK dataset, the highest accuracy of

85.3 % was recorded by both SVM classifier with RBF

kernel and the NBC classifier. However, a good classifier

should give equally high values for sensitivity and speci-

ficity in studies such as this in order for the classifier to not

be biased towards one class. In this angle, the SVM clas-

sifier is better than the NBC as it presents a sensitivity of

84.4 % and equally good specificity of 85.9 %.

The accuracy obtained for the UK dataset (85.3 %) is

lower than that recorded for the Portugal dataset (93.1 %).

A higher accuracy is difficult to achieve for the UK dataset

for the following reason: all plaques are initially asymp-

tomatic. In this cross-sectional study, when the dataset was

collected, 196 plaques had already become symptomatic.

Over time, some additional unstable plaques are likely to

rupture and become symptomatic. According to their

texture, such plaques would be classified by our algorithm

as high risk and unstable although at the time of imaging

they would be clinically asymptomatic. Hence, the accu-

racy is bound to be lower. This issue can only be resolved

by prospective longitudinal studies. The Portugal dataset

acquisition protocol, on the other hand, was designed to be

a longitudinal study, and hence, the images were confirmed

to be Sym or Asym after adequate follow-up. Therefore, the

texture of the plaques adequately described the respective

class without any ambiguity, and hence, the classifiers were

able to perform with better accuracy.

6.3 Integrated indices

The ranges of PlaqueIndexP and PlaqueIndexU for both

the Sym and Asym classes are presented in Table 4. It is

evident that the both the indices have a significantly dis-

tinct range for the two classes. In the case of PlaqueIndexP,

the asymptomatic images have a higher value which might

probably be because of the presence of the most of the

features that have higher values for the asymptomatic

plaques in the numerator of (23). In the case of Plaque-

IndexU, the symptomatic images have a higher value which

might be because of the presence of the most of the features

that have higher values for the symptomatic plaques in the

numerator of (26).

7 Discussion

A review of the computerized methods used for plaque

analysis can be found in Kyriacou et al. [26]. Christodou-

lou et al. [11] used 61 texture and shape features from 230

plaque ROIs in a modular neural network and obtained a

classification accuracy of 73.1 %. Mougiakakou et al. [27]

quantified plaque echogenicity characteristics using first-

order statistical features and Laws’ texture. On classifica-

tion of 54 images in each class using 21 features in a novel

hybrid neural network, they reported an accuracy of

99.1 %. Kyriacou et al. [24] used texture and morpholog-

ical features in neural and statistical classifiers and reported

an accuracy of around 71.2 % using 10 features. In 2009,

the same group [25] employed multilevel binary and

grayscale morphological analyses. Using pattern spectra

features from 274 plaques in an SVM classifier, they

reported an accuracy of 73.7 %. In 2009, Seabra et al. [34]

extracted 114 features (based on morphological, histogram

and Rayleigh parameters, and image texture) from plaques

(102 Asym and 44 Sym). They obtained an accuracy of

around 99.2 % using the Adaboost classifier. Previously

[4], we evaluated a combination of 29 texture-based fea-

tures, DoS, gray-scale mean, and P40 value extracted from

110 asymptomatic plaques and 50 symptomatic plaques

Table 3 Classifier performance measures

Classifier Portugal dataset UK dataset

A PPV Sn Sp A PPV Sn Sp

SVM: Linear 84 83.9 96 57.8 84.6 81.9 83 85.9

SVM: Poly 1 84 83.9 96 57.8 84.6 81.9 83 85.9

SVM: Poly 2 86.8 87.2 94.9 68.9 84 80.8 83 84.7

SVM: Poly 3 86.8 87.9 93.9 71.1 82.7 81.7 78.5 85.9

SVM: RBF 83.3 83.5 94.9 57.8 85.3 82.3 84.4 85.9

DT 76.4 81 85.9 55.6 79.2 76.5 74.8 82.5

Fuzzy 93.1 91.8 99 80 81.4 80 77 84.7

GMM 63.2 90.7 52.5 86.7 79.2 84.9 64.4 90.4

KNN 74.3 80 82.8 55.6 83.7 82.5 79.3 87

NBC 54.2 79.8 45.5 73.3 85.3 84.5 81.5 88.1

The highest accuracies obtained in each dataset are highlighted

in bold

All values in %

A accuracy, Sn sensitivity, Sp specificity
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and obtained a classification accuracy of 90.66 % using the

SVM classifier.

