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Abstract The chapter proposes a framework for extending the anabfsihe
atherosclerotic disease to a three-dimensional perspeblifferent data acquisition
systems, either based on a robotic arm setup or free-harmt@vesed, in order to
collect image sequences that completely describe the plagatomy. A 3D recon-
struction method is proposed, comprising a Rayleigh basespéckling approach
and interpolation. As a consequence, 3D maps accountingléoue echogenic-
ity and texture, according to appropriate local Rayleigtinestors are obtained.
Furthermore, the application of a segmentation approadbhaiakes use of the
Graph-cuts method, provides an efficient way to segment ecally identify un-
stable regions throughout the plaque. This informatiommlemented with a more
accurate inspection of plaque morphology, may have an itapoclinical impact
in disease diagnosis.
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1 Introduction

Atherosclerosis is a disease which generally affects largg medium-sized ar-
teries and its most important feature is plaque formatioa wuprogressive sub-
endothelial accumulation of lipid, protein, and cholestesters in the blood vessel
wall.

Several studies recognize that the degree of stenosiguotish to the blood
flow, is an important physiological landmark of stroke buattiother parameters,
such as plaque echo-morphology and texture should alsortsedewed for design-
ing a plaque risk profile. Additionally, it has been obsertleat vulnerable plaques
are usually associated with fibrous cap thinning and infiiraof inflammatory
cells consequently leading to rupture. Other studies tefda positive correlation
between the presence of fatty contents and hemorrhage wittological symp-
toms, thus suggesting that that inflammatory activity ptigdig determines plaque
instability. In Pedreet al.[1,2], the location and extension of these regions are iden-
tified as sensitive and relevant markers of stroke risk.

Numerous research groups conducted studies aiming atotbazeng and iden-
tifying the main features of the symptomatic lesion [1,348hong these, the grey-
scale median anéo can be used to characterize the plaque from an echogenic
viewpoint. However, the interpretation of these paransetatues will fail to reveal
possible unstable foci within the plaque, specially wheagpks are heterogeneous
or present significant hypoechogenic areas.

The risk assessment of plaque rupture through convent@bakechniques is
limited to a subjective selection of a representative imafgplaque structure and
it is hardly reproducible. An accurate diagnostic procecheised on 3D is known
to be valuable but has not yet been adopted in clinical practnainly because
such technology is not usually available in most medicallifess. Recently, less
operator-dependent methods based on 3D US have been pidposebetter as-
sessment of plaque vulnerability [9,10]. These studiesaiquantifying the plaque
volume, degree of stenosis [11], and the extension of seid&®eration [12].

The focus of this chapter is to assess the atherosclersgasie on a 3D perspec-
tive providing better visualization of the lesion and cltaeaization of potential risk.
The carotid disease study in 3D is rooted on the reconstmicti 3D maps starting
with 2D information extracted from noisy BUS images. To &s#ithe proposed ob-
jectives, different 3D image acquisition methods are exgui@nd powerful methods
for identifying vulnerable foci within the plaque volumeesaused.

2 Development of DAQ systemsfor 3D Ultrasound

Medical US has benefited from major advances in technologyissoonsidered an

indispensable imaging modality due to its flexibility anchrAavasive character.
Currently, there are accurate methods to assess the diseesgty based on

CT [13] or MRI [14]. However their application is expensitgne consuming and
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requires equipment which is not yet available and accessgiliost clinical facil-

ities. On the other hand, 2D ultrasound is widely availalnid provides real time
data acquisition and visualization, so it has been so fapthéerred technique in
the diagnosis and monitoring of the disease.

Although all anatomy is 3D in form, the vast majority of US igweg is 2D.
Most of the times, this technique provides sufficient infation for diagnosis but
there are clearly identifiable limitations, such as, noiitsio perform quantitative
volume measurements or to obtain optimal 2D scan views oéittaomical ROI
(Region of Intere$t Consequently, 3D US is a logical solution to allow betteore
complete and objective diagnostic results. In this imagmoglality, the 2D US im-
ages are combined by a computer to form an objective 3D im&gjgecanatomy
and pathology. This data can be manipulated and measurddl ioth in real time
or later offline. Moreover, unlike CT and MR imaging, in whizB images are usu-
ally acquired at a slow rate as a stack of parallel slices,fireal orientation, US
provides images at a high rate (15 to$@) and in arbitrary orientations.

