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Abstract This chapter describes a method to estimate/recover the ultrasound RF
envelope signal from the observed B-mode images by taking into account the main
operations usually performed by the ultrasound scanner in the acquisition process.
The proposed method assumes a Rayleigh distribution for theRF signal and a non
linear logarithmic law, depending on unknown parameters, to model the compres-
sion procedure performed by the scanner used to to improve the visualization of the
data.
The goal of the proposed method is to estimate the parametersof the compression
law, depending on the specific brightness and contrast adjustments performed by the
operator during the acquisition process, in order to revertthe process.
The method provides an accurate observation model which allows to design robust
and effective despeckling/reconstruction methods for morphological and textural
analysis of Ultrasound data to be used inComputer Aided Dagnosis (CAD) appli-
cations.
Numerous simulations with synthetic and real data, acquired under different condi-
tions and from different tissues, show the robustness of themethod and the validity
of the adopted observation model to describe the acquisition process implemented
in the conventional ultrasound scanners.
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2 Jośe Seabra and J. Miguel Sanches

1 Introduction

Ultrasound statistical-based image processing for denoising, segmentation and tis-
sue characterization is an attractive field of research nowadays [1–3] and may posi-
tively influence some diagnostic decisions in the near future.

It is widely recognized that speckle in B-mode Ultrasound (BUS) images arises
from the coherent interaction of random scatterers within aresolution cell when a
certain anatomical region is scanned. The common model for speckle formation as-
sumes a large number of scatterers where the sum of signals may be formulated
according to a typical phasors random walk process [4]. Thiscondition, known
as fully developed speckle, determines Rayleigh statistics for theEnvelope Radio-
Frequency (ERF) data [5]. In addition, different non-linear processing operators are
used to improve the visualization of the displayed image, here termed B-mode im-
age. In particular, the amplitude of the ERF signal is logarithmically compressed
and non-linearly processed so that a larger dynamic range ofweak to strong echoes
can be represented in the same image.

The compressed data, typically acquired in a polar grid, is in turn interpolated and
down-sampled in order to convert it to a Cartesian grid that is more appropriated
for visualization in the rectangular monitors of the scanners. Finally, in a clinical
setting, physicians typically adjust other parameters such as brightness and contrast
to improve image visualization.

Many research work has been developed for speckle reductionaiming at provid-
ing clearer images for visualization [6]. However, very fewapproaches either focus-
ing on speckle reduction or tissue classification take into account the pre-processing
operations used to create the BUS images [7,8]. Studies based on image processing
from BUS images naturally need to follow a rigorous acquisition protocol, other-
wise results will be non-reproducible and non-comparable since they will depend
on the kind of ultrasound equipment and on each specific operating conditions. To
avoid these difficulties some researchers [9–11] use the RF signal extracted directly
from the ultrasound machine. However, this kind of data is not usually available at
the scanners and is only provided for research purposes. In fact, besides the previous
referred transformations of re-sampling, coordinate transformation and logarithmic
compression (cf. Fig. 1), the B-mode observed images are theresult of other propri-
etary nonlinear mappings specific of each scanner that is usually not known and not
documented .

In this chapter we show that, despite the lack of knowledge about the complete
processing operations performed in the scanner, it is possible to revert the com-
pression operation and compensate for the contrast and brightness adjustments per-
formed by the operator during the exam. The interpolation isalso addressed. The
estimatedLog-Compression Law (LCL) is able to provide an image more compati-
ble with the physics of the image formation process than the B-mode one that may
be used to design more accurate and effective denoised algorithms.

The remainder of this chapter is organized as follows. In Section 2 it is made a
review of the most relevant work published about ultrasoundimage decompression
and estimation of operating settings over the last years. Section 3 formulates the
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Log-Compression model and describes the statistics associated with the compressed
image. In addition, simulations of the most significant operations affecting the sta-
tistical properties of the original data are shown and some observations are drawn
about the way the shape of the distributions are affected. Subsequently, Section 4
details the method to estimate the parameters of the compression law, specifically
the contrast ( ˆa) and brightness (b̂) parameters. Section 5 first tests the effectiveness
of estimating the decompression parameters with the proposed method using syn-
thetic ultrasound data. To further investigate how realistic the proposed model is,
the decompression method is applied to a real BUS image, fromwhich the raw data
is known, and comparison between original and estimated data is made.

