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Active carotid plaques are associated with atheroembolism and neurological events; its identification
is crucial for stroke prevention. High-definition ultrasound (HDU) can be used to recognize plaque
structure in carotid bifurcation stenosis associated with plaque vulnerability and occurrence of brain
ischemic events. A new computer-assisted HDU method to study the echomorphology of the caro-
tid plaque and to determine a risk score for developing appropriate symptoms is proposed in this
study. Plaque echomorphology characteristics such as presence of ulceration at the plaque surface,
juxta-luminal location of echolucent areas, echoheterogeneity were obtained from B-mode ultra-
sound scans using several image processing algorithms and were combined with measurement of
severity of stenosis to obtain a clinical score—enhanced activity index (EAI)—which was correlated
with the presence or absence of ipsilateral appropriate ischemic symptoms. An optimal cutoff value
of EAI was determined to obtain the best separation between symptomatic (active) from
asymptomatic (inactive) plaques and its diagnostic yield was compared to other 2 reference meth-
ods by means of receiver-operating characteristic (ROC) analysis. Classification performance was
evaluated by leave-one-patient-out cross-validation applied to a cohort of 146 carotid plaques from
99 patients. The proposed method was benchmarked against (a) degree of stenosis criteria and (b)
earlier proposed activity index (AI) and demonstrated that EAI yielded the highest accuracy up
to an accuracy of 77% to predict asymptomatic plaques that developed symptoms in a prospec-
tive cross-sectional study. Enhanced activity index is a noninvasive, easy to obtain parameter,
which provided accurate estimation of neurological risk of carotid plaques. (Echocardiography
2014;31:353–361)
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Carotid bifurcation disease is responsible
for one third of acute cerebrovascular events
caused by atheroembolization in the internal
carotid artery territory.1,2 Symptomatic disease
with transient ischemic attacks carries a high
risk of stroke which is higher in the first
2 weeks following the first clinical episode.
Asymptomatic carotid stenosis is usually benign
presenting a stroke risk of 3% per year. How-
ever, a significant number of high life expec-
tancy patients may suffer a stroke often

without warning symptoms.3 Severity of steno-
sis (>70%) was shown to be associated with
higher risk of ipsilateral stroke in both symp-
tomatic and asymptomatic patients, regardless
of lipid lowering treatment with statins.3 How-
ever, using only severity of stenosis as a single
criterion to select patients for intervention in
asymptomatic carotid disease requires a high
number of unnecessary carotid interventions to
prevent a single stroke.4 Several published
reports have associated plaque morphological
features to plaque vulnerability and rupture,
leading to thrombosis and cerebral embolism,
and to a higher risk of ipsilateral neurological
events and stroke5,6 and recently it was sug-
gested that stratification of stroke risk in
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patients with asymptomatic carotid disease
based upon clinical parameters and plaque
structure features was feasible.3

Identification of active carotid lesions, prone
to develop thrombotic events and associated
with increased stroke risk became a major objec-
tive to identify patients that would benefit from a
carotid intervention to prevent stroke.

Pathological studies have shown that intra-pl-
aque hemorrhage, juxta-luminal location of lipid
necrotic core, and the presence of ruptured
endothelial surface are markers of clinically active
plaque8,9 and presence of appropriate symptoms.

Imaging of carotid bifurcation lesions to assess
its morphology and biological activity is a very
active and promising area for research and clini-
cal use. Morphological imaging using ultrasound,
CT, or MRI have been described to study plaque
texture, presence of subendothelial hemorrhage,
cholesterol deposits, and the presence of calcifi-
cation.10 Biological imaging using isotope tech-
niques have aimed to target markers of active
inflammation process, which is associated with
plaque instability.11 However, CT and MR scans
are expensive and time-consuming technologies
not easy to perform in a busy clinical setting, and
biological imaging based upon uptake of radio-
active components (FDG) involves radiation, is
invasive, expensive, and it has been used essen-
tially for experimental research, without routine
clinical application.

