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Abstract The chapter proposes a framework for extending the analysisof the
atherosclerotic disease to a three-dimensional perspective. Different data acquisition
systems, either based on a robotic arm setup or free-hand areproposed, in order to
collect image sequences that completely describe the plaque anatomy. A 3D recon-
struction method is proposed, comprising a Rayleigh based de-speckling approach
and interpolation. As a consequence, 3D maps accounting forplaque echogenic-
ity and texture, according to appropriate local Rayleigh estimators are obtained.
Furthermore, the application of a segmentation approach which makes use of the
Graph-cuts method, provides an efficient way to segment and locally identify un-
stable regions throughout the plaque. This information, complemented with a more
accurate inspection of plaque morphology, may have an important clinical impact
in disease diagnosis.
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2 Jośe Seabra, Jasjit S. Suri and J. Miguel Sanches

1 Introduction

Atherosclerosis is a disease which generally affects largeand medium-sized ar-
teries and its most important feature is plaque formation due to progressive sub-
endothelial accumulation of lipid, protein, and cholesterol esters in the blood vessel
wall.

Several studies recognize that the degree of stenosis, obstruction to the blood
flow, is an important physiological landmark of stroke but that other parameters,
such as plaque echo-morphology and texture should also be considered for design-
ing a plaque risk profile. Additionally, it has been observedthat vulnerable plaques
are usually associated with fibrous cap thinning and infiltration of inflammatory
cells consequently leading to rupture. Other studies reported a positive correlation
between the presence of fatty contents and hemorrhage with neurological symp-
toms, thus suggesting that that inflammatory activity potentially determines plaque
instability. In Pedroet al. [1,2], the location and extension of these regions are iden-
tified as sensitive and relevant markers of stroke risk.

Numerous research groups conducted studies aiming at characterizing and iden-
tifying the main features of the symptomatic lesion [1,3–8]. Among these, the grey-
scale median andP40 can be used to characterize the plaque from an echogenic
viewpoint. However, the interpretation of these parameters values will fail to reveal
possible unstable foci within the plaque, specially when plaques are heterogeneous
or present significant hypoechogenic areas.

The risk assessment of plaque rupture through conventional2D techniques is
limited to a subjective selection of a representative imageof plaque structure and
it is hardly reproducible. An accurate diagnostic procedure based on 3D is known
to be valuable but has not yet been adopted in clinical practice, mainly because
such technology is not usually available in most medical facilities. Recently, less
operator-dependent methods based on 3D US have been proposed from better as-
sessment of plaque vulnerability [9,10]. These studies aimat quantifying the plaque
volume, degree of stenosis [11], and the extension of surface ulceration [12].

The focus of this chapter is to assess the atherosclerotic disease on a 3D perspec-
tive providing better visualization of the lesion and characterization of potential risk.
The carotid disease study in 3D is rooted on the reconstruction of 3D maps starting
with 2D information extracted from noisy BUS images. To achieve the proposed ob-
jectives, different 3D image acquisition methods are explored and powerful methods
for identifying vulnerable foci within the plaque volume are used.

2 Development of DAQ systems for 3D Ultrasound

Medical US has benefited from major advances in technology and is considered an
indispensable imaging modality due to its flexibility and non-invasive character.

Currently, there are accurate methods to assess the diseaseseverity based on
CT [13] or MRI [14]. However their application is expensive,time consuming and
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requires equipment which is not yet available and accessible in most clinical facil-
ities. On the other hand, 2D ultrasound is widely available and provides real time
data acquisition and visualization, so it has been so far thepreferred technique in
the diagnosis and monitoring of the disease.

Although all anatomy is 3D in form, the vast majority of US imaging is 2D.
Most of the times, this technique provides sufficient information for diagnosis but
there are clearly identifiable limitations, such as, non-ability to perform quantitative
volume measurements or to obtain optimal 2D scan views of theanatomical ROI
(Region of Interest). Consequently, 3D US is a logical solution to allow better,more
complete and objective diagnostic results. In this imagingmodality, the 2D US im-
ages are combined by a computer to form an objective 3D image of the anatomy
and pathology. This data can be manipulated and measured in 3D both in real time
or later offline. Moreover, unlike CT and MR imaging, in which2D images are usu-
ally acquired at a slow rate as a stack of parallel slices, in afixed orientation, US
provides images at a high rate (15 to 60s−1) and in arbitrary orientations.