The robustness of the decompression method is also evaluated using real images
acquired under different operating conditions and a detailed interpretation of the ob-
tained results is performed. Finally,Goodness of Fit (GoF) [12] tests are conducted
in estimated ERF images to sustain the hypothesis that most envelope RF data can
be well modeled by Rayleigh statistics. Section 6 concludesthe study about decom-
pression and envelope RF estimation from BUS data.

2 Related work

A considerable amount of work dedicated to speckle suppression and tissue charac-
terization relies on accurate statistical models for RF data. Such models albeit being
ideally and robustly tailored to describe the envelope datain different conditions
throughout the image, are not feasible and practical because RF data is usually not
available. Thus, there is a need to develop realistic observation models that incor-
porate the most significant nonlinear processing operations affecting the envelope
data, when only BUS images are provided. In order to compute the RF intensity sig-
nal it becomes crucial to (i) explain the statistics of the compressed signal and (ii)
invert the logarithmic compression and other nonlinear signal processing performed
by the ultrasound machine. Commercial ultrasound scannersperform a set of op-
erations on the RF signal, e.g. log-compression and interpolation [13], that change
the statistical distribution of the complex raw RF signal which is no longerCircular
Symmetric Complex Gaussian (CSCG) [14] and, therefore, the Rayleigh statistics
of the ERF signal are no longer valid.

Seminal work conducted in [7,15,16] have addressed the analytic study of log
compressed Rayleigh signals in medical ultrasound images.From thereon, several
decompression strategies were developed aiming at estimating some of the non-
linear processing parameters [17–19] or providing an estimate of the envelope RF
data [8,20,21]. In order to compute the ERF intensity signal, the logarithmic com-
pression and other nonlinear operations must be inverted. Acommon model for the
compression law used in the literature is the following

IBUS = a log(IERF)+b, (1)
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wherea andb are unknown parameters. The work developed in [20] demonstrated
that such mapping is able to approximately invert the compression algorithms em-
ployed by a number of different ultrasound machine manufacturers, given that the
parameters are originally known. The additive parameter,b, does not affect the shape
of th statistics used to speckle because it only shifts the the distribution function
which does not happen with the gain parametera. The study developed by Crawford
et al. [20] proposed a systematic method to compensate for nonlinear amplification
based on several measurements based on a calibrated phantom, while the study re-
ported by Kaplanet al. [15] requires accessing the data before processing which is
not feasible in most commercial machines.

The work from Prageret al. [8] introduced the fractional moments iterative algo-
rithm for recovering the envelope intensity signal from B-Mode data using speckle
patches. In such patches, where fully developed speckle holds, the envelope inten-
sity signal,Yp, can be estimated by inverting the compression mapping,

Yp = exp

(

Zp

a

)

, (2)

whereZp is the B-Mode intensity on a given patch,p. According to [5],Yp follows
approximately an exponential distribution,

p(Yp) =
1

2σ2 exp

(−Yp

2σ2

)

, (3)

where thenth order moment is given by [22],

〈Yn
p〉= (2σ2)nΓ (n+1) = 〈Yp〉nΓ (n+1) (4)

whereΓ (n) is the Gamma function. Therefore, the normalized moments are,

〈Yn
p〉

〈Yp〉n = Γ (n+1). (5)

This approach [8] compares the measured normalized momentson known speckle
patches,Yp, with the theoretical expected values for an exponential distribution. The
optimal value of the contrast parameter,a, can then be found by minimizing the dif-
ference between these two set of values. This algorithm produces similar results
to the faster approach proposed in [15] for pure logarithmiccompression, but also
works in the presence of nonlinear mapping where the Kaplan [15] formula does
not apply.

