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Abstract— A Brain-Computer Interface (BCI) attempts to
create a direct channel of communication between the brain
and a computer. This is especially important for patients that
are ”locked in”, as they have limited motor function and thus
require an alternative means of communication. In this scope, a
BCI can be controlled through the imagination of motor tasks,
i.e. Motor Imagery. This thinking of actions produce changes on
the ongoing Electroencephalogram (EEG), such as the so called
Event-Related Desynchronization (ERD), that can be detected
and measured. Traditionally, ERD is measured through the
estimation of EEG signal power in specific frequency bands. In
this work, a new method based on the phase information from
the EEG channels, through the Phase-Locking Factor (PLF), is
proposed. Both feature types were tested in real data obtained
from 6 voluntary subjects, who performed 7 motor tasks in
an EEG session. The features were classified using Support
Vector Machine (SVM) classifiers organized in a hierarchical
structure. The results show that the PLF features are better,
with an average accuracy of ≈ 86%, against an accuracy of
≈ 70% for the band power features. Although more research
is still needed, the PLF measure shows promising results for
use in a BCI system.

I. INTRODUCTION

Currently, patients suffering from severe motor disabilities,
such as Amyotrophic Lateral Sclerosis, lack the ability
to effectively communicate and perform day-to-day tasks,
although their cognitive capabilities are, for the most part,
intact. For this reason, research in Brain-Computer Interfaces
(BCI) is essential to improve the quality of life of these
patients, providing a new means to interact with the world
directly from the brain via a computer, or a machine.

A BCI is defined as a system that measures and analyses
brain signals and converts them in real time into outputs
that do not depend on the normal pathways of peripheral
nerves and muscles [1]. In order to have successful BCI
operation, a closed loop of information is necessary between
two adaptive controllers: the user, who produces specific
brain signals that encode intent, and the BCI, which translates
these signals into outputs that accomplish the user’s intent
[2]. This work focuses on the signal processing algorithms
necessary to decode the brain signals generated by the
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imagination of motor tasks. With this in mind, the ap-
propriate physiological properties were investigated, namely
Event-Related Desynchronization (ERD) and Event-Related
Synchronization (ERS) [5], and two approaches were used to
identify them in the Electroencephalogram (EEG). While the
first approach uses the signals’ power in specific frequency
bands, the second uses the concept of the Phase-Locking
Factor (PLF), a measure of synchronization between two
signals.

II. NEUROPHYSIOLOGY OF MOTOR TASKS

In order to operate a BCI users have to acquire conscious
control over their brain activity [3]. One way of doing
so is by concentrating on a specific mental task, such as
a motor task. It has been shown that the imagination of
movements (i.e. simulating movements in the mind without
actually performing them) originates similar EEG patterns
as actual movement [4]. The Primary Motor Cortex (PMC)
is the area of the brain responsible for executing move-
ments. The most characteristic brain oscillation (visible in
the EEG) arising from this area is the µ rhythm (8 - 12
Hz). This rhythm is modulated by the tasks of preparation,
observation or imagination of movement, which induce time-
locked changes in the activity of neuronal populations. Note
that instead of one uniform rhythm, the sensorimotor area
generates a variety of rhythms that have specific functional
and topographic properties [4]. As such, a certain motor
task represents frequency specific changes of the ongoing
EEG, which can either be an increase in power (termed
Event-Related Synchronization - ERS) or a decrease in power
(Event-Related Desynchronization - ERD).

ERD and ERS reflect the changing dynamics between
main neurons and interneurons that control the frequency
components of the ongoing EEG [5]. While ERD is cor-
related with activated cortical areas, ERS α band rhythms
during mental inactivity introduce inhibitory effects. Note
that the PMC has a very specific organization, with each
part of the body clearly mapped to a region of the PMC, as
can be seen in Figure 1.

Put shortly, a certain motor task induces ERD over the
corresponding cortical area while there is ERS in unre-
lated areas. This implies that the resting (inactive) state of
the motor cortex corresponds to a widespread and highly
synchronized rhythm, which, during a motor task, loses
synchrony over the task specific region. Thus, it is expected
that EEG channels located over the task’s cortical area lose
coherence from the other channels. From this, it can be
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Fig. 1. Degree of representation of the different muscles of the body in
the motor cortex.

understood that ERD/ERS is the fundamental physiological
property to be detected in a motor imagination BCI system.