Most 3D US systems make use of a conventional transducer to obtain a sequence
of images by sweeping the probe along the anatomical ROI, anddiffer only in acqui-
sition and position sensing [9]. In this way, images can be acquired mechanically,
free-handed with or without an optical or electromagnetic spatial locator and using
2D arrays. Some of these systems were validated in various clinical applications,
such as obstetrics, cardiology and vascular imaging in order to increase the diagno-
sis confidence [15].

2.1 Robotic Arm Prototype

Depending on the organ or tissue to be scanned, it is necessary to apply different
scanning strategies or protocols which comprise linear, rotatory and free-hand scan-
ning, just to name the most common ones. Most imaging systemsare not optimally
adapted for such a wide range of applications. Hence, a 3D US prototype robotic
system which can control, standardize and accurately perform the acquisition pro-
cess is presented. This system may assist the operator in defining suitable scanning
paths for each patient according to the ROI to be scanned. Different acquisition
properties can be assigned in each examination, such as the duration and rate of
image acquisition. Moreover, each image is assigned with its spatial information
allowing to further perform following-up studies or to reconstruct and segment the
tissues or organs scanned with higher degree of confidence.

Robotic systems can be regarded as an important diagnosis tool because they can
simultaneously control and standardize the image acquisition process. Thus, they
can be very suitable for quantifying and accurately monitorthe development of car-
diovascular diseases, namely, the progression of atheromatous plaques by scanning
the carotid or coronary arteries [16]. In addition, the ability to remotely position the
US probe with the robotic arm could also be used in telemedicine [17].
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Fig. 1 Robotic Arm Prototype. (a) Block diagram of the system components. (b) Experimental
setup. The robotic arm carries the probe and the position sensingreceptor from the US scanner and
the spatial locator, respectively. The workstation personal computer controls the movements of the
robotic arm with the aid of a joystick. Images are tagged with their spatial location and showed on
the screen. (c) Acquisition modes: linear (a), fan-like (b) and rotatory (c) scans.

Given this, a prototype medical robot is described which caneasily be integrated
with common ultrasound scanning equipment and provides clinicians with their
regular scanning operations. The prototype robotic arm is schematically shown in
Fig. 1(a) and comprises four main components. The first unit is the robotic arm
(Scorbot-ER VII, Intelitek, USA) with six degrees of freedom which is operated
from the robot controller. The second element is an US portable scanner (Echo
Blaster 128, Telemed, LT), equipped with a linear array probe. This probe is attached
to the tip of the robotic arm, together with an electromagnetic position sensing de-
vice (Fastrak, Polhemus, VT). The last component of the system is the computer
workstation, which holds a joystick and the interface to control the medical robot
and the US scanner.

A user-friendly graphical interface provides access and setting of the robotic arm
controls and movements as well as visualization and tuning of acquisition results.
The robotic arm is manipulated using a joystick which allowsto move the US probe
towards the ROI to be scanned. Moreover, the system featuresa learning mode
which enables to store in memory a suitable scan path, and areplay mode to re-
produce the manually taught path. This attribute of the robotic system is suitable to
guarantee reproducible and personalized results since a scan path can be assigned
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for each patient with controlled speed and accurate position information provided
by the spatial locator.

The robot integrates several acquisition modes (see Fig. 1(c)), providing free-
hand, linear, fan-like and rotatory scans. This should be flexible enough to allow
image acquisition from different organs and tissues, wheredifferent scanning oper-
ations are needed. The system allows to capture BUS images atuniform spacing and
user-defined sampling rate. These images are synchronized with the spatial locator
and sent with their corresponding probe positions to the workstation for storage and
further 3D reconstruction.

Fig. 1(b) shows the experimental robot setup for US image acquisition. A cross-
section of a cylindrical latex-made phantom, which resembles a human vessel, was
acquired and the result is shown on the computer screen.