A more recent work presented by Marqueset al. [21] and used in a 3D US recon-
struction problem enables to model the nonlinear compression considering that the
ERF data is Rayleigh distributed. The estimation of the log compression parameters
is simultaneously performed with the image reconstructionprocedure by optimiz-
ing the same objective function (PDF of the unknown parameters). Such parameters
are obtained by considering the theoretical expressions for the mean and standard
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“probe” “display”

Fig. 1 Block diagram of the generic processing operations of an ultrasound imaging system.

deviation of the Fisher-Tippet distribution [22] early demonstrated to be a feasible
model for the compressed data [7].

Although the estimator ofb has shown to be biased, this work presented promis-
ing results particularly in terms of image reconstruction.It has been shown that the
reconstruction algorithm performs better when compensation is considered. The es-
timated images and profiles obtained by compensating the logcompressed images
are sharper, presenting a larger dynamic range, and the anatomical details are more
clearly visible when compared with those obtained assumingno compression.

3 Log-Compression Model

Fig. 1 depicts the processing block diagram of a generic ultrasound imaging system,
including the most significant operations performed on the RF signal generated by
the ultrasound probe: (i) interpolation and grid geometry conversion, from polar to
rectangular to appropriate image display, (ii) logarithmic compression, used to re-
duce the dynamic range of the input echo signal to match the smaller dynamic range
of the display device and to accentuate objects with weak backscatter [13], (iii) con-
trast,a and (iv) brightness,b adjustments. Some equipments perform an automatic
adjustment of the parametersa andb which can further be tuned by the operator to
improve image visualization in each specific exam. The modeldisplayed in Fig. 1,
illustrating theLog-Compressed Law, allows to simulate the generic processing op-
erations of the ultrasound equipment, and to recover, whenever the original raw data
is not available, an estimate of the ERF image.

As shown in the section of experimental results and confirmedby the literature [],
the interpolated data is better described by a Gamma distribution than by a Rayleigh
one. However, the results displayed also show only a marginal improvement of the
Gamma distribution with respect to the Rayleigh model, mainly at the transitions.
Therefore, here, the interpolation is not taken into account in the designing of the
ERF estimation algorithm.

The Log-Compression model (LCM) described in this section assumes a fully
developed speckle noise formation model to describe the ERFimage formation pro-
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Fig. 2 BUS image formation model, starting from a phantom object (a). The method for generating
synthetic BUS images includes corruption with Rayleigh noise (b), interpolation (c) and applica-
tion of the LCL (d). Probability densities inky andki

y, andkz when the parametersa (e) andb (f)
are made variable.

cess. This condition is valid when images are reasonably homogeneous and do not
show high intensity scattering sites. Under these assumptions the ERF signal inten-
sity can be described by a Rayleigh distribution [23], whoseparameters,Σ = {σi, j},
associated with each pixel intensity of the ERF image,yi, j, are related to the tissue
acoustic properties [24] at the corresponding location,xi, j.

Let Z = {zi, j} be aN ×M BUS image corrupted by speckle where each pixel is
generated according to the following LCL,

zi, j = a log(yi, j +1)+b, (6)

where(a,b) are unknown parameters used to model the contrast and brightness of
the observed image, respectively. In the assumption of fully developed speckle the
pixels of the ERF image,Y = {yi, j}, are Rayleigh distributed [25]
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p(yi, j) =
yi, j

σ2
i, j

exp

(

−
y2

i, j

2σ2
i, j

)

, (7)

whereσi, j is the parameter of the distribution to be estimated. Consequently, the

distribution of the observed pixels,zi, j, given byp(z) =
∣

∣

∣

dy
dz

∣

∣

∣
p(y) [14] corresponds

to

p(zi, j) =
yi, j(yi, j +1)

aσ2
i, j

exp

(

−
y2

i, j

2σ2
i, j

)

. (8)

Fig. 2(a)-Fig. 2(d) simulate the BUS image formation process. The pixel inten-
sities of the noisy image, displayed in Fig. 2(b), were generated from Rayleigh dis-
tributions with parameters corresponding to the pixel intensities of the phantom
displayed in Fig. 2(a). To illustrate how the most relevant operations performed by
the ultrasound scanner affect the statistical properties of the ERF signal the fol-
lowing simulations are performed. The noisy image is first interpolated and then
compressed according to (6) and the final result, displayed in Fig. 2(d), represents a
typical image obtained with ultrasound equipment.