III. METHODS

A. Experimental Setup

The acquired signals consist of EEG data from 6 subjects
(2 female, 4 male, ages (22.3 ± 0.5) years, all right handed).
The subjects, fitted with a 64-electrodes cap (10-20 system)
connected to a Brain Products’ QuickAmp amplifier, were
comfortably sitting in a chair in front of a CRT computer
screen, which conducted them throughout the experiment.
The cue-based BCI paradigm consisted of seven different
motor tasks: no movement (CC), movement of the feet (left
and right – LF, RF), movement of the legs (left and right –
LL, RL) and movement of the hands (left and right – LH,
RH).

One session was recorded for each subject. The sessions
comprised two runs, separated by a short break. Each run
consisted of two groups of trials, being the first group
dedicated to actual realization of the above motor tasks,
while in the second group users were asked to imagine the
motor tasks. Each group comprised three cycles through the
motor tasks. Each trial started with the presentation of a
fixation cross over a blank screen. After 1 s a figure appeared
indicating the motor task to be executed, lasting for 4 s. At
the end of this period both the fixation cross and figure are
replaced with a relaxation indication, giving the subjects the
opportunity to blink, lasting for 2 s. A final blank screen (1
s) allowed the transition to the next trial. See Figure 2 for a
graphical representation of the trial structure.

Fig. 2. Structure of a trial of the EEG recording sessions.

B. Signal Preprocessing

The raw EEG signals were bandpass filtered between
5Hz and 45Hz. Subsequently, the trials were isolated and
ordered. From the original set of electrodes a subset of
14 channels was selected over the Primary Motor Cortex

(channels C5A through C6A, and C5 through C6). For this
subset a small Laplacian filter was applied to each channel
taking into account its four nearest neighbors. No artifacts
were removed.

C. Band Power Features

The classic method to identify and measure ERD/ERS
is by computing the power of the input signals in specific
frequency bands. To do so there are several different tech-
niques currently used in the development of BCI systems,
such as the method employed by Pfurtscheller and Lopes da
Silva in [5] (by bandpass filtering and squaring the amplitude
samples of the EEG), using the Fourier Transform [6] or
using autoregressive models [7], [8].

Here the power spectrum is computed from the prepro-
cessed EEG signals using the Fourier Transform in windows
of 256ms (128 samples) with 50% overlap. For each window
the average power in the frequency band between 8Hz and
15Hz is obtained and the resulting time course is then
smoothed.

D. Phase-Locking Factor Features

As discussed, ERD arising from a motor task results from
the loss of synchronization that specific brain areas, involved
in the production of movement, experience during activity.
This provides a framework on which to base the development
of alternative methods of identifying ERD/ERS in the EEG.
The main idea is that the analysis of the signals’ phase could
provide additional information to locate and identify motor
tasks in the EEG.

This is not the first attempt at incorporating phase informa-
tion into the analysis of mental activity. For instance, a group
of features called Complex Band Power (CBP) features is
described in [9], where the phase is extracted from the
Fourier Transform.

A similar approach to the CBP features is used in the
definition of the Phase-Locking Factor (PLF). Given two
oscillators with phases φi[n] and φk[n], n = 1, ..., N (with
N the number of discrete time samples), the PLF is defined
as [10]:

%ik =

∣∣∣∣∣ 1N
N∑
n=1

ej(φi[n]−φk[n])

∣∣∣∣∣ (1)

This measure ranges from 0 to 1. While the value %ik =
1 corresponds to perfect synchronization between the two
signals (constant phase lag), the value %ik = 0 corresponds
to no synchronization (phases are not correlated). Put simply,
the PLF assesses whether the difference between the phases
of the oscillators are strongly or weakly clustered around
some angle in the complex unitary circle. In this work,
the phase information is extracted from the EEG signals
through the concept of Analytical Signals, which is done
by applying the Hilbert transform to the signal. Given a
real signal x(t), the corresponding analytical signal z(t) is
obtained as is shown in Equation 2, where ∗ denotes the
convolution operator. The imaginary part of this equation is
the Hilbert transform of x(t), Ht{x}.
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z(t) = x(t) + j

[
x(t) ∗ 1

πt

]
(2)

As the PLF is a measure of synchronization between two
signals, 37 pairs of EEG channels were selected1. Each
pair was processed with a sliding window of 256ms (128
samples) with 50% overlap. In each window, the phases
were extracted from both signals of the pair (through their
analytical signals), and the PLF was computed between them.
This implies that, for each window of the pair’s signals, there
is one PLF value. The resulting time course is also smoothed.