This system provides accurate and standardize but at the same time flexible scan-
ning of several organs and tissues. In particular, this can be a reasonable alternative
to other 3D US imaging systems for accurately quantifying the progression of car-
diovascular diseases.

2.2 Free-hand Ultrasound

A free-hand system can be also used to acquire BUS images for 3D Ultrasound.
This strategy is more flexible than the robotic system presented above since it allows
image acquisition with unconstrained movement. In general, a free-hand US image
acquisition system consists of a sensor (attached to a probe) that is tracked by a
device that calculates the sensor’s position and orientation at any point in time. This
information is used to compute the 3D coordinates of each pixel of the BUS images.
In this context, there are four common technologies to trackmedical instruments,
including mechanical, acoustical, electromagnetic, and optical.

The developed free-hand system is composed of an US duplex scanner (HDI
5000, Philips Medical Systems division, Bothell, WA, USA),depicted in Fig. 2(a)
with a L12-5 scan probe (5 to 12 MHz broadband linear-array transducer), where a
sensor from a tracking device was coupled as illustrated in Fig. 2(b). The designed
system uses an electromagnetic sensing device (Fastrak, Polhemus, VT) providing
storage of six degrees of freedom. The idea behind the electromagnetic system is to
have a receiver placed on a probe that measures the induced electrical currents when
moved within a magnetic field generated by a transmitter.

Generally, the tracking devices used for free-hand systemshave the same operat-
ing mode. The device tracks the position and orientation of the sensor on the probe,
not the BUS image plane itself. Hence, it is necessary to compute the transformation
(rotation, translation and scaling) between the origin of the sensor mounted on the
probe and the image plane itself. This problem can be tackledwith the application
of an adequate calibration method. Here, calibration was attained with a suitable
software (Stradwin, Medical Imaging group at the Department of Engineering, Uni-
versity of Cambridge, UK) where all the experimental apparatus required is a flat
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Fig. 2 Free-hand 3D US. (a) Experimental setup, comprising a scanner, a spatial locator (b) and a
computer interface for image visualization and acquisition.

plane immersed in a water tank. The flat plane could be as simple as the bottom of
the water tank [18,19].

After calibration, every pixel in each 2D image is mapped in the 3D coordinate
system of the tracking device to reconstruct a geometrically correct volume.

3 Methods

This section addresses the methods developed to study the atherosclerotic lesion
from a 3D perspective. Hence, a description of the reconstruction procedure from
sequences of BUS images acquired with the free-hand US system is described next.
Moreover, a methodology for the local characterization (labeling) of hypoechogenic
regions within the plaque volume is presented. The labelingprocedure is based on
Graph-cuts and it is expected to improve the characterization of plaques, by provid-
ing a more appropriate identification of unstable foci inside it.

3.1 Reconstruction

Two approaches are generally considered in organ and tissuereconstruction: surface
and volume rendering. Surface rendering [12,20] can be usedto extract the bifurca-
tion walls of carotid arteries and quantify the degree of stenosis and plaque volume.
A volume rendering approach [21] is often used to reconstruct a particular volume
of interest from which echo-morphological or textural analysis can be performed.
Here, a combination of the two approaches is used. First, volume renderings are
obtained from sets of 2D BUS images of the carotid artery. Theregions correspond-
ing to atherosclerotic plaques are visually detected in several cross-sections taken
from the obtained volume and then segmented using semi-automatic segmentation
methods, e.g. active contours [22] guided by experienced physicians. Surface ren-
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dering employs the interpolation of these contours providing a three-dimensional
representation of the plaque. This procedure has been extensively described in [23].

It is recognized that BUS images are characterized by a speckle pattern which
makes data visualization and interpretation a challengingtask. The method used
here to compute the morphology of the VOI (Volume of Interest) containing the
carotid plaque is composed of two main steps: i) de-noising and ii) reconstruction.