Fig. 2(e)-Fig. 2(f) present the shape of the data distribution throughout the pro-
cessing operations for different contrast and brightness parameters used in (6). In
general, the transformed image is significantly different from the original data from
both statistical (histogram) and visual appearance pointsof view.

Only in the case of the interpolation operation the differences are not very rele-
vant. The histogram of the independent Rayleigh distributed pixels inside the win-
dow ky (see Fig. 2(b)) is not significantly different from the histogram of pixels
inside the windowki

y (see Fig. 2(b)). See both histograms displayed in Fig. 2(e).
The effect of the interpolation operation is mainly low passfiltering the data

leading to a slight reduction on the intensity variance of the transformed image.
Variations on the brightness parameter,b, shift the distribution of the transform data
along the grey-scale axis, as shown in (Fig. 2(e)). Moreover, as expected, the dy-
namic range parameter,a, produces the effect of compressing or stretching the dis-
tribution asa decreases or increases, respectively (Fig. 2(f)).

In the next section the estimation procedure to estimate theparametersa andb
form (6) is described in order to decompress the data and estimate the unobserved
ERF image,yi, j, from the observed ultrasound B-mode one,zi, j, by using the trans-
formation

yi, j = exp

(

zi, j − b̂

â

)

−1, (9)

where(â, b̂) are the estimated contrast and brightness parameters.
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4 Estimation of Decompression Parameters

This method described here to estimate theLog-Compression parameters in (6) is
an improved version of the method described in [21].

The estimation of the compression parameters(a,b) would be easier if the
Rayleigh parameter,σi, j, was known. However, it is not known and varies across
the image.

Let us approximate (9) byy ≈ exp
(

z−b
a

)

, the distribution (8) can be written as
follows

p(z) =
2
a

exp(−θ −exp(−θ)) , (10)

whereθ = log(2σ2)−2
z−b

a
. Equation (10) defines theFisher-Tippet distribution

[22], also known as double exponential. The mean and standard deviation (SD) of
this distribution are:

µz =
a
2
[log(2σ2)− γ ]+b, (11)

σz = π a/
√

24, (12)

whereγ = 0.5772... is the Euler-Mascheroni constant.
To overcome the difficulty associated with the lack of knowledge ofσi, j let now

consider smalln×m windows,wi, j, centered at each pixel(i, j). The distribution
parametersσk,l within these small windows are assumed constant and equal tothe
parameter of the corresponding center pixel,σi, j, to be estimated.

If ai, j is assumed constant inside the small windowwi, j it can be easily derived
from (12)

âi, j =
√

24
σzi, j

π
, (13)

whereσzi, j is the samdard deviation of the observations inside the small window wi, j

The parametera, which is considered constant across the image, is estimated by
averaging the parameters ˆai, j:

â =
1

NM

N,M

∑
i, j=1

âi, j. (14)

The estimation process ofb is more challenging than the estimation ofa, thus
requiring a more elaborated and complex procedure. Let us consider the set ofn×
m = L unknown non compressed pixelsy = {yk,l} inside the windowwi, j as being
independent and identically Rayleigh distributed with parameterσi, j

p(yk,l |σi, j) =
yk,l

σ2
i, j

exp

(

−
y2

k,l

2σ2
i, j

)

. (15)
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As shown in [21], the distribution of the minimum ofy, t = min(y), is also
Rayleigh distributed with parameterσ2

i, j/L

p(t|σ) =
t

σ2
i, j/L

exp

(

− t2

2σ2
i, j/L

)

