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a  b  s  t  r  a  c  t

Characterization of carotid atherosclerosis and classification into either symptomatic or
asymptomatic is crucial in terms of diagnosis and treatment planning for a range of
cardiovascular diseases. This paper presents a computer-aided diagnosis (CAD) system
(Atheromatic) that analyzes ultrasound images and classifies them into symptomatic and
asymptomatic. The classification result is based on a combination of discrete wavelet trans-
form, higher order spectra (HOS) and textural features. In this study, we compare support
vector machine (SVM) classifiers with different kernels. The classifier with a radial basis
function (RBF) kernel achieved an average accuracy of 91.7% as well as a sensitivity of 97%,
and specificity of 80%. Thus, it is evident that the selected features and the classifier com-
bination can efficiently categorize plaques into symptomatic and asymptomatic classes.
Moreover, a novel symptomatic asymptomatic carotid index (SACI), which is an integrated
index that is based on the significant features, has been proposed in this work. Each ana-
lyzed ultrasound image yields on SACI number. A high SACI value indicates that the image
shows symptomatic and low value indicates asymptomatic plaques. We  hope this SACI can
support vascular surgeons during routine screening for asymptomatic plaques.

©  2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Atherosclerosis and high blood pressure are the main causes
for heart disease and stroke [1].  Stroke ranks third among the
most common cause of death in the majority of industrial-
ized countries. Therefore, atherosclerosis is a real problem.

∗ Corresponding author. Tel.: +65 81671735.
E-mail addresses: faust o@web.de (O. Faust), jsuri@comcast.net (J.S. Suri).

Stroke most commonly results from occlusion of a major
artery in the brain and typically leads to the death of all cells
within the affected tissue [2].  A major cause of this occlu-
sion is atherosclerosis in the carotid artery. Atherosclerosis
is a condition which leads to a thickening of arteries caused
by plaque deposition [3].  It has been shown that the risk
of ipsilateral stroke can be reduced by surgical removal of

0169-2607/$ – see front matter © 2012 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cmpb.2012.09.008

dx.doi.org/10.1016/j.cmpb.2012.09.008
www.intl.elsevierhealth.com/journals/cmpb
mailto:faust_o@web.de
mailto:jsuri@comcast.net
dx.doi.org/10.1016/j.cmpb.2012.09.008


c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 66–75 67

plaques [4].  Since most of the carotid plaques are not harm-
ful and since carotid surgery and stenting procedures have
risks associated, there is a need for an adjunct modality that
can aid the vascular surgeons to select with high confidence
only those patients that definitely need the surgery. Based
on autopsy analysis and ultrasound studies [5–8], it is known
that both presence and extent of atherosclerotic lesions in
a localized observation area correlate with atherosclerosis
present in other parts of the circulatory system, e.g. coronary
arteries.

The two crucial diagnostic steps for treatment planning
and surgery include (1) detection of plaque and (2) the catego-
rization of the plaque into symptomatic [9] or asymptomatic
[10] classes. Researchers have proposed a range of methods
for these purposes. Studies indicate that intravascular ultra-
sound measurement of coronary plaque volume is a good
indicator for the efficacy of plaque related surgery and therapy.
Unfortunately, intravascular ultrasound is invasive, poten-
tially risky, and very expensive [11,12].  Non-invasive carotid
artery ultrasound is another well-established visualization
tool. It helps physicians to quantify atherosclerotic lesions.
Medical specialists use this method to evaluate atheroscle-
rotic disease in its early and advanced stages. This technique
has also been used in many  recent epidemiological studies
and in atherosclerosis prevention trials. Moreover, studies
using B-mode ultrasound for plaque morphology character-
ization suggest that this method is useful in assessing the
vulnerability of atherosclerotic lesions [13–15],  in spite of
the non-availability of a way  to classify risky plaques with
adequate confidence and reproducibility. Despite these advan-
tages and popular use, ultrasound has its own limitations.
Due to low spatial resolution and artifacts, the correlation
between features seen on the ultrasound images and those
found in the histological examination of the plaques is not
good [16,17].  Therefore, in order to increase this correla-
tion between classification and histological results, there is a
need for developing pre-processing techniques that improve
the ultrasound image  quality and for extracting discriminate
features.

In this paper, we  present an efficient plaque categoriza-
tion algorithm that is based on several features extracted from
B-mode ultrasound images. We call the system Atheromatic.
The block diagram, in Fig. 1, shows the algorithm structure.
The obtained B-mode ultrasound images are pre-processed,
and image  features based on the texture, Higher Order Spectra
(HOS), and Discrete Wavelet Transform (DWT) are extracted.
These features are then fed to the Support Vector Machine
(SVM) classifier. The quality of these features led us to propose
a new index which indicates whether or not a plaque forma-
tion is Amaurosis Fugax (AF) or asymptomatic (AS). Analysis
shows that the proposed index is clinically significant.

This paper is organized as follows. In Section 2, we present
the data collection procedure and describe the nature of the
data. We  also present the pre-processing steps employed. Sub-
sequently, brief descriptions of the features are given. The
SVM classifier is then presented. Furthermore, we explain
the statistical tests which were used in this work. Section
3 presents the range of selected features and classification
results. We also report on the symptomatic asymptomatic
carotid index (SACI) parameter. In Section 4, we discuss a few

related studies and compare them with our results. We con-
clude the paper in Section 5.

2.  Materials  and  methods

This section introduces all materials and methods used in the
proposed system. We  organized the text in such a way  that
it reflects the structure of the block diagram which is shown
in Fig. 1. In Section 2.1 both acquisition and preprocessing of
carotid B-mode Ultrasound images are discussed. In Sections
2.2–2.5,  we briefly describe the texture, DWT, and HOS  feature
extraction methodologies. The extracted features are ana-
lyzed with the so-called t-test. The t-test itself is introduced as
part of the statistical analysis methods in Section 2.7. Finally,
we discuss the SVM algorithm with different kernel configu-
rations.

2.1.  Carotid  ultrasound  image  acquisition  and
preprocessing

The data was taken from 146 carotid bifurcation plaques in
99 patients, 75 males and 24 females. Mean age was 68 years
old (41–88). Patients were observed consecutively through
neurological consultation which included non-invasive exam-
ination with color-flow duplex scan of one or both carotids.
A plaque was considered symptomatic when Amaurosis
fugax or focal transitory, reversible or established neurological
symptoms in the ipsilateral carotid territory, were observed in
the previous 6 months. 102 plaques were identified as asymp-
tomatic while 44 have shown symptoms.