The method used to accomplish de-noising is based on the approach described
in [24] and can be summarized as follows. LetY = {yi, j} be the original ultrasound
image andΣ = {σi, j} the de-speckled image to estimate. A Bayesian framework
with theMaximum a Posterioricriterion (MAP) is adopted to deal with the ill pose-
ness nature of this particular de-speckling problem. Hence, the de-speckled image
is obtained by minimizing an energy function:

Σ̂ = argmin
Σ

E(Y,Σ), (1)

whereE(Y,Σ) = Ed(Y,Σ)+Ep(Σ). Ed(Y,Σ), calleddata fidelityterm, pushes the
solution toward the data andEp(Σ), calledprior term, regularizes the solution by in-
troducing prior knowledge aboutΣ . Thedata fidelityterm is thelog-likelihoodfunc-
tion, Ed(Y,Σ) = − log(p(Y|Σ)) wherep(Y|Σ) = ∏N,M

i, j=1 p(yi, j |σi, j) and p(yi, j |σi, j)
is the Rayleigh probability density function [25]. The overall energy function ob-
tained after considering the variable changex= log(σ2) is:

E(Y,X) = ∑
i, j

[

y2
i, j

2
e−xi, j +xi, j

]

+αTV(X) (2)

where the prior term,

TV(X) = ∑
i, j

√

(xi, j−xi−1, j)2+(xi, j−xi, j−1)2, (3)

is the so calledTotal Variation (TV) of X = {xi, j}. An example to illustrate de
application of the de-speckling algorithm is displayed in Fig. 3.

In the second step, these de-noised images are interpolatedto estimate a 3D VOI
containing the plaque. The 3D reconstruction of a VOI which completely contains
the plaque aims at estimating a 3D field,F = { fp}, from the de-noised images
computed in the de-speckling step,Σ t = {σ t

i, j}, wheret denotes thetth image of the
sequence of BUS images acquired with the presented 3D free-hand US system, and
p= (i, j,k) represents a node index in the 3D matrix,F . Two problems are naturally
raised: (i) the node locations ofF , fp, and the locations of the pixels ofΣ t , σ t

i, j , do
not match, and (ii) some nodes may not be observed (missing data). These problems
are tackled with an interpolation procedure described as follows.

Let us consider each voxel,fp, as a cubic region centered at the location of the
nodeµp, with dimensions(Θ1,Θ2,Θ3) and the locations of the de-noised pixelsσ t

i, j

asτ t
i, j . Moreover, letϒp = {σ t

r,l : τ t
r,l ∈ SΘ1,Θ2,Θ3(µp)} be the set of all pixels inside

the neighborhood (voxel),SΘ1,Θ2,Θ3(µp) of the nodefp displayed in Fig. 4.
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Fig. 3 De-speckling example (b) of an original ultrasound image (a). The algorithm clearly shows
its edge-preserving nature (c).
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Fig. 4 Voxel representation associated with the nodefp (grey), located atµp, and several image
pixels, at locationsτ r

p in its neighborhood (red).

In a first step, a 3D volume,Z= {zp} with the same dimensions ofΣ is computed
where each element,zp = 〈ϒp〉, is the weighted mean of the setϒp where the weights
are the normalized distances of the pixel locations to the center of the voxel, such
thatzp = (∑r ‖τr −µr)‖σr)/(∑r ‖τr −µp‖) whereτr denotes the location of therth

pixel within the setϒp. Therefore, each element ofZ contains the average intensity of
the pixels within the voxel. However, some elements of Z may be undefined when
there are no observations (pixels) inside the voxel. In thiscase an interpolation is
needed. This missing data problem may be solved by minimizing the following
energy function:

E(F,Z) = ∑
p
[np( fp−zp)

2+g2
p], (4)

wheregp =
√

( fi, j,k− fi−1, j,k)2+( fi, j,k− f i, j −1,k)2+( fi, j,k− fi, j,k−1)2 is the
gradient magnitude ofF at the voxelp andnp is the number of observations (pixels)
associated with the voxelp. The minimization of (4) can be iteratively solved by
optimizing with respect to one unknown at a time, which leadsto the following
recursion:

f t
p = β (np)zp+(1−β (np)) f t−1

p , (5)