. (16)

The minimum of the observed pixels inside the windowwi, j, z = {zk,l} where
zk,l = a log(yk,l +1)+b, is

s = min(z) = a log(min(y)+1)+b (17)

= a log(t +1)+b,

which means

b = s−a log(t +1). (18)

The distribution ofb, computed byp(b|s,σi, j) = |dt/db|p(t|σi, j), is therefore
given by

p(b|s,σi, j) =
L

aσ2
i, j

t(t +1)exp

(

− L

2σ2
i, j

t2

)

, (19)

wheret = exp
(

s−b
a

)

− 1. σi, j, the distribution parameter associated with the(i, j)
pixel, is not known neither constant across the image. However, if it is considered
constant inside the small windowwi, j a local estimation ofb is possible to derive.
Sincey is assumed Rayleigh distributed an appropriated approximation for σi, j is

σ̃i, j =

√

1
2nm ∑

k,l

ỹ2
k,l (20)

where

ỹk,l = exp

(

zk,l − b̃

a

)

−1, (21)

and

b̃ = min(z) (22)

Sinceb is not knownb̃ ≈ b is used in (21) instead ofb. As it will be shown in the
section of experimental results this approximation is valid.

Let b̂i, j be the estimated value ofb, computed from the pixels within the small
window wi, j. Its value is nothing more than the expected value ofb with respect to
the distribution (19) with the parameter computed in (20),
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b̂i, j =

∫ ∞

−∞
bi, j p(bi, j|s, σ̃i, j)dbi, j. (23)

The closed form solution of (23) is difficult to compute and a numeric approach
is adopted, such that:

b̂i, j =
L

∑
k=1

bi, j(k)p(bi, j(k)|s, σ̃i, j), (24)

wherebi, j(k) = k s/(L−1),k = 0,1, ...,L−1 areL uniformly distributed values in
the interval[0,s], since it is assumed thatb ≥ 0 and from (18),b ≤ s.

The global value ofb, once again, is obtained by averaging the estimatedb̂i, j:

b̂ =
1

NM

N,M

∑
i, j=1

b̂i, j. (25)

The estimated parameters(â, b̂) are then used to revert the Log-compression per-
formed by the ultrasound equipment in order to recover the original RF signal:

yi, j = exp

(

zi, j − b̂

â

)

−1, (26)

which is assumed, in the remainder of this chapter, to be Rayleigh distributed.

5 Experimental Results

In this section, different results are presented aiming to assess the performance of
the proposed method. First, the accuracy on the decompression parameters(a,b)
estimation procedure is computed by using synthetic ultrasound data. The validity
of the decompression method is also assessed by using real data. A comparison is
made between the original ERF image, obtained from raw data,and the estimated
ERF image, obtained from the BUS image.

In addition, the adequacy and robustness of the ERF image retrieval method is
investigated in the real case using two sets of experiments,including the applica-
tion of the decompression method in (i) different BUS imagesacquired with fixed
brightness and contrast parameters and (ii) static BUS images acquired with variable
operating parameters.

Finally, GoF tests with Rayleigh and Gamma distributions are conducted in es-
timated ERF images which enables to support the hypothesis that most envelope
RF data can be well modeled by these two distributions. The interpretation of the
obtained results suggest the use of the simpler Rayleigh distribution to decompress
that data.
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(a) Uniform Phantom

(b) Shepp-Logan Phantom Phantom

Fig. 3 Estimation of the decompression parameters using Monte Carlo tests. Performance is as-
sessed by computing the mean and SD of ( ˆa,b̂) in simulated log compressed images of a noisy
uniform image created with Rayleigh parameters (a) and noisy Shepp-Logan phantom (b).