Image  normalization is an important step to guarantee that
images acquired under different conditions yield compara-
ble and reproducible features and classification results. Image
normalization was achieved as previously reported [18]; hence,
the image  intensities were linearly scaled so that the adventi-
tia and blood intensities would be in the range of 190–195 and
0–5, respectively.

The normalized image  is used to segment existing
plaque(s) in the image.  Each plaque is delineated by drawing
around its structure and the obtained contour is evenly resam-
pled and smoothed using spline interpolation. De-speckled
and Speckle images, needed to compute the echo-morphology
and texture features, are computed from the normalized BUS
images. In a first step, the eRF image  is estimated from the
normalized BUS according to [19]. In a second step, the esti-
mated eRF image  is used to compute the speckle-free and
speckle components. This second step uses a Bayesian frame-
work with the Maximum a Posteriori (MAP) criterion where
the pixels are considered independent random variables with
Rayleigh distribution, as described in [20].

2.2.  Texture  features

The three major goals of texture research are to under-
stand, model and process texture. Ultimately, the aim is to
simulate human visual learning processes using computer
technology. Texture is defined as a regular repetition of an
element or pattern in a surface structure [21]. Structural anal-
ysis and statistical analysis methods are the most commonly
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Fig. 1 – Block diagram of the proposed system.

used approaches to analyze the texture of an image.  In the
case of the statistical approach, the distribution of the pixel
intensities and the relationships between the intensities are
analyzed. In this work, we have used the statistical anal-
ysis method, namely, the gray level co-occurrence matrix
(GLCM), to extract the third moment feature. Structural texture
analysis is more  complex when compared to the statistical
approach [22], because it studies the symbolic descriptions
of the image.  It has been found that the statistical approach
based features are more  useful for analysis than the struc-
tural features [23]. We have used the statistical analysis
method called run length matrix to extract the run length
non-uniformity (RLnU) feature. The remainder of this sec-
tion briefly explains the different statistical features extracted
from the carotid ultrasound images.

Let !(i) for i = 1, 2, . . ., n be the number of points whose inten-
sity is i in the image  and A1 be the area of the image.  The
occurrence probability of intensity in the image  is defined as:

h(i) = ϕ(i)
A1

(1)

The standard deviation is given by:

# =
n∑

i=0

(i − $)2h(i) (2)

where # is the deviation and $ is the mean of intensities.

1. Co-occurrence matrix: the GLCM of a m × n image  I is
defined [24] as:

(3)Cd = | {(p, q), (p + %x, q + &y) : I(p, q) = i, I(p + %x,
q + %y) = j} |where (p, q), (p + %x, q + %y) belongs to a m × n,
d = (%x, %y) and |·| denotes the set cardinality. The probability
of a pixel with a gray level value i having a pixel with a gray
level value j at a distance (%x, %y) away in an image  is:

Pd(i, j) = Cd(i, j)∑
⟨i⟩
∑

⟨j⟩Cd(i, j)
(4)

where the summation is over all possible i, Based on the GLCM,
we obtain the Third moment as:

Third moment = −
∑

⟨i⟩

∑

⟨j⟩

(i − j)3Pd(i, j) (5)

2. Run Length non uniformity (RLnU): The run length matrix P'
contains all the elements where the gray level value i has
the run length j continuous in direction ' [25]. Often the
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Fig. 2 – Two-dimensional DWT where 2↓1 indicates down
sampling the columns by 2 and 1↓2 indicates down
sampling the rows by 2.

direction ' is set as 0◦, 45◦, 90◦, or 135◦ . . . RLnU is defined
as [26]:

RLnU =
∑

⟨j⟩

(
∑

⟨i⟩

P'(i, j)

)2

(6)

The RLnU measures the similarity of the length of runs
throughout the image.  The value is expected to be small if
the run lengths are alike throughout the image.

2.3. Discrete  wavelet  transform  features

In both numerical and functional analysis, a DWT is any
wavelet transform for which the wavelets are discretely sam-
pled [27]. A key advantage over the well-known Fourier
transforms [28] is temporal resolution: it captures both fre-
quency and location information (position in time).

The two-dimensional DWT leads to a decomposition of
approximation coefficients at level j in four components: the
approximation CAj+1 at level j + 1, and the details in three
orientations (horizontal CDh

j+1, vertical CDv
j+1, and diagonal

CDd
j+1). Fig. 2 describes the basic decomposition steps for

images.
In this work we  have used Biorthogonal 3.1 wavelet. The

properties are symmetric, not orthogonal and biorthogonal.
Fig. 3 shows the coefficients for both decomposition low and
high pass filters for this wavelet.

We have used the average intensity of CDv1 as the first DWT
feature:

AVERAGE CDv1 =
∑

⟨j⟩

∑

⟨i⟩

CDv1(i, j) (7)

The second DWT feature was defined as the energy of CDv1.

AVERAGE CDv1 =
∑

⟨j⟩

∑

⟨i⟩

(CDv1(i, j))
2

(8)

Fig. 3 – (a and b) Biorthogonal 3.1 decomposition filter.

Fig. 4 – Geometry of Radon transform.

2.4.  Radon  transform

The Radon transform is widely used in image  processing for
handling medical images [29]. The algorithm computes line
integrals along many  parallel beams or paths in an image  from
different angles ' by rotating the image  around its centre. This
transforms the image  pixel intensity values along these lines
into points in the Radon domain.

The Radon transform of f(x, y) is the line integral of f parallel
to the yr-axis and is given by

R' =
∫ ∞

−∞
f (xr, yr) dyr (9)

where

[
xr

yr

]
=
[

cos(') sin(')

− sin(') cos(')

] [
x

y

]
(10)

Thus the radon transform converts 2D image  into 1D par-
allel beam projections at various angles, and in this work, we
have used a step size of ' = 5◦. The geometry of the Radon
transform is illustrated in Fig. 4.

2.5. Higher  order  spectra  (HOS)

The entropy features obtained from the Bi-spectrum are used
in this work. The Bi-spectrum is a complex valued function of
two frequencies given by

B(f1, f2) = E[A(f1)X(f2) ∗ X(f2 + f2)] (11)

where X(f) is the Fourier transform of the signal x(nT).
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Fig. 5 – Non-redundant region for the computation of the
Bi-spectrum for real signals. Parameters are calculated in
the region !.