Three-Dimensional Ultrasound Plaque Characterization 9

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

n
p

β(
n p)

Fig. 5 Regularization parameter function depending on the number ofobserved pixels.

where()t denotes the iteration t,f t−1
p corresponds to the mean value of the neigh-

bors of fp computed in the iterationt−1,np is the number of pixels inside the voxel
and

β (np)) =
np

np+Nv
(6)

is a regularization parameter function withNv = 6, whose behavior is illustrated in
Fig. 5. The equation expressed in (5) reveals the underlyinginterpolation mecha-
nism performed during the minimization of the energy function (4). Each new es-
timate ofF , F t , is dependent of the previous estimate,F t−1, and of the field of the
mean pixel intensities,Z, computed in the previous step. As large is the number of
pixels,np, associated with a particular voxel, the closer to the unityis the parameter
β , meaning that, in the limit,f t

p ≈ zp. Conversely, a small number of observed pix-

els leads to small values ofβ , f t−1
p , meaning that new estimates off t

p are computed

part fromzp and part from the neighbors,f t−1
p , estimated in the previous iteration.

In the limit, when no observations are available,β = 0, and the new estimate is

f t
p = f t−1

p , that is, it corresponds to the mean intensity of its neighbors. To summa-
rize this method is based on the following concept: when a large number of pixels
are available for a given voxel its value is mainly computed from Z, whereas when
the number of observations is small or even zero the estimateis obtained from the
voxel neighborhood values.

The volume fieldF , originated from the set of de-speckled images, describes the
value of the Rayleigh parameter across the VOI enclosing thecarotid plaque and it
may be used to compute local intensity and textural indicators which characterize
the different components and tissues of the plaque. Volume reconstruction of the
plaque interior provides an overall characterization of its composition which is in
most cases mentally built up by the clinician.

Traditionally, plaque characterization is based on statistics computed from the
observed noisy pixels. Here, instead of computing these indicators from the noisy
data, the characterization is based on theoretical statistical estimators depending on
F , and consequently on the plaque acoustical properties encoded in the Rayleigh
distribution.
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Given this, with the purpose of assessing the local echo-morphology of the 3D
reconstructed plaque, the median and theP40 are computed, since these indicators
already demonstrated to be useful for tissue characterization. These statistics, de-
rived from the Rayleigh distribution [26], are given by:

{

fν(p)= fp
√

log(4)

fP40(p) = 1−exp
(

− 402

2 f 2
p

)

.
(7)

Consequently, two different maps,Fν andFP40 are computed containing the val-
ues of the mentioned estimators at each locationp= (i, j,k). By averaging the el-
ements of these 3D matrices, a rough (global) characterization of the plaque echo-
morphology can be performed.

3.2 Local hypoechogenic region labeling with Graph-cuts

As mentioned before, the global characterization of carotid plaques, despite its un-
questionable usefulness, may not be accurate for an objective assessment of plaque
vulnerability, especially in cases where the plaque is significantly heterogeneous or
is plagued by artifacts.

In this section a local-based labeling approach was developed. The goal is to use
statistical estimators (7) to assess the risk of plaque rupture on a localwise basis.
This method is expected to identify regions of the plaque whose hypoechogenicity
information point towards potential foci of vulnerability. Plaque classification at
each locationp= (i, j,k) can be made by comparing the statistics derived in (7) with
a threshold, defined by the clinician. Considering the median andP40, conventional
reference values are 32 and 43, respectively [1,27]. This isdone for every voxel,
resulting in 3D maps of labels ascribed for each one of the clinical indicators. This
thresholding algorithm is simple and fast but it does not take into account spatial
correlation between neighboring nodes because the processis performed on a voxel-
by-voxel basis.

Lh

Lv

p

p

Fig. 6 Labeling procedure performed on a plane by plane basis, providingLv andLv.
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Here, a more sophisticated and accurate method is used wherethe labeling pro-
cedure considers the intensity value of the statistical function at locationp and also
the values of its neighboring nodes. The goal is to introducespatial correlation to
reduce the misclassification rate by assuming that the plaque is piecewise homoge-
neous, that is, composed of homogeneous regions separated by abrupt transitions.
This assumption is acceptable from an anatomical perspective and is usually adopted
for de-noising and de-blurring in medical imaging.