In the studies summarized above, three issues are evi-

dent: (1) the number of features used for classification is

voluminous increasing the computational time and com-

plexity, (2) there is still room for improvement in accuracy,

and (3) plaques are manually segmented leading to inter-

observer variabilities and errors. In this work, we have

addressed the first two issues, and developed CAD tech-

niques that present adequate classification accuracy using a

small feature set.

In our earlier experiments with the Portugal dataset [5], we

extracted a combination of discrete wavelet transform, higher

order spectra and textural features. On using these features in a

SVM classifier with RBF kernel function, we observed an

accuracy of 91.7 %. The accuracy obtained using the pro-

posed system for the Portugal dataset is significantly higher

(93.1 %) than the one we reported in [5] (91.7 %). In another

earlier study [2], we extracted texture features alone (standard

deviation, entropy, symmetry, and run percentage) from the

UK dataset, and obtained an accuracy of 82.4 % using SVM

with RBF kernel, which is lower than the accuracy obtained

for this dataset in this study (85.3 %). Thus, the proposed

novel combination of features does provide improved classi-

fication accuracies in both the datasets. The proposed tech-

niques have the following features:

• They are low cost as (a) the commonly acquired

ultrasound images are used, and (b) the algorithms can

be easily written as a software application and installed

at no cost.

• The system is real-time as no manual interaction is

necessary except for the selection of the ROI. The ROI

can be easily traced by expert ultrasonographers.

• The feature set is small (maximum of 17 features), and

yet is powerful as indicated by the good classification

results.

• Generalization and the robustness have been achieved

because of the use of cross-validation technique.

• The proposed novel integrated indices can be valuable

in objectively assessing the nature of the plaque and in

monitoring plaque morphology changes.

Ultrasound system parameters such as frequency, aper-

ture, pulse length, and non-linear post-processing tech-

niques that are present in advanced systems that modify the

texture of the acquired image will affect the values of the

features extracted in this work. Our future studies will

incorporate techniques to study this effect. We have shown

that the ground truth plays a very important role in the

success of classification. Even though the techniques

present good accuracies, we intend to test them on more

datasets in the future. The accuracy may be improved by

evaluating other features such as fractal dimension which

was found to be significantly different between the two

classes [6]. We also intend to extend the technique to 3D

characterization.

As highlighted previously, some asymptomatic plaques

which are in the process of becoming symptomatic tend to

have the textures typical of symptomatic plaques. In such

cases, our classifiers will classify them as symptomatic

when the ground truth is in effect asymptomatic. This is the

reason for the lower accuracy of UK dataset as plaques

were not monitored over long periods of time when this

dataset was collected. However, in the case of the Portugal

dataset, adequate monitoring was done to confidently

determine the class label of the plaque. Hence, classifiers

could give better accuracies. Moreover, some of the

asymptomatic plaques might have been labeled as symp-

tomatic when the symptoms might have occurred due to

plaque in areas other than the carotid artery. Also, patients

who do not recollect their history of symptoms may be

classified as asymptomatic. Due to these reasons, future

studies are necessary in which the ground truth of whether

the studied carotid plaque is the reason for symptoms

would be based on pathological studies on the plaque

instead of on the patient’s symptoms.

8 Conclusions

We have demonstrated that texture features and features

based on the trace transform can adequately characterize

the plaque tissue and thereby aid in classification of

symptomatic and asymptomatic plaques with accuracies

ranging to 93.1 and 85.3 %, respectively, for two different

kinds of data sets. Since we employed stratified cross-

validation method for evaluation of the proposed CAD

techniques, the classifiers were evaluated using test images

that were not included in the training set, and hence, are

robust for analyzing new images. We have also proposed

novel plaque indices which can more objectively differ-

entiate between the two classes. Additional studies are

needed in future to establish the robustness of the proposed

techniques and the indices.

Table 4 Range of Clinical

Indices
Symptomatic Asymptomatic p value

PlaqueIndexP 0.94E?05 ± 0.00E?05 6.12E?05 ± 0.17E?05 \0.0001

PlaqueIndexU 5.06E?20 ± 0.14E?20 0.24E?20 ± 0.00E?20 \0.0001
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