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Abstract— Wrist actigraphy is a well established procedure
to monitor human activity. Among other areas, it has a special
relevance in sleep studies where its lightweight and non-
intrusive nature make it a valuable tool to access the circadian
cycle. While there are several methods to extract information
from the data, the differentiation between sleep and wakefulness
states is still an open discussion.

In this paper, the characteristics of the movements in
the different states are assumed to be intrinsically different.
These differences are not simply related with magnitude and
movement counting, but due to real differences on the statistical
distributions describing the actigraphy data. Thus it is possible
to refine the discrimination level when detecting these states.

The proposed methodology to characterize the actigraphy
data is based on a mixture of three canonical distributions;
i)Exponential, ii)Rayleigh and iii)Gaussian. It is shown that the
weights and parameters estimated in each state are organized
into almost separable clusters on the feature space. This
suggests the ability of the method to discriminate these states
based only on the movements recorded on actigraphy data.

I. INTRODUCTION

Normal sleep circadian patterns are fundamental for

regular and healthy conditions. The group of pathologies

associated with sleep, Sleep disorders, include a wide range

of problems, with different origins, symptoms and degrees

of impact on health [1].

The diagnosis of these disorders is usually performed with

a polysomnography (PSG) exam, which involves complex

hardware and is highly intrusive to the patient. Other means

of diagnosis involves monitorization of the patterns of the

patient during his circadian cycle, this monitorization can

be done using sleep and dream diaries, portable biosignal

recorders and, frequently, actigraphy.

Actigraphy data is obtained with non invasive and highly

portable accelerometer sensors, which reflect the motor

activity of the subjects. It has become a popular method in

sleep studies due to its ability to register behavioral data

under normal life conditions and to estimate sleep amounts

and sleep continuity in patients with sleep disorders [2].

It has been used with success in the estimation of the shape

and characterization of the circadian cycle [3], [4] but its use
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in the estimation of the sleep and wakefulness states is still

an open discussion [5].

An extensive literature review on the use of actigraphy

for sleep assessment can be found in [6] and [7]. In [8] the

ability of actigraphy data for sleep staging is discussed as

well as the consistency of the results with PSG.

In this paper we propose a statistical description of the

movement based on a mixture of distributions to show

that movements during wakefulness and sleep states are

intrinsically different.

Purposeless is the key concept of the paper.

While movements during sleep state are typically random

and without purpose, movements during wakefulness state

are coherent and correlated. This empirical observation sug-

gests that movements recorded during different states, ap-

parently similar from temporal and intensity points of view,

may present relevant differences from spectral or statistical

distribution points of view.

Here, the work from [9], where the description of actig-

raphy data is tested with several pairs of distributions, is

extended. A mixture of distributions is used where the

weights and parameters of the components are estimated with

an Expectation Maximization (EM) based algorithm.

It is shown that these weights and parameters are clustered

in different clouds, not completely overlapped, depending

on the sleep or wakefulness state.

II. METHODS

Actigraphy data was collected with a Somnowatch device,

from Somnomedics, placed at the non-dominant wrist of the

subjects with a sampling rate of 1Hz. The core of these

devices is a 3D accelerometer that measures the acceleration

along 3 orthogonal axis with a configurable output format.

Here, the output of the actigraph is the acceleration magni-

tude.

The actigraphy data used in this study was jointly acquired

with PSG data for validation purposes. The hypnogram,

obtained from the PSG data by trained technicians, is used

as ground truth to identify the sleep and wakefulness states

as well the sleep stages in each epoch.

A. Pre-processing

Two pre-processing operations are performed on the data:

i) magnitude normalization and ii)activity segmentation.

Magnitude normalization is needed to minimize the inter-

patient and intra-patients variability effects. The normal-

ization step is simply a mean subtraction and variance
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normalization procedure according with

x(n) =
y(n)− µY

σY

(1)

where µY and σY are the mean and standard deviation of

the data, respectively.

The second operation, movement segmentation, is per-

formed because the large segments of immobility are useless

for activity characterization and sleep staging. They consti-

tute a source of noise and confound factors in the training

process of the staging classifier.

A simple threshold based movement detector was imple-

mented to detect movement and extract the corresponding

actigraphy data.

Figure 1 displays an example of pre-processed data. Figure

1.a) shows the normalized actigraphy signal and the move-

ment indicator and Figure 1.b) the corresponding hypnogram

segment.
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Fig. 1. a) Actigraphy data and detected movements (top) b) and Hypnogram
(bottom).

Data acquired from 8 patients was used for analysis.

After normalization and movement detection, the segments

corresponding to sleep, s, and wakefulness, w, states were

concatenated into two large arrays respectively.

B. Mixture Distribution

The histogram of movement data, displayed in Figure 2,

suggests that the data can be described by a mixture of

different probability density functions.