The frequency f maybe normalized by Nyquist frequency
so as to be between 0 and 1. The Bi-spectrum, which is the
product of the three Fourier coefficients, exhibits symmetry,
and is computed to the non-redundant region. This is termed
as (, the principal domain or the non-redundant region (i.e.
the triangle region in Fig. 5). Bi-spectrum phase entropy [30–32]
is defined as:

e1 =
∑

np( n) log( n)

p( n) = 1
L

∑
˝
l(ϕ(B(f 1, f 2) ∈  n)

(12)

 n =
{
ϕ| − ) + 2)n

N
≤ ϕ < −) + 2)(n + 1)

N

}

n = 0, 1, . . . , N − 1

(13)

where L is the number of points within the region ( in Fig. 5,
ϕ refers to the phase angle of the bi-spectrum, and l(·) is an
indicator function which gives a value of l when the phase
angle is within the range of  n given in Eq. (13).

In this study we have used the phase entropy on the radon
transform for ' = 135◦ and ' = 140◦ of the B-mode ultrasound
images. This yields two features: e1(135◦) and e1(140◦).

2.6.  Classification  using  support  vector  machines
(SVM)

The SVM is a maximum margin classifier, i.e. it maximizes
the distance between the decision hyperplane and the closest
class training data called support vectors. Initially designed
for two class problems, it has been extended for multiclass as
well. We  describe below the SVM method:

Consider two class classifications using a linear model of
the form

y(x) = wT!(x) + b (14)

where ϕ(x) denotes the feature transformation kernel, b the
bias parameter. The vector w is normal to the hyper-plane.
The training data consists of the input feature vectors x and
the corresponding classes c (−1 or 1). The new feature vectors
are classified according to the sign of y.

The margin is given by the perpendicular distance to the
closest point x from the training data set. The goal is to find the
maximum margin hyper-plane while at the same time assign-
ing a soft penalty to points that are on the wrong side of the
margin. The problem is then to minimize,

C

N∑

i=1

*i +
1
2

||w||2

ciy(xi) ≥ 1 − *i, * ≥ 0

(15)

where *I are penalty terms for points that are misclassified.
The first term is equivalent to maximizing the margin and
C is the regularization parameter that controls the tradeoff
between the misclassified points and the margin.

This quadratic programming problem is solved by introduc-
ing Lagrange multipliers an for each of the constraints and
solving the dual formulation. The Lagrangian is given by

L(w,  b,  a)  = 1
2

||w||2 +  C

N∑

i=1

*i −
N∑

i=1

ai[ciy(xi)  −  1  +  *i]  −
N∑

i=1

$i*i (16)

where ai and $i are the Lagrange multipliers. After eliminating
w, b and *I from the Lagrangian we  obtain the dual Lagrangian
which we  maximize.

L̃(a) =
N∑

i=1

ai −
1
2

N∑

i=1

N∑

j=1

aiajcicjk(xi, xj)

k(xi, xj) = !(xi)
T · !(xj)

0 ≤ an ≤ C,

N∑

i=1

aici = 0

(17)

The predictive model is given by

y(x) =
N∑

i=1

aicik(x, xi) + b (18)

and b is estimated by

b = 1
NM

∑

i ∈ M

⎛

⎝ci −
∑

j ∈ S

ajcjk(xi, xj)

⎞

⎠ (19)

M is the set of indices such that 0 < ai < C.
A solution to the quadratic programming problem of max-

imizing the dual Lagrangian (17) is given in [33]. The original
SVM algorithm was a linear classifier. However, Boser et al.
[34] suggested a way  to create non-linear classifiers by apply-
ing a different kernel to maximum-margin hyper-planes. The
method of using a different kernel in this type of arrangement
was originally proposed by Aizerman et al. [35].  The resulting
algorithm is similar to the original SVM algorithm, except that
every dot product is replaced by a nonlinear kernel function as
shown in (17). This allows the algorithm to fit the maximum-
margin hyper-plane in a transformed feature space.

Five standard kernels were used for classification. The lin-
ear kernel, polynomial kernel of order 1, 2 and 3 and the Radial
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Table 1 – t-Test results for DWT, HOS and texture features.

Features Symptomatic Asymptomatic P value

# 32.8 ± 9.57 37.9 ± 11.0 0.0046
$s 2.93 ± 1.32 2.39 ± 0.98 0.0047
RLnU 4.083E+03 ± 1.114E+03 2.653E+03 ± 546 <0.0001
! CD1

v 5.034E−02 ± 1.248E−02 4.477E−02 ± 1.140E−02 0.0060
E CD1

v 6.500E−08 ± 1.695E−08 5.758E−08 ± 1.579E−08 0.0078
e1(135◦) 1.59 ± 0.536 2.04 ± 0.644 <0.0001
e1(140◦) 1.18 ± 0.399 1.56 ± 0.732 0.0008

Table 2 – Classification results where TN is true negative, FN is false negative, TP is true positive, and FP is false positive.

SVM TN FN TP FP Accuracy PPV Sensitivity Specificity AUC

Linear Kernel 12 2 31 3 89.6% 90.7% 94.9% 77.8% 0.870
Polynomial Kernel with order 2 12 2 31 3 89.6% 91.6% 93.9% 80% 0.870
Polynomial Kernel with order 3 12 3 30 3 86.1% 90.8% 89.9% 77.8% 0.855
RBF Kernel 12 1 32 3 91.7% 91.8% 97% 80% 0.885

Basis Function Kernel were used. The polynomial kernel is
defined as

k(xi, xj) = (1 + xi.xj)
p (20)

where p is the order of the kernel and the RBF kernel is defined
as

k(xi, xj) = exp
(
−||xi − xj||2

)
(21)

2.7.  Statistical  analysis

The t-test is a statistical test used to determine if the means of
two features in two classes are different [36]. The probability
of rejecting the null hypothesis that the means are the same
(with an assumption of a true null hypothesis) is given by the
p-value. If the p-value is low (less than 0.05 or 0.01), then it
indicates that the null hypothesis is false, and therefore, the
features are significantly different for the two classes.