Most 3D US systems make use of a conventional transducetamabsequence
of images by sweeping the probe along the anatomical ROIdidfied only in acqui-
sition and position sensing [9]. In this way, images can lumed mechanically,
free-handed with or without an optical or electromagnegpiati&l locator and using
2D arrays. Some of these systems were validated in varianisall applications,
such as obstetrics, cardiology and vascular imaging inrdodiecrease the diagno-
sis confidence [15].

2.1 Raobotic Arm Prototype

Depending on the organ or tissue to be scanned, it is negessapply different
scanning strategies or protocols which comprise linetaifooy and free-hand scan-
ning, just to name the most common ones. Most imaging sysaeensot optimally
adapted for such a wide range of applications. Hence, a 3Dro®tgpe robotic
system which can control, standardize and accurately perfoe acquisition pro-
cess is presented. This system may assist the operatormindefuitable scanning
paths for each patient according to the ROI to be scanneferBift acquisition
properties can be assigned in each examination, such asithgod and rate of
image acquisition. Moreover, each image is assigned wstispatial information
allowing to further perform following-up studies or to remruct and segment the
tissues or organs scanned with higher degree of confidence.

Robotic systems can be regarded as an important diagnoslisstcause they can
simultaneously control and standardize the image acpnsfrocess. Thus, they
can be very suitable for quantifying and accurately moritierdevelopment of car-
diovascular diseases, namely, the progression of athéoosplaques by scanning
the carotid or coronary arteries [16]. In addition, the iapto remotely position the
US probe with the robotic arm could also be used in telemedifi7].
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Fig. 1 Robotic Arm Prototype. (a) Block diagram of the system comptsgb) Experimental
setup. The robotic arm carries the probe and the position seregiegtor from the US scanner and
the spatial locator, respectively. The workstation personalpzger controls the movements of the
robotic arm with the aid of a joystick. Images are tagged widhrthpatial location and showed on
the screen. (c) Acquisition modes: linear (a), fan-like (b) astdtory (c) scans.

Given this, a prototype medical robot is described whichezsily be integrated
with common ultrasound scanning equipment and providesc@ins with their
regular scanning operations. The prototype robotic arnchemmatically shown in
Fig. 1(a) and comprises four main components. The first gnibé robotic arm
(Scorbot-ER VII, Intelitek, USA) with six degrees of freedowhich is operated
from the robot controller. The second element is an US ptatabanner (Echo
Blaster 128, Telemed, LT), equipped with a linear array prdihis probe is attached
to the tip of the robotic arm, together with an electromagngbsition sensing de-
vice (Fastrak, Polhemus, VT). The last component of theesyss the computer
workstation, which holds a joystick and the interface totoairnthe medical robot
and the US scanner.

A user-friendly graphical interface provides access attihgeof the robotic arm
controls and movements as well as visualization and tuniragquisition results.
The robaotic arm is manipulated using a joystick which alldavenove the US probe
towards the ROI to be scanned. Moreover, the system featuleasrning mode
which enables to store in memory a suitable scan path, aeg@lay mode to re-
produce the manually taught path. This attribute of the tioksystem is suitable to
guarantee reproducible and personalized results sincarapsth can be assigned
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for each patient with controlled speed and accurate posititormation provided
by the spatial locator.

The robot integrates several acquisition modes (see Fj), Hroviding free-
hand, linear, fan-like and rotatory scans. This should beabile enough to allow
image acquisition from different organs and tissues, whéferent scanning oper-
ations are needed. The system allows to capture BUS imagegatm spacing and
user-defined sampling rate. These images are synchronitiedhe spatial locator
and sent with their corresponding probe positions to thestation for storage and
further 3D reconstruction.

Fig. 1(b) shows the experimental robot setup for US imageiaitpn. A cross-
section of a cylindrical latex-made phantom, which rese&slal human vessel, was
acquired and the result is shown on the computer screen.

This system provides accurate and standardize but at thetsaenflexible scan-
ning of several organs and tissues. In particular, this eaa leasonable alternative
to other 3D US imaging systems for accurately quantifyirghogression of car-
diovascular diseases.