Four combinations of distributions were tested;

i)Exponential, Rayleigh and Gaussian (ERG), ii)Exponential

and Rayleigh (ER), iii) Exponential and Gaussian (EG) and

iv)Rayleigh and Gaussian distribution (RG). The rational

for the selection of four combinations is related with the

observation of the histograms of the actigraphy data which

present significant changes along the circadian cycle.

Two figures of merit are used to assess the goodness of fit

of each combination in order to select the one that better

describes the data along the whole cycle.
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Histogram of Sleep and Wakefulness data

Fig. 2. Histogram of movements during sleep and wake states.

Let y = {yi}, 1 ≤ i ≤ N , be a vector with the actigraphy

samples for a particular state, sleep or wakefulness, acquired

at a constant sampling rate. Each sample, corresponding to

the magnitude of the actigraphy data at a given instant, is

considered a random variable with the following PDF,

p(yi|W ,θ) = wep(yi|λ) + wrp(yi|f) + wgp(yi|µ, σ) (2)

where θ = {λ, f, µ, σ} are the parameters of the components,

W = {we, wr, wg} are the weights of the mixture satisfying

the following normalization constraint:

we + wr + wg = 1. (3)

pe(yi|λ) = λe−λyi (4)

is an exponential distribution with parameter λ,

pr(yi|f) =
yi

f
e−

y2
i

2f (5)

is a Rayleigh distribution with parameter f and

pg(yi|µ, σ) =
1√
2πσ

e−
(yi−µ)2

2σ2 (6)

is a Gaussian distribution with parameters µ and σ.

The Maximum Likelihood (ML) estimation problem of

the weights, W = {we, wr, wg} and parameters, θ =
{λ, f, µ, σ}, assuming statistical independence of the obser-

vations is formulated as follows

{Ŵ , θ̂}ML = argmax
θ,W

L(y|W ,θ) (7)

where

L(y|W ,θ) = log(p(y|W ,θ)) = log

N
∏

i=1

p(yi|W ,θ) (8)

is the likelihood function and

p(yi|W ,θ) =
∑

j

[wjpj(yi|θ(j))] (9)

is the mixture. θ(j) is the set of parameters associated with

the jth component of the mixture.

The maximization of (8) can be efficiently performed using

the EM method [10]. The estimation process becomes an it-

erative process, where new values of {W ,θ} are calculated,

on each step, according to:
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wj =
1

N

N
∑

i=1

φi,j (10)

λ̂ =

∑N

i=1
φi,0

∑N

i=1
φi,0yi

(11)

f̂ =
1

2

∑N

i=1
y2i φi,1

∑N

i=1
φi,1

(12)

µ̂ =

∑N

i=1
yiφi,2

∑N

i=1
φi,2

σ̂ =

√

√

√

√

∑N

i=1
φi,2 (yi − µ̂)

2

∑N

i=1
φi,2

(13)

where

φi,j =
wn−1

j p(yi|θn−1(kj))
∑

j w
n−1

j pj(yi|θn−1(j))
(14)

The iterative process runs until the fitting error between the

estimated mixture distribution and the observed data is lower

than a predefined threshold, set experimentally as 10−4.

III. RESULTS

The method presented in the previous section is used to

estimate the optimal weights, parameters and combination

of distributions to describe actigraphy data, during both

sleep and wakefulness states.

The following procedure is repeated for each mixture

distribution:

i) Each of the two (sleep/wakefulness) arrays is processed

using an overlapping sliding window. The size of the

window being 300 samples, corresponding to 5 minute

windows.

ii) On each window, one vector of weights and parameters,

f = [we, wr, wg, λ, f, µ, σ] is computed for each state. By

stacking the N vectors, where N is the number of windows,

two matrices are obtained, F τ , τ = {w, s}. Each line fτn,

0 ≤ n ≤ N , corresponds to the vector of weights and

parameters computed for the nth window.

Two figures of merit are used to assess the goodness

of fit of each mixture distribution; the i) Kullback-Leibler

divergence and the ii) normalized cluster distance, given by,

n.c.d. =
|µFw − µF s |

‖ΣFw‖F + ‖ΣF s‖F
(15)

Where µF τ is the mean value calculated over the N lines

of F τ , ΣF τ is the covariance matrix of F τ and ‖x‖F is

the frobenius norm.