The decompression method is initially tested in synthetic data by using Monte
Carlo tests. Particularly, in this experiment it is intended to assessed the estimation
accuracy of the decompression parameters,(a,b), for different images and amounts
of noise. For each pair of decompression parameters 50 MonteCarlo runs were per-
formed. In each run, two different types of synthetic imagesare used to revert the
compression method and estimate the parameters(â, b̂), uniform and non uniform
Three uniform synthetic images are corrupted with Rayleighnoise with parameters
σ2 = {102,103,5 ·103}. The non uniform image is the Shepp-Logan phantom also
corrupted by the same three different amounts of noise used with the uniform phan-
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Fig. 4 Application of the RF image retrieval (decompression) method to aBUS image representing
a coronary artery. PDFs of the BUS, original ERF and estimated ERF images, extracted from a
given ROI.

toms. In both cases the noisy images are interpolated and log-compressed according
with (6).

Fig. 3 presents the average and SD of the 50 estimated decompression parame-
ters,(â, b̂), obtained for each true pair(a,b), by using the first phantom (Fig. 3(a))
and the non-uniform Shepp-Logan phantom (Fig. 3(b)).

Similar results are obtained in both cases which suggests that the decompression
method has similar behavior for uniform and non-uniform images, and its perfor-
mance is apparently independent on the severity of speckle noise contamination.
The later conclusion is confirmed in Fig. 3(a) where the observed results do not
depend on the value of the Rayleigh parameterσ used to generate the noisy image.

In general, the estimation ˆa is non biased and its SD increase mainly witha0 (see
Fig. 3(a)-Fig. 3(b), top left). The variability of ˆa tends to be less significant asb in-
creases (see Fig. 3(a)-Fig. 3(b), bottom left). The averagevalues of the uncertainties
associated with ˆa, SD(â)/a0, are: 0.54%, 0.60% and 0.60% for the uniform image
with σ2 = 100,1000 and 5000, respectively, and 0.61% for the non-uniform image.
As far as the ratioSD(â)/a is concerned, the uncertainty associated with ˆa is almost
residual.

The estimation ofb, b̂, is also non biased (see Fig.3(a)-Fig. 3(b), top right). In
particular, the average values of the uncertainties associated withb̂, SD(b̂)/b, are:
2.4%, 2.4% and 2.4% for the uniform image withσ2 = 100,1000 and 5000, respec-
tively, and 2.3% for the non-uniform image. The uncertainty associated with the
decompression parameterb̂ increases linearly witha. In fact, this behavior is simi-
lar to the one obtained for ˆa, except for very small values ofa, where the uncertainty
aboutb̂ increases withb (see Fig. 3(a)-Fig.3(b), bottom right).

The method here proposed is able to invert the compression operations when
synthetic images are given. Moreover, it is important to study the feasibility of the
method when raw data is provided by the manufacturer. Noticethat the challenge of
decompression from BUS images is only raised because raw data is generally not
available in a clinical setting, thus limiting the application of algorithms which are
based on statistical modeling of speckle or RF data.
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Fig. 5 Application of the decompression method to different sets of images acquired from different
tissues using fixed operating conditions.

Hence, in this study it was used an IVUS BUS image corresponding to a cut of the
coronary artery (Fig. 4(a)) together with the RF image obtained from raw RF data,
obtained with specialized equipment (Galaxy II IVUS Imaging System, Boston Sci-
entific, Natick, MA, United States). The RF image retrieval(decompression) method
is applied to the BUS image, resulting in an estimate of the envelope data, the ˆERF
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Fig. 6 (Left side) Data histograms extracted from regions of interest in the estimated ERF images,
shown in Fig. 5. (Right side) Decompression parameters.

image. As shown in Fig. 4(b), the statistical properties of the original and estimated
ERF images are closely similar. This observation supports the adequacy of the pro-
posed method to provide an estimate of the envelope RF data which resembles the
original one.

So far the decompression method was validated using an IVUS image from
which the raw data was known. Moreover, it is also pertinent to investigate the ro-
bustness of the method according to different acquisition settings and scenarios. To
this purpose, the RF image retrieval method is tested under two different conditions:
first, by changing the probe position and keeping the operating parameters constant,
and second by maintaining the probe steady and varying the contrast and brightness
parameters.
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Fig. 7 Application of the decompression method to sets of images acquiredfrom different tissues,
acquired with a steady probe and variable operating parameters.