2.2 Free-hand Ultrasound

A free-hand system can be also used to acquire BUS imageDfdslBasound.
This strategy is more flexible than the robotic system prieseabove since it allows
image acquisition with unconstrained movement. In genarike-hand US image
acquisition system consists of a sensor (attached to a ptbhaeis tracked by a
device that calculates the sensor’s position and oriemtati any point in time. This
information is used to compute the 3D coordinates of eaatl pithe BUS images.
In this context, there are four common technologies to traeklical instruments,
including mechanical, acoustical, electromagnetic, grtctal.

The developed free-hand system is composed of an US dupéemec (HDI
5000, Philips Medical Systems division, Bothell, WA, USAgpicted in Fig. 2(a)
with a L12-5 scan probe (5 to 12 MHz broadband linear-arraggducer), where a
sensor from a tracking device was coupled as illustratedgnZtb). The designed
system uses an electromagnetic sensing device (FastrillenRas, VT) providing
storage of six degrees of freedom. The idea behind the etaafgnetic system is to
have a receiver placed on a probe that measures the indwatdaal currents when
moved within a magnetic field generated by a transmitter.

Generally, the tracking devices used for free-hand systews the same operat-
ing mode. The device tracks the position and orientatioh@&ensor on the probe,
not the BUS image plane itself. Hence, it is necessary to coethe transformation
(rotation, translation and scaling) between the originhef $ensor mounted on the
probe and the image plane itself. This problem can be tackittdthe application
of an adequate calibration method. Here, calibration wesnatd with a suitable
software (Stradwin, Medical Imaging group at the Departhoéizngineering, Uni-
versity of Cambridge, UK) where all the experimental appsgaequired is a flat
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Fig. 2 Free-hand 3D US. (a) Experimental setup, comprising a scanneatial$pcator (b) and a
computer interface for image visualization and acquisition.

plane immersed in a water tank. The flat plane could be as siagpthe bottom of
the water tank [18,19].

After calibration, every pixel in each 2D image is mappedhia 8D coordinate
system of the tracking device to reconstruct a geometyicalirect volume.

3 Methods

This section addresses the methods developed to studyhémstlerotic lesion

from a 3D perspective. Hence, a description of the recoatstm procedure from

sequences of BUS images acquired with the free-hand USwsystescribed next.

Moreover, a methodology for the local characterizatioh€lang) of hypoechogenic
regions within the plaque volume is presented. The labgiiogedure is based on
Graph-cuts and it is expected to improve the characteoizati plaques, by provid-

ing a more appropriate identification of unstable foci iesid

3.1 Reconstruction

Two approaches are generally considered in organ and tissaestruction: surface
and volume rendering. Surface rendering [12,20] can be tgsextract the bifurca-

tion walls of carotid arteries and quantify the degree afiesés and plaque volume.
A volume rendering approach [21] is often used to reconstaymarticular volume

of interest from which echo-morphological or textural ais& can be performed.
Here, a combination of the two approaches is used. Firstinvelrenderings are
obtained from sets of 2D BUS images of the carotid artery.ré€gens correspond-
ing to atherosclerotic plaques are visually detected irisg\cross-sections taken
from the obtained volume and then segmented using semiratito segmentation

methods, e.g. active contours [22] guided by experiencedipians. Surface ren-
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dering employs the interpolation of these contours prowjdh three-dimensional
representation of the plaque. This procedure has beensdxtgndescribed in [23].

It is recognized that BUS images are characterized by a &peektern which
makes data visualization and interpretation a challentggstg. The method used
here to compute the morphology of the VOIo{ume of Interegtcontaining the
carotid plaque is composed of two main steps: i) de-noisimtjiia reconstruction.

The method used to accomplish de-noising is based on theagpdescribed
in [24] and can be summarized as follows. Iet {y; ;} be the original ultrasound
image and> = {g; j} the de-speckled image to estimate. A Bayesian framework
with the Maximum a Posterioreriterion (MAP) is adopted to deal with the ill pose-
ness nature of this particular de-speckling problem. Hetimede-speckled image
is obtained by minimizing an energy function:

S=arg minE (Y, ), (1)

whereE(Y,2) = Eq(Y,2) + Ep(2). E4(Y, Z), calleddata fidelityterm, pushes the
solution toward the data arig} (2 ), calledprior term, regularizes the solution by in-
troducing prior knowledge abouat Thedata fidelityterm is thdog-likelihoodfunc-
tion, Eqg(Y, %) = —log(p(Y|£)) wherep(Y|Z) = 113 p(yi ;|0 ;) and p(yi j|ai ;)

is the Rayleigh probability density function [25]. The oattrenergy function ob-
tained after considering the variable chamge log(o?) is:

E(Y7X):Z[yzj e 4+x | +aTV(X) 2)

1]

where the prior term,

Z\/ —Xi—1)? + (%,j = %j-1)%, (3)

is the so calledTotal Variation (TV) of X = {x;j}. An example to illustrate de
application of the de-speckling algorithm is displayed ig. B.