Let fp be the estimated value ofF at thepth node. The labeled maps,Lτ with
τ = {ν ,P40}, are performed on a plane-by-plane basis, i.e. each plane islabeled in-
dependently of the others. The segmentation is binary, which meansL (p) ∈ {0,1}
whereL (p) is the pth node of the labeled volume. The labeling procedure of the
whole volume is performed in three steps, as depicted in Fig.6: (i) all stacked planes
along the vertical direction are independently labeled, (ii) all stacked planes along
the horizontal direction are independently labeled, and (iii) both volumes obtained in
the previous steps,Lv(p) andLh(p), are fused by makingL (p) =Lv(p)⊗Lh(p)
where⊗ denotes the boolean product.

The labeling process of each plane is performed by solving the following opti-
mization problem:

Lτ = argmin
L

E(Fτ ,L ), (8)

where the energy function is given by:

Eτ(Fτ ,L ) = ∑
p
(λτ − fp)(2L (p)−1)−1+

θ ∑
p

(

V(L (p),L (pv))+V(L (p),L (ph))

g̃p

)

,
(9)

whereλτ is the threshold associated with the indicatorτ, θ is a parameter to tune
the strength of smoothness, ˜gp is the normalized gradient at locationp, andpv and
ph are the locations of the causal vertical and horizontal neighbors of thepth node.
In addition,V(l1, l2) is a penalization function defined as follows:

V(l1, l2) =

{

0 l1 = l2
1 l1 6= l2.

(10)

The energy function (9) is composed of two terms: the first called data term
and the second designated asregularization term. The first forces the classification
to beL (p) = 1 when fp ≥ λτ because this leads to a decrease in the term(λτ −
fp)(2L (p)− 1) when compared to the alternative classification,L (k) = 0. The
opposite occurs iffp < λτ . The second term forces the uniformity of the solution
because the cost associated with uniform labels is smaller than with non-uniform
ones (10). In order to preserve the transitions the terms aredivided by the normalized
gradient magnitude offp, g̃p. Therefore, when the gradient magnitude increases the
regularization strength is reduced at that particular location.
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Fig. 7 Illustration of labeling based on Graph-cuts using a synthetic plaque corrupted with
Rayleigh noise. Different classes (regions) are correctly labeled.

The minimization of (9) formulated in (8) is a huge optimization task performed
in the Ω NM high dimensional space whereΩ = {0,1} is the set of labels andN
and M are the dimensions of the image. In [28] it is shown that several energy
minimization problems in high dimensional discrete spacescan be efficiently solved
by use ofGraph-cuts[29]. Opportunely, the energy function given in (9) belongsto
this class of problems, for which the authors have designed avery fast and efficient
algorithm to compute the global minimum. For example, a 200×300 pixel image is
processed in 0.2 seconds in an Intel Core2 CPU at 1.83GHz with 2GB RAM, which
shows the efficiency and the short processing time of the method.

4 Experimental Results

The first result aims at investigating the adequacy of the labeling procedure to de-
tect piecewise smooth regions in synthetic ultrasound data. For this purpose, it is
used a synthetic BUS image (Fig. 7(a)) created from a plaque phantom presenting
two hypoechogenic regions (fp = 20), one low echogenic region (fp = 35) and the
echogenic foreground (fp = 50). The background is assumed to be hypoechogenic
( fp = 20). The synthetic image is corrupted with Rayleigh noise using MatLab soft-
ware. Here, the number of classes (regions with homogeneousechogenicity) to de-
tect is set to 3 and thedata termis simply the image intensities. This simple example
provides an illustration of how the Graph-cuts algorithm isable to correctly label
the different portions of the synthetic BUS image (Fig. 7(b)-Fig. 7(c)).