The receiver operating characteristic (ROC) is a two-
dimensional plot with (100-specificity) on the x-axis and (sen-
sitivity) on the y-axis. These values are calculated for a range
of cut-off points, and plotted to get the ROC curve. The area
under the ROC curve (AUC) is used to determine the quality
of the classifiers. AUC is between 0.5 and 1, and the better the
classifier is, the closer is the AUC to unity [37]. AUC has been
reported to be a good classifier performance measure [38].

3.  Results

Threefold stratified cross validation was used for data resam-
pling [39]. Two-thirds of the data were used for training and the
remaining one-third was used to test the performance. This
procedure was repeated three times using different folds of
the test data each time. Subsequently, we  calculated the accu-
racy, sensitivity, specificity, positive predictive value (PPV), and
AUC by averaging the values obtained in three iterations.

3.1.  Statistical  results

Table 1 presents the significant HOS, texture, and DWT fea-
tures that were extracted from the ultrasound images using

techniques described in the previous section. The significant
features, their respective range (mean ± standard deviation)
for both classes, and the p-values are shown in the table. It
is evident that all the seven features have a p-value less than
0.01, and hence, these features can be considered significant
enough for classification.

3.2. SVM  results

The performance measures (sensitivity, specificity, accuracy,
and AUC values) obtained using the selected features to evalu-
ate different SVM kernel functions are shown in Table 2. It can
be seen that the SVM classifier with the RBF kernel presented
the highest performance measures (Accuracy: 91.7%; Sensitiv-
ity: 97%; Specificity: 80%; AUC: 0.885) among all the other SVM
configurations. The ROC curves obtained for all SVM  config-
urations are depicted in Fig. 6. As seen from the ROC curves,
the SVM classifier with the RBF kernel function is the better
classifier amongst the rest as it has the highest AUC of 0.885.

3.3.  Index  results

We  have shown how well the seven features differentiate
symptomatic and asymptomatic plaque formations in B-mode
ultrasound images. However, keeping continuous track of the
variations in these seven features in a patient in order to make
a diagnosis is a time-consuming and difficult task that is prone
to human errors. Hence, we integrated the features in such
a way  that the index value for symptomatic is distinctly dif-
ferent from the value resulting from asymptomatic plaque
formations. This novel integrated index, termed Symptomatic
Asymptomatic Carotid Index (SACI), is defined as

SACI = 2 log10(RLnU) −
log10(R1 − R2 ∗ R3)

5

R1 = log10

(
AVERAGE CDv1
ENERGY CDV1

)

R2 = Deviation × Third Moment

R3 = e1(135◦) × e1(140◦)

(22)

Table 3 shows mean and variance of SACI for symptomatic
and asymptomatic carotid ultrasound images. The p-value is
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Fig. 6 – ROC curves for the different SVM kernels.

Table 3 – Range of index values for symptomatic and
asymptomatic.

Feature Symptomatic Asymptomatic P value

Index 7.04 ± 0.223 6.67 ± 0.186 <0.0001

very low (<0.0001), therefore these values are clinically sig-
nificant. The distribution of the SACI for symptomatic and
symptomatic classes is distinct as shown in the box-plot
(Fig. 7).

Fig. 7 – Box plot of the SACI index.

4.  Discussion

In this section, we discuss the background of carotid ultra-
sound imaging and plaque identification. The discussion
starts with tissue-mimicking phantoms which are very useful
in the field of plaque characterization, because the phantoms
help to test ultrasound equipment under controlled condi-
tions. The base assumption behind these tissue mimicking
phantoms is that carotid plaques are characterized by a lipid-
rich core with abundant inflammatory cells and a thin fibrous
cap. The aim of the phantoms is to mimic  this scenario as
close as possible.

Balocco et al. presented an indirect approach to estimating
the mechanical properties of tissues surrounding the arterial
vessels using ultrasound Doppler measurements combined
with an inverse problem solving method [40]. The phantom
measurement results showed good correlation with theoret-
ical values. A study by Fromageau et al. is dedicated to the
characterization of polyvinyl alcohol cryogel (PVA-C) for these
types of applications [41]. For the samples that underwent less
than seven freeze–thaw cycles, the Young’s moduli estimated
with the four elastography methods showed good matching
with the mechanical tensile tests with a regression coefficient
varying from 0.97 to 1.07, and correlations R2 varying from
0.93 to 0.99, depending on the method. Thermal strain imag-
ing using intravascular ultrasound have been proposed for
high-risk arterial plaque detection, in which image  contrast
results from the temperature dependence of sound speed. Yan
et al. see a potential to distinguish a lipid-laden lesion from
the arterial vascular wall due to its strong contrast between
water-bearing and lipid-bearing tissue. Initial simulations and
phantom experiments indicate plaque identification is possi-
ble for a 176◦ temperature rise [42].

These tissue mimicking phantoms deliver a practical jus-
tification for the discriminative ability of B-mode carotid
ultrasound images. The discriminative abilities have been
used by a number of projects which were concerned with
plaque image  analyses. This analysis is a real practical appli-
cation because it helps to assess the risk of stroke and other
cardiovascular diseases and thereby, such systems support
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disease diagnosis. Kyriacou et al. discuss several plaque-image
analysis methods that have been developed over the past
years [43]. They review of clinical methods for visual clas-
sification that have led to standardized methods for image
acquisition and describe methods for image  segmentation and
de-noising.

Kyriacou et al. (2005) evaluated the efficacy of computer
aided diagnosis based on neural and statistical classifiers
using texture and morphological features [44]. In their study
they used several classifiers like the K-Nearest Neighbour,
the Probabilistic Neural Network and the SVM. As result they
report a diagnostic accuracy up to 71.2%. Kyriacou et al. (2009)
studied the usefulness of multilevel binary and gray scale
morphological analysis in the assessment of atherosclerotic
carotid plaques [45]. With their method they extracted pattern
spectra from ultrasound images which were used as classifica-
tion features. SVM and probabilistic neural network were used
for classifying the features into either a symptomatic or an
asymptomatic class. The classification accuracy was 73.7% for
multilevel binary morphological image  analysis and 66.8% for
gray scale morphological analysis. Both were achieved using
the SVM classifier.