Ultrasound imaging with Doppler flow evalua-
tion is an effective imaging modality for early
assessing carotid stenosis and plaque structure7

with the advantage of being noninvasive,
nonionizing, inexpensive, and available at most
medical facilities. The development of objective
and quantitative tools to assess plaque echomor-
phology6,8 helps in understanding the structural
changes associated with biologically active
lesions, leading to thromboembolic events and
stroke.

Initial studies found that qualitative assess-
ment of plaque echogenicity and texture
obtained from high-definition ultrasound (HDU)
were positively correlated with neurological
risk,13–15 but its clinical application was limited
because of lack of reproducibility and high obser-
ver/equipment dependency in data acquisition.
Computer-assisted plaque analysis employing
image normalization, ultrasound feature extrac-
tion, and powerful classification strategies pro-
vides a more objective assessment of the carotid
disease.6,9,12,16–19

The authors introduced the activity index (AI)
that combines quantitative and qualitative
ultrasound features obtained from HDU and
computer-assisted analysis. The AI showed a
good correlation with appropriate ocular and

neurological symptoms,17 in particular the aver-
age score for symptomatic plaques was found to
be 75 against 43 for asymptomatic plaques.
Moreover, 78% of symptomatic plaques showed
AI > 60% and 70% of asymptomatic plaques
had AI < 50. Statistical tests performed with the
Mann–Whitney U-test27 reject the null hypothesis
at 5% significance level that the 2 groups of pla-
ques have identical AI distributions (equal medi-
ans) with a P-value = 9.5E-9.

In recent years, the importance of ultrasound
speckle for tissue characterization has been recog-
nized,20 particularly as a textural descriptor.20–24

In this scope, the authors proposed a despeckling
method25,26 that decomposes the ultrasound B-
mode image into noiseless and speckle compo-
nents to extract echomorphology and textural
descriptors, respectively, providing a more com-
plete characterization of the carotid plaque.

This study proposes a new score, designated
as enhanced activity index (EAI), which combines
clinical parameters with ultrasound features
obtained after a series of image-processing opera-
tions. This new score improves the early proposed
AI13 as it provides a more objective and complete
characterization and risk stratification of carotid
active plaques. The usefulness of the proposed
score is investigated by means of a typical classifi-
cation problem carried out on a population of
symptomatic and asymptomatic plaques.

Material and Methods:
This study is based on ultrasound data obtained
from patients observed through a medical con-
sultation at the Cardiovascular Institute of Lisbon
and at the Department of Vascular Surgery,
Lisbon’s Academic Medical Center. Evaluation
with color-flow Duplex-scan of both carotids was
performed with ATL-HDI 3000 or 5000 scanner
(Philips Medical Systems, Bothell, WA, USA).
Equipment setup included 5 to 12 MHz broad-
band linear-array transducer, 60 dB dynamic
range, and postprocessing linear maps. Image
acquisition included the most representative lon-
gitudinal cut in color and B-mode as selected by
the operator (L.M.P.) who performed the HDU
acquisitions. In addition, the presence of surface
disruption, and/or of an echogenic cap overlying
the lesion, the location of the echolucent region
in heterogeneous lesions (central or juxta-lumi-
nal), and the degree of stenosis were determined
and recorded. The degree of stenosis was quanti-
fied by morphological (cross-sectional area) and
velocity criteria.19

Clinical examination assessed the neurologi-
cal status and a plaque was considered symp-
tomatic when amaurosis fugax (AF) or focal
(transitory, reversible, or established) cerebral
events in the ipsilateral carotid territory occurred
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in the previous 6 months. The symptomatic/
asymptomatic information is useful to compute
and validate the proposed EAI.

Plaque Classification:
The workflow for computing and testing the
EAI is based on a classification paradigm
depicted in Figure 1. During the training phase,
B-mode images are collected and normalized
followed by region of interest (ROI) selection,
image processing, and feature extraction from
the defined ROIs, as presented in Figure 2.
Significant features are identified using suitable
statistical tests. Such features and the experts’
ground truth about the plaque condition
(symptomatic/asymptomatic) provide the train-
ing parameters that are used to obtain the EAI.
Details on the computation of EAI are given in
Appendix A.