Fig. 5(a)-Fig. 5(c) presents results of the application of the decompression
method proposed in this chapter. In particular, three imagesets were acquired for
different anatomical structures/tissues by slightly changing the probe position be-
tween each image acquisition. For each set of RF estimated images, a homogeneous
region was selected and its intensity histogram computed asshown in Fig. 6(a)-
Fig. 6(c)(left). These results show that the statistical properties of the estimated RF
images are comparable, suggesting that the decompression method is robust to small
changes in image appearance. The decompression parametersfrom each image set
are depicted in Fig. 6(a)-Fig. 6(c) (right). The SDs for ˆa and b̂ are (3.83;2.97),
(4.26;2.01) and (1.96;1.80), respectively for each set of decompressed images,
which shows that the uncertainty about the estimated LCL parameters is low in
different imaging conditions.

As previously mentioned, the second experiment consisted in acquiring a series
of BUS images by keeping the probe steady and varying the operating parameters.
Results of the application of the decompression method in two different image sets
are shown in Fig. 7. In terms of grey-scale image appearance,the obtained ERF
images present similar dynamic range and brightness. Histogram analysis of data
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Fig. 8 (Left side) Data histograms extracted from regions of interest in the estimated ERF im-
ages, shown in Fig. 7. (Right side) Decompression parameters estimated with proposed method vs.
machine operating settings.

extracted from homogeneous regions in such images (Fig. 8(a)-Fig. 8(b) on the left)
suggests similar statistical properties among the estimated ERF images. A com-
parison between the contrast and brightness parameters given by the US scanner
with the estimated decompression parameters is given in Fig. 8(a)-Fig. 8(b) on the
right. Although a numerical comparison is naturally unfeasible because the equip-
ment’s settings may not directly correspond to the values assigned to the operating
parameters being estimated, it is pertinent to investigatehow the estimated param-
eters change with respect to the original settings of the machine. Considering the
estimated parameters ˆa these appear to change approximately in inverse proportion
with respect to the original dynamic range settingsa. Moreover, the estimated pa-
rametersb̂ vary roughly in direct proportion according to the originallinear gain
settingsb. These results support the ability of the proposed method toestimate the
decompression parameters, evoking a similarity association between these values
and the settings defined with the ultrasound equipment.

Results aiming at assessing the adequacy and robustness of the proposed decom-
pression method in the aforementioned real cases are detailed in Table 1. Besides the
decompression parameters obtained for each image of the data set, it is also shown
the Kullback-Leibler distance [26] of each distribution with respect to the first dis-
tribution of each set. Observations taken from Table 1 support, from a quantitative
point of view, the robustness of the decompression method inestimating precisely
the decompression parameters and the ERF images.

It is relevant to investigate whether the assumptions made initially about the ad-
equacy of the Rayleigh distribution to model the pixel intensities in ERF images are
realistic or not. It is known that the assumption of fully developed speckle deter-
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BUS ERF

(a) Liver

(b) Carotid plaque

Fig. 9 Application of the decompression method to BUS image of the liver (a) and carotid plaque
(b). The plaque contour is marked for ease of visualization.

mines Rayleigh statistics for the amplitude of the envelopeRF data, although the
Gamma distributions seems to provide a better approximation [27,28], mainly when
interpolation is involved, which is the case.

Hence, the purpose of the study presented in Fig. 10 is to investigate whether
the Rayleigh and Gamma distributions are capable of locallydescribing the esti-
mated ERF images (Fig. 9). Given this, theMaximum Likelihood (ML) estimates

Table 1 Decompression parameters(â, b̂) and Kullback-Leibler distances computed from ERF
data histograms, as result of the application of the RF image retrieval under two different conditions
(constant and variable operating parameters).