Recently, Seabra et al. [46] proposed a method for plaque
characterization based on a de-speckling algorithm, result-
ing in features extracted from de-speckled and speckle image
sources. In this study, the use of textural information for cor-
rect identification of different plaque types was reinforced.
They obtained an almost perfect classification result in terms
of sensitivity and accuracy. They use a combination of clinical
information based features like degree of stenosis, evidence
of plaque disruption, etc. along with texture features, DWT
and other features giving a total of 114 features per image.
They use an Adaboost (Adaptive Boosting) classifier with deci-
sion stumps. A direct comparison with their results is not
possible because of the difference in the feature space. How-
ever, they do show a sensitivity of 90% when using only
texture and histogram features computed from normalized
BUS images which is comparable to our results. We  were able
to achieve 89% sensitivity based on a limited number of fea-
tures extracted automatically.

Tissue mimicking phantoms help us to improve the ultra-
sound scanning process. More  sophisticated image  processing
and feature extraction methods yield more  discriminative fea-
tures. Both, improvements in the scanning process and in
the signal processing are necessary to achieve higher classi-
fication accuracies. With current technology, our system can
diagnose two types of plaque formations with an accuracy of
around 90%. These results were achieved under lab conditions,
and therefore, it is expected that the accuracy goes down when
these methods are employed in a system used in a medical
work flow. Therefore, more  research is necessary to further
improve the classification accuracy.

In our earlier study [47], we used only the texture features
(standard deviation, entropy, symmetry, and run percentage)
in Adaboost and SVM classifiers. SVM with radial basis func-
tion kernel resulted in the highest classification accuracy of
82.4%. Recently, averaged DWT coefficients fed to the SVM
classifier were able to diagnose the two classes automatically
with an accuracy of 83.7%, sensitivity of 80%, and specificity
of 86.4% [48]. We  believed that the classifier performance

could be improved with the addition of more  relevant fea-
tures. Therefore, in this study, we  used DWT and HOS features
in addition to the texture features and obtained an improved
accuracy of 91.7%.

Our preliminary results suggest that HOS features are very
powerful features that lead to improvement in classification.
The entropy of the Bispectrum has been used to classify EEG
signals [31,32].  We  evaluated the usefulness of this feature by
running the classifier without the Bi-spectrum entropy and
we obtained an accuracy of 88.2%. Including the HOS  features
led to an increased accuracy of 91.7%. In addition, we also
performed classification by leaving out one feature at a time.
Leaving out the third moment and run length non-uniformity
one at a time leads to a 10% drop in accuracy. Leaving out HOS
features and run length non-uniformity leads to a 6% drop in
accuracy. The run length non-uniformity measures the homo-
geneity of an image  and the phase entropy of the bispectrum is
yet another measure of texture. Table 1 suggests that they cap-
ture different aspects of texture features as the RnLU value is
significantly higher and the HOS features values significantly
lower for the symptomatic. These results confirm that texture
features are important for accurate classification of Carotid
plaque images.

The AUC shows that the RBF kernel gives the best per-
formance. The RBF kernel can be expanded in to an infinite
series giving rise to an infinite dimensional polynomial kernel.
Each of these polynomial kernels can then transform certain
dimensions to make them linearly independent. It is then
expected that the RBF kernel would work better than the linear
or the polynomial kernel. We can also expect the polynomial
kernels and the linear kernel to have the same performance
as they both transform the feature space into a higher dimen-
sional space where they are expected to be linearly separable
by considering combinations of the feature vectors. In the case
of polynomial kernel, the performance depends on the order of
the polynomial. The SACI values (Table 3) show a significant
difference between asymptomatic and symptomatic groups.
Unlike the classifier the SACI is a continuous index and it
gives a quantitative measure of how symptomatic (or asymp-
tomatic) a patient is based on all the features considered for
the classifier.

The practical value of this system depends on the input
data. In this paper, we show that it is possible to achieve a
classification accuracy of 91.7%. This result was achieved with
data which was new to the classification algorithms, i.e. an
unknown test set. Hence, we are fairly sure that the system
will perform in a practical setting, under the condition that
the input data is similar to the data we have used in this study.
However, our theoretical treatment of this classification prob-
lem does not take into account any practical problems, such
as system errors, corrupted input data and result misinterpre-
tations. These issues need to be addressed in a later stage of
building such a plaque identification system.

5.  Conclusion

Plaque identification from B-mode ultrasound images is very
a difficult task. In most cases, such a characterization is
carried out by well trained ultrasonographers and physicians
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who  visually scan the acquired ultrasound image.  This is a
time-consuming tedious task that is prone to inter-observer
variability. Moreover, in most cases, it is difficult to accu-
rately capture and differentiate the plaque edges and blood.
With the advent of computer programming methods, efforts
are being continually made to make this entire process auto-
mated and more  efficient. In a quest towards developing such
a method, we  have proposed a CAD technique that is based on
using advanced DWT and texture features and HOS informa-
tion (Bispectrum) in a SVM classifier to categorize the plaque
into symptomatic and asymptomatic classes. We  have also
demonstrated that our technique has a good classification
accuracy of around 92%. Thus, the proposed CAD system
(Atheromatic) may  be a valuable tool which helps to opti-
mize the clinical work flow process by providing more  decision
support to the vascular surgeons in selecting patients for
treatment. Furthermore, a novel, unique and single integrated
index called the symptomatic asymptomatic carotid index has
been proposed to identify the nature of the plaque using a
single number in order to make the diagnosis more  objective.

r  e  f  e  r  e  n  c  e  s

[1] D.R. Labarthe, Epidemiology and Prevention of
Cardiovascular Diseases: A Global Challenge, An Aspen
Publication, 1998.

[2] N.R. Sims, H. Muyderman, Mitochondria, oxidative
metabolism and cell death in stroke, Biochimica et
Biophysica Acta (BBA): Molecular Basis of Disease 1802 (1)
(2010) 80–91, mitochondrial Dysfunction (online). Available
at: http://www.sciencedirect.com/science/article/B6T1Y-
4X6VMDV-3/2/abb3ed7126ab1e8e67035977a72d7425

[3] A. Maton, R.L.J. Hopkins, C.W. McLaughlin, S. Johnson, M.Q.
Warner, D. LaHart, J.D. Wright, Human Biology and Health,
Prentice Hall, Englewood Cliffs, New Jersey, USA, 1993.