Furthermore, the performance of 3D reconstruction and labeling was evaluated
with a set of 100 synthetic images created as in the aforementioned example. This
image set defines a 3D VOI, as illustrated in Fig. 8(a). Each image is corrupted
with noise and interpolated, thus creating the noisy VOI shown in Fig. 8(b). After
de-speckling each image and performing 3D reconstruction,the obtained result is
shown in Fig. 8(c). Clearly, speckle has been significantly suppressed, providing a
clearer VOI where the plaque is can be easily identified. Moreover, the application
of de-speckling followed by 3D reconstruction eases the task of 3D labeling, whose
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Fig. 8 3D reconstruction and labeling using Graph-cuts from a synthetic image set.

results are shown in Fig. 8(d). In fact, the hypoechogenic regions, hypothetically
considered as definingfoci of plaque instability, are correctly identified by use of
the labeling procedure based on Graph-cuts, wherefλ = 20 in (9).

The effectiveness of the labeling procedure based on Graph-cuts for local iden-
tification of unstable sites inside the plaque is evaluated in real ultrasound data.
Three carotid plaques were reconstructed following the previously proposed method
and then locally characterized using the median andP40 estimators derived from
each reconstructed VOI,fp, that is, fν(p) and fP40(p). As mentioned, the analysis
of plaque echo-morphology, in particular the GSM (median) and P40 determines
whether (or not) a plaque is stable by using consensual thresholds given in the lit-
erature [1,2,30], which in this context corresponds tofν(p)< 32 andfP40(p)> 43.
This binary classification, based on a thresholding procedure, is very simple and can
lead to non realistic clinical results as physicians would expect to identify clusters
(regions) of vulnerability across the carotid plaques, where isolated or dispersed pix-
els (outliers) are not expected to occur. Hence, the application of a strategy such as
that based on Graph-cuts can be suitable for this particularlabeling problem since it
favors clustering. The labeling procedure based on Graph-cuts is applied by consid-
ering the 3D maps of the median andP40, fν(p) and fP40(p), and the corresponding
reference ”cut-offs”,fλ = 32 andfλ = 43, in (9).

Fig. 9 displays the labeling of potentially dangerous sitesinside the plaque using
two labeling strategies, where the first is based on thresholding and the second on
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f f

Fig. 9 Comparison of labeling strategies based on simple threshold and Graph-cuts computed from
the median andP40 3D maps of three reconstructed plaques.

Graph-cuts. It is observed that the use of Graph-cuts allowsto better discriminate
the hypoechogenic sites across the carotid plaques. Volumes labeled with Graph-
cuts appear less noisier than when the threshold method is used. This suggests that
the use of Graph-cuts may improve the characterization of carotid plaques, namely
by providing a more appropriate identification and definition of unstable regions
across the plaque. This result can be clinically meaningfulsince as reported in [1]
the degree of extension of these unstable regions and their location throughout the
plaque should be considered and used as markers of risk of plaque rupture and thus
of stroke risk.
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Fig. 10 Potential application of the algorithm: (a) Identification of hypoechogenic sites, using the
local median parameter; (b) Inspection and quantification of a representative vulnerable region
detected inside the plaque; (c) Gray-scale mapping of plaque texture, using the local standard
deviation parameter;

Fig. 10 depicts a potential application of the reconstruction and labeling algo-
rithms in the scope of 3D plaque analysis with ultrasound. First, regions of hy-
poechogenicity are identified by use of the local median estimator, fν(p)), and the
Graph-cuts labeling strategy (Fig. 10(a)). Fig. 10(b) illustrates a potential applica-
tion of the characterization algorithm based on the inspection of a region which was
identified by the algorithm as being more vulnerable. This region can be extracted,
its location inside the plaque can be tracked and its volume can be computed to
assess the ratio of its occupation related to the whole plaque.

Moreover, Fig. 10(c) shows results of plaque texture, basedon the standard devi-
ation estimator which is computed asfσ (p) = 4−π

2 f 2
p [30], providing a gray-scaled

indicator of plaque heterogeneity. Regions resulting fromthe combination of the
previous results are thought to be the most important foci ofplaque rupture.

The 3D approach provides the visualization of an unlimited number of cross-
sectional cuts of the plaque which naturally eases the analysis of its echo-morphology
contents and surface regularity (Fig. 10(d)).