The workflow for plaque classification based
on the EAI is implemented through a computer-
aided diagnosis system (CADx) designed in
MATLAB (version 7.10.0; The MathWorks Inc,
Natick, MA, USA). The CADx enables to: (i) visu-
alize the acquired ultrasound data in real time,
(ii) delineate the plaque(s) contour(s), and (iii)
introduce clinical information concerning the
studied plaque. Image processing/feature extrac-
tion module is performed automatically and the
EAI is displayed. The workflow consisting of
image processing, feature extraction, and calcu-
lation of the EAI takes approximately 30 sec per
plaque on a dual core PC with 1.87 GHz proces-
sor. The time for plaque segmentation and input
of clinical parameters by the medical doctor takes

about 90 sec. A commercial version of the CADx
by AtheroPoint LLC (Roseville, CA, USA) is being
produced where the EAI is computed in real
time.

Results:
The results are based on 146 carotid bifurcation
plaques. The characteristics of the population are
listed in Table I. We present 4 different results:
first, we describe the set of ultrasound parame-
ters required to characterize the plaque symp-
tomatic condition and to compute the EAI;
secondly, we investigate the distribution of the
computed-enhanced activity indexes for each
class of symptomatic and asymptomatic plaques.
The third result compares the receiver-operating
characteristic (ROC) curves obtained with the
classification methods based on the proposed EAI
together with the degree of stenosis and the AI.
Finally, we benchmark the classification perfor-
mance of each method based on the computed
cutoffs.

EAI Significant Parameters:
The set of most significant features (P-value
<0.05) identifying the active lesion is listed in
Table II. This result highlights the importance of
combining well-established morphological fea-
tures with different sources of information
extracted from processed ultrasound data to
define and characterize the active carotid plaque.
In particular, some of these features are extracted
from the histogram of the normalized image,
the statistical mixture model estimated on the
envelope radiofrequency, and also the speckle
component.

Plaque Distribution According to the EAI:
Investigation of the distribution of the carotid
plaque scores brings up evidence of the useful-
ness of the proposed risk index since, as the result
in Figure 3 shows, the asymptomatic plaques are
predominantly located in the index interval
20–30 while most of the symptomatic plaques
show a risk higher than index 55 (P-value <0.01).
This score can be used by clinicians as a first indi-
cation of plaque severity. This is an important
outcome of the method because it provides a
quantitative measure to help the clinician in mak-
ing a diagnosis rather than simply outputting a
symptomatic versus asymptomatic classification.

ROC Curves for Degree of Stenosis, AI, and
EAI:
ROC curve analysis is useful to compare the per-
formance of the studied diagnostic markers
(degree of stenosis, AI, and EAI) and further, to
select a cutoff value for diagnostic decision mak-
ing. Details on ROC curve analysis are given in

Figure 1. Block diagram of the workflow for determination
of the enhanced activity index. The workflow consists of an
offline training phase that considers all the data except that
belonging to the patient whose score is to be computed.
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Appendix A. Figure 4 shows the ROC curve
obtained with the EAI. The proposed marker
yields an area under curve (AUC) of 0.868 (95%
CI [0.791; 0.891], P-value <0.0001). This value is
comparatively higher than the values obtained
with the AI and degree of stenosis curves, 0.831
(95% CI [0.726; 0.86], P-value <0.0001) and
0.828 (95% CI [0.747; 0.855], P-value <0.0001),
respectively (P-values <0.0001). The higher value
of AUC obtained for the EAI curve suggests a bet-
ter trade-off between true positive and false posi-
tive (FP) rates when the score is used as a
decision making criterion. It also indicates that a
diagnosis decision based on the EAI is globally
more powerful than the other investigated mark-
ers regardless of the cutoff selected.

Benchmark of EAI-Based Classification Against
Degree of Stenosis and AI:
According to the empirical rule described in
Appendix B, the optimal cutoffs for the degree
of stenosis, AI, and EAI are 80, 65, and 55,
respectively. These cutoffs can be used to design
a binary classifier based on simple thresholding.
Table III shows that the decision criterion based
on the EAI outperforms the other markers as far
as the diagnostic performance is concerned. All
the studied classification performance criteria

A B

C D

Figure 2. The computation of the enhanced activity index requires complex ultrasound image processing operations, resulting
in: A. normalized, B. envelope radiofrequency (RF), C. noise-free, and D. speckle images,35 obtained from a B-mode image. Ultra-
sound parameters of different type are computed from each processed image.