E. Classification

The identification of ERD/ERS in a motor task trial is
done using a thresholding technique, applied to the features’
time-course. The threshold is automatically obtained from
the mean and variance of the first second of the trail, which
is used as a baseline. Note that this technique is intended to
find areas of the signal that are noticeably below, as measured
by the threshold value, the initial one second period, thus
identifying ERD. The final outcome of this step is that it
is now possible to select all the feature vectors that will be
used as labeled data for training in the classification step.

The actual classification of the features uses Support
Vector Machines (SVM). As the SVM classifier is defined
for a two-class problem, a hierarchical approach was taken to
classify the entirety of the seven tasks. The hierarchical clas-
sifier, as depicted in Figure 3, uses a sequence of classifiers,
with each distinguishing between two classes.

CC

LH

RH

LL

LF

RL

RF

1 2

4 6

3 5

Fig. 3. Hierarchical SVM classifier for all classes; dots represent a SVM;
first letter: L - left, R - right; second letter: F - foot, H - hand, L - leg; CC
- no movement/imagination.

In order to evaluate the performance of the classifiers,
the Leave-One-Out Cross Validation (LOOCV) method was
used. With this method, the training is performed using all
but one of the training examples, and the classifier is tested
using the excluded sample. This is repeated until all the
training examples have been used once for testing. Although
the LOOCV method is rather computationally heavy, it
allows to train the classifier with the maximum amount of
data, and to test it over the entire dataset.

IV. EXPERIMENTAL RESULTS
A comparison of both types of features studied in this

work is presented in Figures 4 and 5.
In Figure 4, a subject is performing imagination of right

hand movement. The top part shows the spectrogram for

1Each channel paired with its neighbors (31 pairs), and with the con-
tralateral channel, e.g. C3 with C4 (6 pairs)

Fig. 4. Subject performing imagination of right hand movement; Top:
spectrogram of channel C3; Bottom: time-course of PLF features for the
pairs C3-C1 and C4-C6.

Fig. 5. Subject performing imagination of left hand movement; Top:
spectrogram of channel C4; Bottom: time-course of PLF features for the
pairs C3-C1 and C4-C6.

channel C3 (over the cortical area related to the task), while
the bottom part shows the time-courses of the PLF features
for the electrode pairs C3-C1 (related to the task) and C4-
C6 (contralateral to the task). It is possible to observe that,
between t = 3 s and t = 4 s there is ERD in the spectrogram,
which is mirrored in the PLF features, particularly for the
pair C3-C1. In Figure 5, the same subject is performing
imagination of left hand movement. Here, the top part shows
the spectrogram for channel C4 (over the cortical area related
to the task), while the bottom part shows the time-courses
for the same PLF features as before, but now C3-C1 is
contralateral to the task while C4-C6 is related to the task.
In the spectrogram it may be harder to identify the ERD
produced by the mental task (before t = 3 s), but with PLF
features it becomes apparent. Note that in this it is the pair
C4-C6 that is more reactive to that task, whereas with the
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right hand task it was the C3-C1 pair. So the identified PLF
decreases occur precisely in the channels that one would
expect to be more important for the identification of a right
hand (pair C3-C1) and a left hand (C4-C6) motor task.

The global accuracy of the classifier, using the LOOCV
method, is presented in Table I, for both types of features
and for the actual and imagined movement tasks.

TABLE I
ACCURACY RESULTS (PERCENTAGE) OF THE HIERARCHICAL

CLASSIFIER WITH BOTH THE BAND POWER FEATURES (BPF) AND THE

PLF FEATURES (PLFF), FOR THE ACTUAL (ACT.) AND IMAGINED (IM.)
MOVEMENT TASKS.

Subject BPF PLFF
Act. Im. Act. Im.