16 Jośe Seabra, Jasjit S. Suri and J. Miguel Sanches

5 Conclusions

The assessment of plaque morphology, echogenicity and texture is considered to be
critical for an accurate diagnosis of atherosclerotic disease. 2D ultrasound has so far
been the preferred imaging technique because it is non-invasive, inexpensive and
portable. This chapter proposes an extension to the traditional characterization of
plaques using a 3D approach. This strategy provides a more complete and objec-
tive description of lesion severity because it considers all the information enclosed
in the plaque anatomical volume without depending on a subjective selection of a
particular image for diagnosis.

Two distinct data acquisition systems developed for 3D ultrasound, either robotic
arm and free-hand based, are proposed to obtain a set of cutting planes of the carotid
plaque acquired at a high sampling rate and in virtually any arbitrary orientation.

Moreover, the VOI containing the plaque is obtained in two steps, where the first
uses the proposed de-speckling algorithm applied to each image of the acquired
data sequence and the second considers a reconstruction step. The application of
such procedure provides a description of plaque echogenicity and texture in terms of
3D maps of local estimators obtained from the Rayleigh distribution. Consequently,
plaque analysis can be performed on a global sense, where theaverage values of
Rayleigh descriptors are computed, or on a local basis.

The latter approach is crucial from a clinical perspective because it potentially
allows the identification of sources of plaque rupture. To tackle this problem, a la-
beling method is introduced using an efficient method based on Graph-cuts. Such
labeling procedure improves the segmentation of potentialfoci of instability across
the plaque because it is robust to the presence of noise and favors clustering. Results
of local labeling using synthetic and real data show that this strategy outperforms
the method based on simple thresholding.

Hence, an entire 3D ultrasound-based framework was introduced, from data ac-
quisition, reconstruction to its analysis, providing a more complete and objective
characterization of carotid plaques. This study presents encouraging and meaning-
ful results in terms of plaque inspection, quantification and local characterization of
plaque echo-morphology.
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18 Jośe Seabra, Jasjit S. Suri and J. Miguel Sanches

21. E. Bullitt and S.R. Aylward. Volume rendering of segmented image objects.IEEE Transac-
tions on Medical Imaging, 21(8):998–1002, 2002.

22. C. Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image
Processing, 7(3), Mar 1998.

23. J.C. Seabra, L.M. Pedro, J. Fernandes e Fernandes, and J.M. Sanches. A 3D Ultrasound-Based
Framework to Characterize the Echo-Morphology of Carotid Plaques.IEEE Transactions on
Biomedical Engineering, 56(5):1442–1453, May 2009.

24. J. Seabra, J. Xavier, and J. Sanches. Convex ultrasound image reconstruction with log-
euclidean priors. InProceedings of IEEE International Conference on Engineeringin
Medicine and Biology, pages 435–438, Vancouver, Canada, Aug 2008. IEEE Engineering in
Medicine and Biology Society.

25. T. Eltoft. Modeling the amplitude statistics of ultrasonic images. IEEE Transactions on
Medical Imaging, 25(2):229–240, Feb 2006. Comparative Study.

26. M. Abramowitz and I.A. Stegun.Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. Dover, New York, ninth dover printing, tenth gpo printing
edition, 1964.

27. N.M. El-Barghouty, T. Levine, S. Ladva, A. Flanagan, andA. Nicolaides. Histological verifi-
cation of computerised carotid plaque characterisation.Eur J Vasc Endovasc Surg., 11(4):414–
416, 1996.

28. V. Kolmogorov and R. Zabih. What energy functions can be minimizedvia graph cuts?IEEE
Trans. Pattern Anal. Mach. Intell., 26(2):147–159, 2004.

29. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energyminimization via graph cuts.
IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001.

30. L.V. Baroncini, A.P. Filho, L. Junior, A.R. Martins, and S.G. Ramos. Ultrasonic tissue char-
acterization of vulnerable carotid plaque: correlation between videodensitometric method and
histological examination.Cardiovascular Ultrasound, 4:32, 2006. Comparative Study.