In the second step, these de-noised images are interptdegstimate a 3D VOI
containing the plaque. The 3D reconstruction of a VOI whiompletely contains
the plaque aims at estimating a 3D fiel,= {fp}, from the de-noised images
computed in the de-speckling stefl,— {d}, }, wheret denotes th¢" image of the
sequence of BUS images acquired with the presented 3D &ed-iS system, and
p= (i, ], k) represents a node index in the 3D matFx;Two problems are naturally
raised: (i) the node locations &, fp,, and the locations of the pixels &f, ot oL do
not match, and (ii) some nodes may not be observed (misstay ddese problems
are tackled with an interpolation procedure described kmis.

Let us consider each voxelp, as a cubic region centered at the location of the
nodepp, with dlmensmns{el,oz 93) and the locations of the de-noised plxsfg
ast} ;. Moreover, lety; = {0}, : T;; € S, @, 0;(Hp)} be the set of all pixels inside
the nelghborhood (voxel)Se1 0, @s(up) of the nodef, displayed in Fig. 4.
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Fig. 3 De-speckling example (b) of an original ultrasound image (ag. dlgorithm clearly shows
its edge-preserving nature (c).

7
* 2
T \«'UA"//.
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Fig. 4 Voxel representation associated with the ndg€grey), located atip, and several image
pixels, at locationgy, in its neighborhood (red).

In afirst step, a 3D volum& = {z,} with the same dimensions &fis computed
where each elemert; = (Yp), is the weighted mean of the sgtwhere the weights
are the normalized distances of the pixel locations to timeceof the voxel, such
thatzp = (3, ||t — tr)||6r) /(3 || T — Upl|) wheret, denotes the location of thd!
pixel within the sety,. Therefore, each element6tontains the average intensity of
the pixels within the voxel. However, some elements of Z maybdefined when
there are no observations (pixels) inside the voxel. In ¢hse an interpolation is
needed. This missing data problem may be solved by minigitie following
energy function:

E(F7Z) = Z[np(fp*ZD)ZJFg;Z)]a (4)
P

wheregp = \/(fi,j,k_ fifl,j,k)2+ (fijk—fi,j—1, k)2 + (fijk— fi,j,k—l)z is the
gradient magnitude d¥ at the voxelp andny, is the number of observations (pixels)
associated with the voxed. The minimization of (4) can be iteratively solved by
optimizing with respect to one unknown at a time, which leamshe following
recursion:

fh = B(np)zp+ (1—B(np)) T, 5)
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Sal

Fig. 5 Regularization parameter function depending on the numbelbsérved pixels.

where()! denotes the iteration 5! corresponds to the mean value of the neigh-
bors of f, computed in the iteration— 1, n, is the number of pixels inside the voxel
and

B(np)) = (6)

is a regularization parameter function with = 6, whose behavior is illustrated in
Fig. 5. The equation expressed in (5) reveals the underiyitggpolation mecha-
nism performed during the minimization of the energy fumct{4). Each new es-
timate ofF, F!, is dependent of the previous estimdté&, 1, and of the field of the
mean pixel intensitiesZ, computed in the previous step. As large is the number of
pixels,np, associated with a particular voxel, the closer to the uBitile parameter

B, meaning that, in the Iimitf}) ~ zp. Conversely, a small number of observed pix-

els leads to small values 6, f,tfl, meaning that new estimates t},fare computed

part fromz, and part from the neighborsﬁ},‘l, estimated in the previous iteration.
In the limit, when no observations are availahfe= 0, and the new estimate is

fé, = f}fl, that is, it corresponds to the mean intensity of its neigbbto summa-
rize this method is based on the following concept: whengelamumber of pixels
are available for a given voxel its value is mainly computexifZ, whereas when
the number of observations is small or even zero the estimatietained from the
voxel neighborhood values.