[4] G.G. Ferguson, M. Eliasziw, H.W.K. Barr, G.P. Clagett, R.W.
Barnes, M.C. Wallace, D.W. Taylor, R.B. Haynes, J.W.  Finan,
V.C.  Hachinski, H.J.M. Barnett, The North American
Symptomatic Carotid Endarterectomy Trial: surgical results
in  1415 patients, Stroke 30 (9) (1999) 1751–1758 (online).
Available at: http://stroke.ahajournals.org/cgi/content/
abstract/30/9/1751

[5] L.A. Solberg, P.A. McGarry, J. Moossy, J.P. Strong, C. Tejada,
A.C. Lken, Severity of atherosclerosis in cerebral arteries,
coronary arteries, and aortas, Annals of the New York
Academy of Sciences 149 (1968) 956–973.

[6] A.M. Pancioli, J. Broderick, R. Kothari, T. Brott, A. Tuchfarber,
R.  Miller, J. Khoury, E. Jauch, Public perception of stroke
warning signs and knowledge of potential risk factors,
Journal of American Medical Association 279 (16) (1998)
1288–1292 (online). Available at: http://jama.amaassn.
org/cgi/content/abstract/279/16/1288

[7] T. Craven, J. Ryu, M. Espeland, F. Kahl, W.  McKinney, J. Toole,
M. McMahan, C. Thompson, G. Heiss, d.J.R. Crouse,
Evaluation of the associations between carotid artery
atherosclerosis and coronary artery stenosis. A case-control
study, Circulation 82 (4) (1990), pp. 1242–1230 (online).
Available at: http://circ.ahajournals.org/cgi/
content/abstract/82/4/1230

[8] I. Kallikazaros, C. Tsioufis, S. Sideris, C. Stefanadis, P.
Toutouzas, Carotid artery disease as a marker for the
presence of severe coronary artery disease in patients
evaluated for chest pain, Stroke 30 (5) (1999) 1002–1007

(online). Available at: http://stroke.ahajournals.
org/cgi/content/abstract/30/5/1002

[9] J. Golledge, R.M. Greenhalgh, A.H. Davies, The symptomatic
carotid plaque, Stroke 31 (3) (2000) 774–781 (online).
Available: http://stroke.ahajournals.org/cgi/
content/abstract/31/3/774

[10] J.M. Johnson, M.M. Kennelly, D. Decesare, S. Morgan, A.
Sparrow, Natural history of asymptomatic carotid plaque,
Archives of Surgery 120 (9) (1985) 1010–1012 (online).
Available at: http://archsurg.ama-assn.org/
cgi/content/abstract/120/9/1010

[11] S.E. Nissen, E.M. Tuzcu, P. Schoenhagen, B.G. Brown, P. Ganz,
R.A. Vogel, T. Crowe, G. Howard, C.J. Cooper, B. Brodie, C.L.
Grines, A.N. DeMaria, Effect of intensive compared with
moderate lipid-lowering therapy on progression of coronary
atherosclerosis: a randomized controlled trial, Journal of
American Medical Association 291 (9) (2004) 1071–1080
(online). Available at: http://jama.amaassn.org/cgi/content/
abstract/291/9/1071

[12] M.-L.M. Gronholdt, B.G. Nordestgaard, T.V. Schroeder, S.
Vorstrup, H. Sillesen, Ultrasonic echolucent carotid plaques
predict future strokes, Circulation 104 (1) (2001) 68–73
(online). Available at: http://circ.ahajournals.org/
cgi/content/abstract/104/1/68

[13] A.F. AbuRahma, J. Wulu, T. John, B. Crotty, Carotid plaque
ultrasonic heterogeneity and severity of stenosis, Stroke 33
(7) (2002) 1772–1775 (online). Available at:
http://stroke.ahajournals.org/cgi/content/abstract/33/7/1772

[14] M.M. Sabetai, T.J. Tegos, A.N. Nicolaides, T.S. El-Atrozy, S.
Dhanjil, M. Griffin, G. Belcaro, G. Geroulakos, Hemispheric
symptoms and carotid plaque echomorphology, Journal of
Vascular Surgery 31 (1) (2000) 39–49 (online). Available at:
http://www.sciencedirect.com/science/article/B6WMJ-
4HK02FR5/2/98804a69b9187775f7e163971f96b1a9

[15] T.S. Hatsukami, M.S. Ferguson, K.W. Beach, D. Gordon, P.
Detmer, D. Burns, C. Alpers, D.E. Strandness, Carotid plaque
morphology and clinical events, Stroke 28 (1) (1997) 95–100
(online). Available at: http://stroke.ahajournals.org/
cgi/content/abstract/28/1/95

[16] D.W. Droste, M. Karl, R.M.K.M. Bohle, Comparison of
ultrasonic and histopathological features of carotid artery
stenosis, Neurological Research 19 (1997) 380–384.

[17] E. Ringelstein, C. Sievers, S. Ecker, P. Schneider, S. Otis,
Noninvasive assessment of CO2-induced cerebral vasomotor
response in normal individuals and patients with internal
carotid artery occlusions, Stroke 19 (8) (1988) 963–969
(online). Available at: http://stroke.ahajournals.org/
cgi/content/abstract/19/8/963

[18] T. Elatrozy, A. Nicolaides, T. Tegos, M. Griffin, The objective
characterisation of ultrasonic carotid plaque features,
European Journal of Vascular and Endovascular Surgery 16
(3)  (1998) 223–230 (online). Available at:
http://www.sciencedirect.com/science/article/B6WF5-
4H3SF3Y-8/2/8011fe8e92fdb924982dfc5442f916ba

[19] J. Seabra, J. Sanches, Modeling log-compressed ultrasound
images for radio frequency signal recovery, in: Conference
Proceedings of the IEEE Engineering in Medicine and Biology
Society, 2008, pp. 426–429 (online). Available at: http://www.
biomedsearch.com/nih/Modeling-logcompressed-ultrasound
-images/19162684.html

[20] J. Seabra, J. Xavier, J. Sanches, Convex ultrasound image
reconstruction with log-Euclidean priors, in: Conference
Proceedings of the IEEE Engineering in Medicine and Biology
Society, 2008, pp. 435–438.

[21] M. Mirmehdi, X. Xie, J. Suri, Handbook of Texture Analysis,
Imperial College Press, London, UK, 2009.