Table I summarizes the obtained results, showing the

obtained mean and standard deviation values for the i)

kullback-leibler divergence, ii) weights ([w0,w1,w2]) and iii)

Wakefulness

ERG ER EG RG

k.l. 1.15± 0.31 1.29± 0.33 1.13± 0.29 1.18± 0.29
w0 0.06± 0.01 0.6± 0.03 0.80± 0.03 –
w1 0.58± 0.02 0.4± 0.03 – 0.61± 0.02
w2 0.36± 0.01 – 0.20± 0.02 0.39± 0.01

λ 0.2± 0.01 0.32± 0.01 0.31± 0.01 –

f 2.52± 0.16 13.58± 1.06 – 2.62± 0.14
µ 6.14± 0.13 – 5.50± 0.18 6.27± 0.10
σ 2.46± 0.04 – 2.46± 0.06 2.71± 0.04

Sleep

ERG ER EG RG

k.l. 1.31± 0.12 1.54± 0.13 1.33± 0.12 1.53± 0.13
w0 0.22± 0.01 0.83± 0.03 0.92± 0.03 –
w1 0.40± 0.01 0.17± 0.02 – 0.48± 0.02
w2 0.38± 0.01 – 0.08± 0.02 0.52± 0.02

λ 0.18± 0.01 0.24± 0.01 0.28± 0.02 –

f 1.25± 0.08 1.07± 0.12 – 1.48± 0.10
µ 5.23± 0.14 – 6.18± 0.31 5.85± 0.14
σ 2.07± 0.09 – 0.62± 0.28 2.94± 0.08

TABLE I

SUMMARY OF THE OBTAINED RESULTS.

ERG ER EG RG

n.c.d. 3.69 2.16 2.33 2.41

TABLE II

CLOUD DISTANCE (15) FOR SLEEP AND WAKEFULNESS STATES.

parameters for the different mixture distributions, for the two

different states.

The values obtained for the Kullback-Leibler show that

all the mixture distributions are able to properly describe

wakefulness data, with EG and ERG mixture distributions

yielding the best scores.

Table II shows the obtained results for the normalized

cluster distance. While this value is highly dependent on

the shape of the cloud of features, assuming a Gaussian

distribution, it is useful to give a rough approximation of

how separated they are, thus giving an approximate idea of

the discriminative power of each mixture. The ERG mixture

scored the highest value, followed by RG, EG and finally ER.

The matrix of weights, given by the first 3 columns of

F τ , obtained for each mixture distribution and for each

state is represented in Figure 3. According to (3), the sum

of the weights, on each mixture distribution, is 1. Thus

Figure 3 only shows 2 weights, in the case of the ERG

mixture distribution and 1 weight in the remaining mixture

distributions.

The clouds of the weights obtained for the ERG mixture

are clearly separated in space, the histograms obtained for

the ER, EG and RG mixtures are partially overlapped with

RG showing the largest difference between states.

The matrices of parameters, given by the remaining columns

of F τ , obtained for each mixture and each state are shown

in Figure 4.

The clouds of the parameters follow the same pattern
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Fig. 3. Clouds of weights for each mixture distribution (left/top) ERG;
(right/top) ER; (left/bottom) EG and (right/bottom) RG, and for each state,
wakefulness (red) and sleep (blue).

Fig. 4. Clouds of parameters for each mixture distribution, (left/top) ERG;
(right/top) ER; (left/bottom) EG and (right/bottom) RG, and for each state,
wakefulness (red) and sleep (blue).

observed in the weights. The parameters obtained for the

ERG mixture are clearly distinguishable and the remaining

mixtures show some overlap with RG mixture showing

higher separability.

The previous results graphically confirm the results shown

on Table III.

The obtained results suggest that the separability of the

weights and parameters of the different mixture distributions

can be used with simple discriminative classifiers to

discriminate between sleep and wakefulness states. The

clustering nature of the clouds of parameters reveals intrinsic

differences on the movements recorded in different states

thus confirming the initial claim.

Although a special effort was placed in the use of quality

data sets a human error factor is always present, specifically

in the elaboration of the hypnogram, where classification

may sometimes be different between technicians.

In this study, the large amount of data that result from each

Actigraphy recording was drastically reduced by discarding

all the data corresponding to non-movement periods, still

the 8 used data sets contained enough data to produce

relevant results.

The obtained results are not clear regarding the best

mixture distribution. All the tested mixture distributions

were able to fit the data in the different states with ERG

and RG yielding the best results regarding the separability

of the clouds of weights and parameters.

The obtained results show that it is possible to do a

rough estimation of the sleep/wake state based only on the

characteristics of the movements recorded on the actigraphy

data. While these results alone are not sufficient for a

standalone platform, they can be incorporated into existing

platforms to improve the accuracy of the classifiers.

IV. CONCLUSIONS

In this work the intrinsic characteristics of the movements

recorded on Actigraphy data were characterized with the

goal of developing an accurate sleep/wake estimator from

Actigraphy and other portable sources of physiological data.

It was shown, using the weights and parameters of

mixture distributions that the movements during sleep and

wakefulness are statistically different and that this difference

may be used to discriminate them.
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