TABLE I

Population Characteristics

Symptomatic Asymptomatic P-value

Patients
N 30 69
♀ 7 27 0.275
♂ 23 52

Age ð�xÞ 67.5 68.6 0.573
Plaques
N 44 102
TIA 15
Minor
stroke

10

Major
Stroke

17

AF 2
Degree of stenosis
�x 81.3 61.9 2.78 9 10�8

>70% 35 40 7.69 9 10�6

50–69% 7 29 0.107
<50% 2 33 3.05 9 10�4

Texture
Homogenous 13 74 1.81 9 10�6

Heterogenous 31 28

TIA = transient ischemic accident; AF = amaurosis fugax.

356

Pedro, et al.



provided higher values for the proposed risk
score, notably the precision (analogous to the
positive predictive value) is approximately 5%
higher than the other criteria up to 70%. This
result indicates that the proposed method is able
to detect most of the “active” plaques while
keeping the number of FPs low. Overall, when
the accuracy is considered, putting together the
correct identification of the TP and TN, the EAI-
based classification provides the best discrimina-
tion between symptomatic and asymptomatic
plaques up to 76.9%.

Discussion:
This study proposes a new objective diagnostic
score for the identification of the active carotid
plaque implemented through different modules
of image processing, feature extraction, and
plaque classification based on HDU data.
This score is easy and fast to determine as its
computation runs approximately on real time on
a CADx platform and requires inexpensive,
widely available, and easy to obtain ultrasound
data.

Characterization of the active lesion is cur-
rently carried out by using objective computer-
assisted methods based on characteristics of
plaque echomorphology and texture. Table IV
summarizes the most recent plaque classification
methods based on ultrasound data.

Figure 3. Distribution of plaques according to the proposed enhanced activity index.

TABLE II

Optimal Feature Set Determining the Ultrasound Profile of the
Active Plaque and Used for Computing the Enhanced Activity

Index

Feature Source P-value

Plaque disruption Morphology P < 0.001
Presence of
echogenic cap

Morphology 0.001

Degree of stenosis Morphology P < 0.001
Plaque echo structure
appearance

Morphology P < 0.001

Mean Normalized
histogram

0.001

Skewness Normalized
histogram

0.009

Percentile 10 Normalized
histogram

0.022

Percentile 50 Normalized
histogram

0.047

4th Rayleigh parameter Envelope RMM 0.010
5th Rayleigh parameter Envelope RMM 0.010
6th Rayleigh parameter Envelope RMM 0.010
5th mixture component Envelope RMM 0.004
6th mixture component Envelope RMM 0.014
No. mixture components Envelope RMM 0.016
GLCM homogeneity Speckle 0.016
Wavelet decomposition
energy

Speckle 0.004

GLCM = gray-level co-occurrence matrix; RMM = Rayleigh
mixture model.
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Our group has previously contributed to the
concept of computer-assisted plaque analysis by
introducing a score that quantifies plaque activ-
ity, combining echogenicity information from
the normalized image with parameters derived
from the echo structure of the entire lesion. This
score, designated as AI, was associated with
promising accuracy in the identification of symp-
tomatic lesions.17 However, it was operator
dependent and prone to error based on incorrect
visual interpretation of the image.

The method proposed in this study expands
the AI by merging both qualitative and
quantitative ultrasound criteria obtained from
advanced image processing techniques. This new

score is less dependent on subjective features
and gives increased importance to the more
objective, image-based feature space. The origi-
nality of the proposed method stands on the
application of a series of ultrasound processing
operations that enable to obtain a multitude of
sources of information for plaque analysis from a
conventional B-mode ultrasound image. A clear
separation between asymptomatic and symp-
tomatic plaques was obtained: presence of
appropriate symptoms was present for scores
higher than 55 on a 0 to 100 scale.

Furthermore, we compared the diagnostic
yield of this new score with the early proposed AI
and degree of stenosis on a cross-sectional study.
We show that the EAI leads to better identifica-
tion of symptomatic plaques while reducing the
number of FPs.