[22] R.C. Gonzalez, R.E. Woods, Digital Image  Processing, 3rd ed.,
Prentice-Hall Inc., Upper Saddle River, NJ, USA, 2006.

dx.doi.org/10.1016/j.cmpb.2012.09.008
http://www.sciencedirect.com/science/article/B6T1Y-4X6VMDV-3/2/abb3ed7126ab1e8e67035977a72d7425
http://www.sciencedirect.com/science/article/B6T1Y-4X6VMDV-3/2/abb3ed7126ab1e8e67035977a72d7425
http://stroke.ahajournals.org/cgi/content/abstract/30/9/1751
http://stroke.ahajournals.org/cgi/content/abstract/30/9/1751
http://jama.amaassn.org/cgi/content/abstract/279/16/1288
http://jama.amaassn.org/cgi/content/abstract/279/16/1288
http://circ.ahajournals.org/cgi/content/abstract/82/4/1230
http://circ.ahajournals.org/cgi/content/abstract/82/4/1230
http://stroke.ahajournals.org/cgi/content/abstract/30/5/1002
http://stroke.ahajournals.org/cgi/content/abstract/30/5/1002
http://stroke.ahajournals.org/cgi/content/abstract/31/3/774
http://stroke.ahajournals.org/cgi/content/abstract/31/3/774
http://archsurg.ama-assn.org/cgi/content/abstract/120/9/1010
http://archsurg.ama-assn.org/cgi/content/abstract/120/9/1010
http://jama.amaassn.org/cgi/content/abstract/291/9/1071
http://jama.amaassn.org/cgi/content/abstract/291/9/1071
http://circ.ahajournals.org/cgi/content/abstract/104/1/68
http://circ.ahajournals.org/cgi/content/abstract/104/1/68
http://stroke.ahajournals.org/cgi/content/abstract/33/7/1772
http://www.sciencedirect.com/science/article/B6WMJ-4HK02FR5/2/98804a69b9187775f7e163971f96b1a9
http://www.sciencedirect.com/science/article/B6WMJ-4HK02FR5/2/98804a69b9187775f7e163971f96b1a9
http://stroke.ahajournals.org/cgi/content/abstract/28/1/95
http://stroke.ahajournals.org/cgi/content/abstract/28/1/95
http://stroke.ahajournals.org/cgi/content/abstract/19/8/963
http://stroke.ahajournals.org/cgi/content/abstract/19/8/963
http://www.sciencedirect.com/science/article/B6WF5-4H3SF3Y-8/2/8011fe8e92fdb924982dfc5442f916ba
http://www.sciencedirect.com/science/article/B6WF5-4H3SF3Y-8/2/8011fe8e92fdb924982dfc5442f916ba
http://www.biomedsearch.com/nih/Modeling-logcompressed-ultrasound-images/19162684.html
http://www.biomedsearch.com/nih/Modeling-logcompressed-ultrasound-images/19162684.html
http://www.biomedsearch.com/nih/Modeling-logcompressed-ultrasound-images/19162684.html


c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 66–75 75

[23] G. Castellano, L. Bonilha, L.M. Li, F. Cendes, Texture analysis
of  medical images, Clinical Radiology 59 (12) (2004)
1061–1069 (online). Available at: http://www.
biomedsearch.com/nih/Textureanalysis-medical-images/
15556588.html

[24] J.-H. Tan, E. Ng, U.R. Acharya, C. Chee, Study of normal
ocular thermogram using textural parameters, Infrared
Physics & Technology 53 (2) (2010) 120–126 (online). Available
at: http://www.sciencedirect.com/science/article/B6TJ9-
4XHVH7B-1/2/a85528a996940bce2b3d6cbf608083bd

[25] M.M. Galloway, Texture analysis using grey level run lengths,
NASA STI/Recon Technical Report N, vol. 75, 1974 July, pp. 18.

[26] D. Xu, A.S. Kurani, J.D. Furst, D.S. Raicu, Run-length encoding
for volumetric texture, in: The 4th IASTED International
Conference on Visualization, Imaging, and Image
Processing, 2004.

[27] S. Mallat, A Wavelet Tour of Signal Processing The Sparse
Way, 3rd ed., Academic Press, 2008.

[28] S. Bochner, K. Chandrasekharan, Fourier Transforms, ser.
Ann. Math. Stud., Princeton University Press, Princeton, NJ,
1949.

[29]  A. Ramm, A. Katsevich, The Radon Transform and Local
Tomography, CRC Press, 1996 (online). Available at:
http://books.google.com.sg/books?id=Ifce8tC7sagC

[30] K.C. Chua, V. Chandran, R. Acharya, C.M. Lim, Automatic
Identification of Epilepsy by HOS and Power Spectrum
Parameters Using EEG Signals: A Comparative Study, 2008
(online). Available at: http://eprints.qut.edu.au/14787/

[31] K. Chua, V. Chandran, U. Acharya, C. Lim, Application of
higher order spectra to identify epileptic EEG, Journal of
Medical Systems (2010) 1–9, 10.1007/s10916-010-9433-z
(online). Available at:
http://dx.doi.org/10.1007/s10916-010-9433-z

[32] U.R. Acharya, E.C.P. Chua, K.C. Chua, C.M. Lim, T. Tamura,
Analysis and automatic identification of sleep stages using
higher order spectra, International Journal of Neural
Systems 20 (6) (2010) 509–521.

[33] C. Cortes, V. Vapnik, Support-vector networks, Machine
Learning 20 (September) (1995) 273–297 (online). Available at:
http://portal.acm.org/citation.cfm?id=218919.218929

[34] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for
optimal margin classifiers, in: Proceedings of the Fifth
Annual Workshop on Computational Learning Theory, Ser.
COLT’92, ACM, New York, NY, USA, 1992, pp. 144–152 (online).
Available at: http://doi.acm.org/10.1145/130385.130401

[35] M.A. Aizerman, E.A. Braverman, L. Rozonoer, Theoretical
foundations of the potential function method in pattern
recognition learning, Automation and Remote Control (25)
(1964) 821–837.

[36] J.F. Box, Guinness, gosset, fisher, and small samples,
Statistical Science 2 (1) (1987) 45–52.