The volume field~, originated from the set of de-speckled images, descriies t
value of the Rayleigh parameter across the VOI enclosingdhetid plaque and it
may be used to compute local intensity and textural indisatchich characterize
the different components and tissues of the plaque. Volwenenstruction of the
plaque interior provides an overall characterization sfcibmposition which is in
most cases mentally built up by the clinician.

Traditionally, plaque characterization is based on gstesiscomputed from the
observed noisy pixels. Here, instead of computing theseatats from the noisy
data, the characterization is based on theoretical stafisistimators depending on
F, and consequently on the plague acoustical propertiededcion the Rayleigh
distribution.
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Given this, with the purpose of assessing the local ech@hmogy of the 3D
reconstructed plaque, the median and Rgare computed, since these indicators
already demonstrated to be useful for tissue charactenzalhese statistics, de-
rived from the Rayleigh distribution [26], are given by:

{ fv(p)=fp\/l0g(4)
40 (7)

fry(P) = 1—ex 727[2,) :

Consequently, two different magds, andFp40 are computed containing the val-
ues of the mentioned estimators at each locagen (i, j,k). By averaging the el-
ements of these 3D matrices, a rough (global) charactenizaf the plaque echo-
morphology can be performed.

3.2 Local hypoechogenic region labeling with Graph-cuts

As mentioned before, the global characterization of cdrpliiques, despite its un-
questionable usefulness, may not be accurate for an olgexdsessment of plaque
vulnerability, especially in cases where the plaque isi@@ntly heterogeneous or
is plagued by artifacts.

In this section a local-based labeling approach was degélophe goal is to use
statistical estimators (7) to assess the risk of plaqueurapin a localwise basis.
This method is expected to identify regions of the plaquesghoypoechogenicity
information point towards potential foci of vulnerabilitiPlaque classification at
each locatiorp = (i, j, k) can be made by comparing the statistics derived in (7) with
a threshold, defined by the clinician. Considering the ntrediadP40, conventional
reference values are 32 and 43, respectively [1,27]. Thioise for every voxel,
resulting in 3D maps of labels ascribed for each one of threaall indicators. This
thresholding algorithm is simple and fast but it does noeteiko account spatial
correlation between neighboring nodes because the prisgesgormed on a voxel-
by-voxel basis.

Fig. 6 Labeling procedure performed on a plane by plane basis, proyi#j and.%.
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Here, a more sophisticated and accurate method is used tiieelebeling pro-
cedure considers the intensity value of the statisticattion at locationp and also
the values of its neighboring nodes. The goal is to introdspagial correlation to
reduce the misclassification rate by assuming that the plagpiecewise homoge-
neous, that is, composed of homogeneous regions sepasatdatupt transitions.
This assumption is acceptable from an anatomical persgeatid is usually adopted
for de-noising and de-blurring in medical imaging.

Let fp be the estimated value &f at the p" node. The labeled map<; with
T = {v, Py}, are performed on a plane-by-plane basis, i.e. each pldakeaked in-
dependently of the others. The segmentation is binary,twhieansZ (p) € {0, 1}
where.Z(p) is the p" node of the labeled volume. The labeling procedure of the
whole volume is performed in three steps, as depicted ing=ig) all stacked planes
along the vertical direction are independently labeladl a{l stacked planes along
the horizontal direction are independently labeled, aifjd@th volumes obtained in
the previous stepsZ,(p) and %, (p), are fused by making? (p) = .4, (p) ® % (p)
where® denotes the boolean product.

The labeling process of each plane is performed by solviagdhowing opti-
mization problem:

fT:argmgan(FTag)7 (8)

where the energy function is given by:

Et(Fr,2) =3 (Ar—fp)(2Z(p) - 1) - 1+
P

V(Z(p),-Z(n) +V(ZL(p).-Z(p (©)
9%<( (p),Z(pv) +V(Z(p) (h))>7

9p

whereA; is the threshold associated with the indicatp® is a parameter to tune
the strength of smoothnes, i$ the normalized gradient at locatignand p, and
pn are the locations of the causal vertical and horizontalhtsgs of thep™™ node.
In addition,V(l1,12) is a penalization function defined as follows:

0 li=1
V(l,l2) = {1 %1, (10)
The energy function (9) is composed of two terms: the firsledadlata term
and the second designatedragularization term The first forces the classification
to be.Z(p) = 1 whenf, > A; because this leads to a decrease in the f@rm-
fp)(2Z(p) — 1) when compared to the alternative classificatigfik) = 0. The
opposite occurs iff, < A;. The second term forces the uniformity of the solution
because the cost associated with uniform labels is smaléar with non-uniform
ones (10). In order to preserve the transitions the termdiaiced by the normalized
gradient magnitude of,, §p. Therefore, when the gradient magnitude increases the
regularization strength is reduced at that particulartiooa
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Fig. 7 lllustration of labeling based on Graph-cuts using a synthelgue corrupted with
Rayleigh noise. Different classes (regions) are correctlyléabe

The minimization of (9) formulated in (8) is a huge optimipattask performed
in the Q"M high dimensional space whet = {0,1} is the set of labels anhl
and M are the dimensions of the image. In [28] it is shown that sdvenergy
minimization problems in high dimensional discrete spaegsbe efficiently solved
by use ofGraph-cutg29]. Opportunely, the energy function given in (9) belobgs
this class of problems, for which the authors have designemhafast and efficient
algorithm to compute the global minimum. For example, a: 2300 pixel image is
processed in.@ seconds in an Intel Core2 CPU at 1.83GHz with 2GB RAM, which
shows the efficiency and the short processing time of the adeth

4 Experimental Results

The first result aims at investigating the adequacy of theliab procedure to de-
tect piecewise smooth regions in synthetic ultrasound. daiathis purpose, it is
used a synthetic BUS image (Fig. 7(a)) created from a plagaetom presenting
two hypoechogenic regiong = 20), one low echogenic regiorif = 35) and the
echogenic foregroundf§ = 50). The background is assumed to be hypoechogenic
(fp =20). The synthetic image is corrupted with Rayleigh noisegisatLab soft-
ware. Here, the number of classes (regions with homogerehagenicity) to de-
tectis set to 3 and thaata termis simply the image intensities. This simple example
provides an illustration of how the Graph-cuts algorithnalide to correctly label
the different portions of the synthetic BUS image (Fig. 7Kim. 7(c)).

Furthermore, the performance of 3D reconstruction andilapavas evaluated
with a set of 100 synthetic images created as in the aforeomeut example. This
image set defines a 3D VOI, as illustrated in Fig. 8(a). Eachgenis corrupted
with noise and interpolated, thus creating the noisy VOMsha Fig. 8(b). After
de-speckling each image and performing 3D reconstructi@pbtained result is
shown in Fig. 8(c). Clearly, speckle has been significanifypsessed, providing a
clearer VOI where the plaque is can be easily identified. [degg the application
of de-speckling followed by 3D reconstruction eases thie ¥A8D labeling, whose
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Fig. 8 3D reconstruction and labeling using Graph-cuts from a syiatiratige set.

results are shown in Fig. 8(d). In fact, the hypoechogeniiores, hypothetically
considered as defininigci of plaque instability, are correctly identified by use of
the labeling procedure based on Graph-cuts, wiigee 20 in (9).

The effectiveness of the labeling procedure based on Geafshfor local iden-
tification of unstable sites inside the plaque is evaluatedeal ultrasound data.
Three carotid plaques were reconstructed following theipusly proposed method
and then locally characterized using the median B#40 estimators derived from
each reconstructed VOfy, that is, f, (p) and fpso(p). As mentioned, the analysis
of plaque echo-morphology, in particular the GSM (mediam) B40 determines
whether (or not) a plaque is stable by using consensualhtblds given in the lit-
erature [1,2,30], which in this context correspond$ittp) < 32 andfpao(p) > 43.
This binary classification, based on a thresholding proeedsivery simple and can
lead to non realistic clinical results as physicians woudeet to identify clusters
(regions) of vulnerability across the carotid plaques, whsolated or dispersed pix-
els (outliers) are not expected to occur. Hence, the apjaitaf a strategy such as
that based on Graph-cuts can be suitable for this partitatheting problem since it
favors clustering. The labeling procedure based on Graphis applied by consid-
ering the 3D maps of the median aRg, f,(p) and fp,,(p), and the corresponding
reference "cut-offs”f, = 32 andf, =43, in (9).