We shall point out that this diagnostic yield is
obtained with a simple classifier based on esti-
mating the cutoff points from the ROC curve
analysis (process of classification based on cutoff
or thresholds). This strategy was followed in favor
of other more complex classifiers because it is a
method well established in the medical commu-
nity and it eases the comparison with other
diagnostic methods, notably the one based on
the degree of stenosis. Hence, the application of
more powerful classification strategies such as

Figure 4. Receiver-operating characteristic (ROC) curve obtained with enhanced activity index. The intersection of the ROC
curve with the secondary main diagonal, corresponding to equal true positive and false positive rates, is used to identify the
optimal cutoff.

TABLE III

Classification Performance Results Obtained with
Leave-One-Out Cross-Validation (LOOCV) for the Studied
Diagnostic Based on Thresholding with Degree of Stenosis
(DS), Activity Index (AI), and Enhanced Activity Index (EAI)

LOOCV
(%) DS (>80%) AI (>65) EAI (>55)

Accuracy 72.85 74.66 76.92
Sensitivity 67.14 65.91 70.00
Specificity 75.50 78.43 80.13
Precision 55.95 56.86 62.03
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Support Vector Machines or Adaptive Boosting
will improve the diagnostic yield.25 Moreover,
the fact that we propose a classification strategy
based on a risk score presents an advantage
among other methods described in literature: we
are not limited to a binary decision, but we also
provide an objective measure that quantifies the
plaque activity and consequently the risk of
stroke. This measure can be used by doctors in
daily diagnosis.

In spite of all advantages, we do see that there
is a clear scope of improvement in this study due
to a small studied database. We intend to grow
the plaque database over time and further vali-
date these robust results. The current database,
however, clearly demonstrates that new index
correlates well with the presence of symptoms in
carotid plaques.

Conclusions:
Enhanced AI is a useful diagnostic marker that
correlates with carotid plaque activity expressed

by the presence of appropriate neurological
symptoms.

This new index is more reliable and objective
than previously described AI because it combines
multimodal data (clinical, echogenicity, and tex-
ture) from ultrasound images and a Bayes likeli-
hood symptomatic/asymptomatic ratio. It is also
more accurate as it provides better identification
of symptomatic plaques while reducing signifi-
cantly the number of FPs.

The proposed EAI, implemented in a com-
puter-aided diagnosis platform based on ultra-
sound data, represents a fast, objective, and
accurate descriptor of plaque activity and corre-
lates well with clinical presentation.
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Summary of Plaque Characterization Methods Based on Ultrasound Images

Authors` Material Method
Diagnostic

Yield

Madycki et al.27 76 plaques (17 with
postoperative lesions
seen on MRI)

Digital plaque texture analysis Correlation of
microembolism and
incidence of silent brain
infarcts (P = 0.028)

Christodoulou et al.16 230 plaques (115
symptomatic, 115
asymptomatic)
from 209 patients

Texture features used in a modular
neural network composed of self-
organizing map classifiers41

73.1% average accuracy

Asvestas et al.28 10 symptomatic and 9
asymptomatic plaques

Fractal dimension of plaques estimated
using the K-nearest neighbors

Fractal dimension
significantly lower in
asymptomatic patients
(P value <0.01)

Mougiakakou et al.18 54 symptomatic and 54
asymptomatic plaques

Statistical and Laws’ texture
features employed with genetic
classification algorithms

99.1% average accuracy

Kyriacou et al.19 137 symptomatic and 137
asymptomatic plaques

Multilevel binary and gray scale
morphological features used with
Probabilistic Neural Network (PNN)
and the Support Vector Machine
(SVM)

73.7% average accuracy
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asymptomatic
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used with the SVM classifiers
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(SVM) classifiers
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and heterogeneity
(P = 0.0001) with
plaque symptoms
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Appendix A

Enhanced Activity Index:
The enhanced activity index is obtained from
clinical and ultrasound parameters computed
from carotid longitudinal images. In a clinical set-
ting, the operator does not have access to the
radiofrequency (RF) data so he is limited to the
use of the B-mode image whose characteristics
are changed by the equipment’s inherent pre-
processing operations. To overcome this prob-
lem, we have proposed a method to estimate the
envelope RF ultrasound image.26 In addition, a
despeckling26 method is applied to the envelope
image aiming at separating the noise-free and
speckle components. The noise-free image
accounts for plaque echomorphology, i.e., the
distribution of intensities throughout the plaque,
whereas the speckle image describes how the
echogenic contents are spatially arranged.