S1 64.24 67.95 87.18 87.54
S2 64.62 65.83 86.99 86.03
S3 75.05 75.92 89.67 87.38
S4 76.81 77.29 84.86 86.30
S5 67.08 74.94 86.45 85.74
S6 64.20 69.25 84.31 85.06

Average 68.67 71.86 86.58 86.34

The results shown in Table I allow to conclude that the
PLF features are better, with an average accuracy of 86.6%
and 86.3%, for the actual and imagined tasks, respectively,
against an average accuracy of 68.7% and 71.9% for the band
power features. This difference is due to the more robust
theoretical formulation of the PLF features, which appear to
be more immune to noise than the band power features. For
these last features it is evident a trend where the imagined
tasks produce higher accuracies than the actual tasks. This is
probably due to the fact that the trials with actual movement
contain more artifacts than the imagined trials, in particular
when the subject has to move the legs. This trend is not
visible for the PLF features, accentuating the notion that they
are less susceptible to noise.

Despite the good results obtained, these could be improved
upon if the thresholding method, used to select the time
instants when the task is actually being performed, was
more robust, as the performance of the classifier is directly
dependent on the training data. The problem here is that the
ERD event is expected to occur in a localized region of the
brain, although there is some spreading to other areas. This
makes the definition of a single threshold that fits all the
motor tasks very difficult. A more clever way of doing this
would be the use of some kind of Blind Source Separation,
attempting to separate the information relative to each type of
task, as is explored, with synthetic data, in [10]. Additionally,
the reference segment, i.e., the first second of the trial, is not
long enough to obtain good statistics to compute a baseline
to be compared with the rest of the trial. And, finally, the
threshold does not automatically adapt to the signal within
the motor task period. Nevertheless, the method served its
purpose without the need to use more complex techniques.

V. CONCLUSION

The most important conclusion to extract from the work
developed is that a BCI system based on the use of PLF

features is better than an equivalent system based on power
band features, considering the limited data available. Fur-
thermore, the system is capable of distinguishing between
seven different motor tasks, which is unusual for this type
of approach. Nevertheless, more research is still needed, and
much remains to be done in order attain the next step, which
is to adapt this system into a real-time, fully functional, ap-
plication. To do so, some changes would need to be made to
the signal processing steps. For instance, all implementations
should be as computationally efficient as possible, in order
to minimize the response delay of the system. In this respect,
the processing window, here chosen with a length of 256ms,
should also be smaller, but long enough to provide useful
information for the classification. In regard to the training
of the classifier, an off-line approach, like the one used
here, could be implemented in the beginning of the session,
although the acquisition conditions change over time and,
therefore, it would be necessary to use an adaptive approach,
retraining the classifier as new information arrives. Finally,
a good feedback system has to be incorporated in order for
the user to understand clearly what the BCI is doing.
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ral mechanisms of brain-computer interface control,” NeuroImage,
vol. 55, pp. 1779 – 1790, 2011.

[5] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG
synchronization and desynchronization: basic principles,” Clinical
Neurophysiology, vol. 110, pp. 1842 – 1857, 1999.

[6] A. Bashashati, M. Fatourechi, and R. K. Ward, “A survey of signal
processing algorithms in brain-computer interfaces based on electrical
brain signals,” Journal of Neural Engineering, vol. 4, pp. R32–R57,
2007.

[7] D. J. McFarland and J. R. Wolpaw, “Sensorimotor rhythm-based brain-
computer interface (BCI): model order selection for autoregressive
spectral analysis,” Journal of Neural Engineering, vol. 5, pp. 155–
162, 2008.

[8] A. R. Murguialday, V. Aggarwal, A. Chatterjee, Y. Cho, R. Rasmussen,
B. O’Rourke, S. Acharya, and N. V. Thakor, “Brain-computer interface
for a prosthetic hand using local machine control and haptic feedback,”
in Proceedings of the 2007 IEEE 10th International Conference on
Rehabilitation Robotics, 2007.

[9] G. Townsend and Y. Feng, “Using phase information to reveal the na-
ture of event-related desynchronization,” Biomedical Signal Processing
and Control, vol. 3, pp. 192–202, 2008.

[10] M. Almeida, J. Bioucas-Dias, and R. Vigário, “Source separation of
phase-locked subspaces,” in Proceedings of the International Confer-
ence on Independent Component Analysis and Signal Separation, vol.
5441, 2009, pp. 203–210.

2880


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