Fig. 9 displays the labeling of potentially dangerous sitegle the plaque using
two labeling strategies, where the first is based on threghgpland the second on
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Threshold Graph-cuts Threshold Graph-cuts

(b)

Fig. 9 Comparison of labeling strategies based on simple threshold apth@&tas computed from
the median ané&®40 3D maps of three reconstructed plaques.

Graph-cuts. It is observed that the use of Graph-cuts altovixetter discriminate
the hypoechogenic sites across the carotid plagues. Vsllabeled with Graph-
cuts appear less noisier than when the threshold metho@ds Tikis suggests that
the use of Graph-cuts may improve the characterization roficeplaques, namely
by providing a more appropriate identification and defimtwf unstable regions
across the plague. This result can be clinically meaningjfude as reported in [1]
the degree of extension of these unstable regions and thoaition throughout the
plaque should be considered and used as markers of riskaqpfeotaipture and thus
of stroke risk.
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Total volume 1058 mm3
Hypoecl_logemc 565 mm?
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Fig. 10 Potential application of the algorithm: (a) Identificationhgpoechogenic sites, using the
local median parameter; (b) Inspection and quantification aéfpaesentative vulnerable region
detected inside the plaque; (c) Gray-scale mapping of plaguerées using the local standard
deviation parameter;

Fig. 10 depicts a potential application of the reconstarctind labeling algo-
rithms in the scope of 3D plaque analysis with ultrasoundstFregions of hy-
poechogenicity are identified by use of the local medianresttr, f, (p)), and the
Graph-cuts labeling strategy (Fig. 10(a)). Fig. 10(b)sitates a potential applica-
tion of the characterization algorithm based on the inspedf a region which was
identified by the algorithm as being more vulnerable. Thigae can be extracted,
its location inside the plaque can be tracked and its voluareb= computed to
assess the ratio of its occupation related to the whole plaqu

Moreover, Fig. 10(c) shows results of plaque texture, basetie standard devi-
ation estimator which is computed &s(p) = 4%” fg [30], providing a gray-scaled
indicator of plague heterogeneity. Regions resulting fithim combination of the
previous results are thought to be the most important fopladue rupture.

The 3D approach provides the visualization of an unlimitechber of cross-
sectional cuts of the plaque which naturally eases the aisalyits echo-morphology
contents and surface regularity (Fig. 10(d)).
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5 Conclusions

The assessment of plague morphology, echogenicity angréeist considered to be
critical for an accurate diagnosis of atheroscleroticatge 2D ultrasound has so far
been the preferred imaging technique because it is norsirejainexpensive and
portable. This chapter proposes an extension to the taditicharacterization of
plagues using a 3D approach. This strategy provides a maonglete and objec-
tive description of lesion severity because it considdrthalinformation enclosed
in the plaque anatomical volume without depending on a stilsgeselection of a
particular image for diagnosis.

Two distinct data acquisition systems developed for 3Castiund, either robotic
arm and free-hand based, are proposed to obtain a set oigcpléines of the carotid
plague acquired at a high sampling rate and in virtually abjtrary orientation.

Moreover, the VOI containing the plaque is obtained in tvapst where the first
uses the proposed de-speckling algorithm applied to eaelyenof the acquired
data sequence and the second considers a reconstruciioT ke application of
such procedure provides a description of plague echodgaied texture in terms of
3D maps of local estimators obtained from the Rayleighithistion. Consequently,
plaque analysis can be performed on a global sense, whegvéhage values of
Rayleigh descriptors are computed, or on a local basis.

The latter approach is crucial from a clinical perspectieeduse it potentially
allows the identification of sources of plaque rupture. Tkl this problem, a la-
beling method is introduced using an efficient method base@mph-cuts. Such
labeling procedure improves the segmentation of potefatcalof instability across
the plaque because it is robust to the presence of noise @ors felustering. Results
of local labeling using synthetic and real data show that #fiiategy outperforms
the method based on simple thresholding.

Hence, an entire 3D ultrasound-based framework was intexdiufrom data ac-
quisition, reconstruction to its analysis, providing a meomplete and objective
characterization of carotid plagues. This study presemtswaging and meaning-
ful results in terms of plaque inspection, quantificatiod &tal characterization of
plague echo-morphology.
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