The overall procedure for image processing
and feature extraction is described in detail in.25

In short, it involves the extraction of: (i)
histogram features such as mean, median, P40,
standard deviation, kurtosis, skewness, energy,
entropy and percentile 10, 25, 50, 75, 90 coeffi-
cients from the normalized image, (ii) parameters
of the Rayleigh mixture model (RMM)36 esti-
mated on the envelope RF image,34 (iii) Rayleigh
statistical estimators describing echomorpholo-
gy, computed from the noise-free image, and
(iv) textural descriptors, such as gray-level
co-occurrence matrices (GLCM), autoregressive
(AR) model, and wavelet decomposition coeffi-
cients.25 These image-based features are com-
bined with clinical information including the
degree of stenosis, evidence of plaque surface
disruption or presence of fibrous cap, patient
medication, risk factors, and symptomatic status.
A Mann–Whitney (M-W) U hypothesis test37 is
used to select the most relevant features from a
large collection of collected features. The vector
x = [x1, x2, …, xN]

T containing the N most rele-
vant features is modeled by the following multi-
variate Gaussian distribution:

pðxjls;RsÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjRsj

p exp

1
2
ðxs � lsÞTR�1

s ðxs � lsÞ
� � ðA1Þ

where ls and Σs are the mean and covariance
matrix, respectively, of each class s 2 fS;Asg
being S and As the Symptomatic and Asymptom-
atic classes, respectively. The statistics ls and Σs

are computed from the two groups of plaques.
The function described in (A1) is the probability
of x given the mean vector ls and the covariance
matrix Σs, i.e., the likelihood of a given subject
characterized by the feature vector x belonging
to each class, S and As. The enhanced activity
index is defined as follows:

EAIðxÞ ¼ GðCðxÞÞ; ðA2Þ
where CðxÞ ¼ RSðxÞ

RAðxÞ is called the Bayes factor,38

Rs(x) = p(x | ls, Σs) is the likelihood of x with
respect to classs 2 fS;Asg, and GðxÞ ¼ 100

1þexpð1�xÞ
is a rescaling function to map the Bayes factor in
the interval [0, 100]. Definition (A2) is a normal-
ized function of the Bayes factor that quantifies
the risk of a plaque to cause neurological symp-
toms.

The estimation of the parameters ls and Σr in
(A1) can be made from a static training set.
However, to avoid a possible biased result, the
computation of the activity score is made by
means of the leave-one-patient-out cross-valida-
tion strategy.39 The enhanced activity index of
the ith patient is computed with (A2) using ls(i)
and Σs(i) which are in turn obtained from all the
data excluding the ith patient.

Appendix B

ROC Curve Analysis:
The prediction of risk (neurologic symptoms)
based on the enhanced activity index of a given
patient is made according the following rule:

x ¼ S if EAIðxÞ[ co
As otherwise

�
ðB1Þ

where co is an optimal cutoff estimated as follows.
The ground-truth information about plaque con-
dition is used to compute the sensitivity and spec-
ificity of the method for each specific value of the
parameter co. The process is repeated for different
values of co to obtain the receiver-operating
characteristic (ROC)40 curve where sensitivity =
TN/(TN + FP); and specificity = TN/(TN + FP);
TP = true positive, TN = true negative, FP = false
positive, and FN = false negative. In addition, a
cutoff shall be defined depending on the diagnos-
tic decision scenario: as an example, to limit FPs
(decision on surgery scenario), the optimal cutoff
should be located on the left side of the coordi-
nate axis (see Fig. 4). Here, the cutoff is chosen as
the intersection of the line called “decision rule”
defining equal relevance to the TP and TN (or
1 � FP) rates and the ROC curve.
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