[37] K.H. Zou, A.J. O’Malley, L. Mauri, Receiver-operating
characteristic analysis for evaluating diagnostic tests and
predictive models, Circulation 115 (5) (2007) 654–657 (online).
Available at: http://circ.ahajournals.org

[38] T.J.J. Downey, D.J. Meyer, R.K. Price, E.L. Spitznagel, Using the
receiver operating characteristic to assess the performance
of  neural classifiers, in: International Joint Conference on
Neural Networks (IJCNN’99), 1999, pp. 3642–3646.

[39] R. Kohavi, A study of cross-validation and bootstrap for
accuracy estimation and model selection, in: Proceedings of
the 14th International Joint Conference on Artificial
intelligence, vol. 2, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1995, pp. 1137–1143 (online). Available
at: http://portal.acm.org/citation.cfm?id=1643031.1643047

[40] S. Balocco, O. Basset, G. Courbebaisse, E. Boni, P. Tortoli, C.
Cachard, Noninvasive Young’s modulus evaluation of tissues
surrounding pulsatile vessels using ultrasound Doppler
measurement, IEEE Transactions on Ultrasonics
Ferroelectrics and Frequency Control 54 (6) (2007) 1265–1271
(online). Available at: http://www.biomedsearch.com/nih/
Noninvasive-Youngs-modulusevaluation-tissues/17571824.
html

[41] J. Fromageau, J.-L. Gennisson, C. Schmitt, R.L. Maurice, R.
Mongrain, G. Cloutier, Estimation of polyvinyl alcohol
cryogel mechanical properties with four ultrasound
elastography methods and comparison with gold standard
testings, IEEE Transactions on Ultrasonics Ferroelectrics and
Frequency Control 54 (3) (2007) 498–509 (online). Available at:
http://www.biomedsearch.com/nih/Estimationpolyvinyl-
alcohol-cryogel-mechanical/17375819.html

[42]  S. Yan, R.S. Witte, M. O’Donnel, Identification of vulnerable
atherosclerotic plaque using ivus-based thermal strain
imaging, IEEE Transactions on Ultrasonics Ferroelectrics and
Frequency Control 52 (5) (2005) 844–850.

[43] E.C. Kyriacou, C. Pattichis, M. Pattichis, C. Loizou, C.
Christodoulou, S.K. Kakkos, A. Nicolaides, A review of
noninvasive ultrasound image processing methods in the
analysis of carotid plaque morphology for the assessment of
stroke risk, IEEE Transactions on Information Technology in
Biomedicine 14 (July) (2010) 1027–1038 (online). Available at:
http://dx.doi.org/10.1109/TITB. 2010.2047649

[44] E. Kyriacou, M.S. Pattichis, C.I. Christodoulou, C.S. Pattichis,
S.  Kakkos, N. Griffing, A. Nicolaides, Ultrasound imaging in
the  analysis of carotid plaque morphology for the
assessment of stroke, Studies in Health Technology and
Informatics 113 (2005) 241–275.

[45] E. Kyriacou, M.S. Pattichis, C.S. Pattichis, A. Mavrommatis,
C.I.  Christodoulou, S. Kakkos, A. Nicolaides, Classification of
atherosclerotic carotid plaques using morphological
analysis on ultrasound images, Applied Intelligence 30
(February) (2009) 3–23 (online). Available at:
http://portal.acm.org/citation.cfm?id=1485060.1485063

[46] J. Seabra, L.M.P. (MD), F. e Fernandes, J.M. Sanches,
Ultrasonographic characterization and identification of
symptomatic carotid plaques, in: Engineering in Medicine
and Biology Society, 2010. EMBS. 32th Annual International
Conference of the IEEE, September, 2010.

[47] R.U. Acharya, O. Faust, A.P. Alvin, S. Vinitha Sree, F. Molinari,
L.  Saba, A. Nicolaides, J.S.J.S. Suri, Symptomatic vs.
asymptomatic plaque classification in carotid ultrasound,
Journal of Medical Systems (January) (2011),
http://dx.doi.org/10.1007/s10916-010-9645-2.

[48] U.R. Acharya, O. Faust, S.V. Sree, F. Molinari, L. Saba, A.
Nicolaides, An accurate and generalized approach to plaque
characterization in 346 carotid ultrasound scans, IEEE
Transactions on Instrumentation & Measurement 61 (4)
(2012) 1045–1053.

dx.doi.org/10.1016/j.cmpb.2012.09.008
http://www.biomedsearch.com/nih/Textureanalysis-medical-images/15556588.html
http://www.biomedsearch.com/nih/Textureanalysis-medical-images/15556588.html
http://www.biomedsearch.com/nih/Textureanalysis-medical-images/15556588.html
http://www.sciencedirect.com/science/article/B6TJ9-4XHVH7B-1/2/a85528a996940bce2b3d6cbf608083bd
http://www.sciencedirect.com/science/article/B6TJ9-4XHVH7B-1/2/a85528a996940bce2b3d6cbf608083bd
http://books.google.com.sg/books?id=Ifce8tC7sagC
http://eprints.qut.edu.au/14787/
http://dx.doi.org/10.1007/s10916-010-9433-z
http://portal.acm.org/citation.cfm?id=218919.218929
http://doi.acm.org/10.1145/130385.130401
http://circ.ahajournals.org/
http://portal.acm.org/citation.cfm?id=1643031.1643047
http://www.biomedsearch.com/nih/Noninvasive-Youngs-modulusevaluation-tissues/17571824.html
http://www.biomedsearch.com/nih/Noninvasive-Youngs-modulusevaluation-tissues/17571824.html
http://www.biomedsearch.com/nih/Noninvasive-Youngs-modulusevaluation-tissues/17571824.html
http://www.biomedsearch.com/nih/Estimationpolyvinyl-alcohol-cryogel-mechanical/17375819.html
http://www.biomedsearch.com/nih/Estimationpolyvinyl-alcohol-cryogel-mechanical/17375819.html
http://portal.acm.org/citation.cfm?id=1485060.1485063
dx.doi.org/10.1007/s10916-010-9645-2

	Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization
	1 Introduction
	2 Materials and methods
	2.1 Carotid ultrasound image acquisition and preprocessing
	2.2 Texture features
	2.3 Discrete wavelet transform features
	2.4 Radon transform
	2.5 Higher order spectra (HOS)
	2.6 Classification using support vector machines (SVM)
	2.7 Statistical analysis

	3 Results
	3.1 Statistical results
	3.2 SVM results
	3.3 Index results

	4 Discussion
	5 Conclusion
	References