Parameters ID Thyroid cross-section Thyroid longitudinal Liver
â b̂ dKL(h1,hID) â b̂ dKL(h1,hID) â b̂ dKL(h1,hID)

Constant

RF1 35.71 7.05 − 24.65 5.07 − 46.09 3.91 −
RF2 35.64 1.14 −1.61 24.04 2.10 0.02 46.22 4.98 −0.01
RF3 30.14 1.13 0.26 28.30 1.85 0.01 42.12 2.92 2.62
RF4 39.60 1.08 −0.84 33.30 0.22 −0.28 47.04 5.04 0.42
RF5 43.64 4.95 1.72
RF6 47.10 1.02 0.25

Variable

RF1 57.17 3.18 − 34.09 10.22 −
RF2 44.20 7.38 2.40 23.41 10.09 0.11
RF3 40.02 10.32 2.10 36.35 0.02 3.28
RF4 12.60 0.28 4.02 17.88 7.55 0.81
RF5 34.07 14.15 5.01 22.23 12.90 1.02
RF6 30.26 20.89 1.27
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Fig. 10 Color-scaled maps of the GoF test when the data is locally compared with ML Rayleigh
distribution (left), Gamma distribution (middle). GoF map associated with the local comparison
between ML Rayleigh and Gamma local distributions (right).

of the Rayleigh and Gamma distribution were computed locally for each image.
This computation is done in 8× 8 sliding blocks with 2× 2 overlapping borders,
throughout the images. For each block the probability density functions (PDFs) are
computed according to the ML-based Rayleigh and Gamma estimates. Moreover, a
correlation coefficient measure is computed to compare eachdistribution with the
data histogram, given by:

ρxy =
δxy

σxσy
, (27)

whereδxy is the covariance matrix of the mentioned PDFs andσx andσy are their
standard deviations. When the correlation coefficient,ρxy, is 1 it means the distri-
bution under investigation (either Rayleigh or Gamma) perfectly models the local
data. Fig. 10 consists of color-scaled GoF maps, including the local comparison of
ERF data vs. ML estimated Rayleigh distribution (Fig. 10(a)), ERF data vs. ML
estimated Gamma distribution (Fig. 10(b)) and finally, Rayleigh vs. Gamma distri-
bution (Fig. 10(c)).

In both cases, the Gamma distribution is able to better describe the data when
compared to the Rayleigh distribution. An interesting observation is that the Rayleigh
distribution provides a good description of the data in a very significant part of
the images, essentially where strong scattering phenomenado not occur. Moreover,
when the local comparison between the Gamma and Rayleigh distributions is car-
ried out, it is observed that in most regions of the studied images, the Rayleigh
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distribution closely approaches the Gamma distribution. The only exceptions occur
in regions of substantial echogenicity, where the Gamma distribution is more suit-
able to describe the data. These results validate the adopted decision of not include
in the proposed decompression method the interpolation operation. This operation
is the source of the Gamma distribution, but as it was confirmed in this last compar-
ison study, the simpler Rayleigh distribution is able to describe the data in almost
all regions of the images but at the transitions.

6 Conclusions

Standard ultrasound equipment performs nonlinear compression of the envelope
data thus changing some of its attractive statistical properties.

This chapter proposes a statistical model for log-compressed BUS data which
allows to parameterize the most significant operating settings of ultrasound equip-
ments and revert the nonlinear compression, providing an estimate of ERF data. The
estimated envelope intensity can be used by a variety of algorithms that rely on the
statistics of the ultrasound signal. These include segmentation and speckle tracking
algorithms, speckle reduction methods (proposed in the next chapter), tissue classi-
fication methods, etc.

The method here presented relies on statistics of the compressed signal, which
follows a double-exponential distribution and makes use ofa realistic mapping func-
tion, designated as Log-Compression law, first proposed in [20] which is able to
provide an estimate of the ERF image given that parameters related to dynamic
range and linear gain are known. The decompression method makes use of this prior
knowledge to accurately estimate such parameters and recover the ERF image.

Experiments performed in synthetic and real data show the accuracy of the esti-
mates obtained for the decompression parameters. Moreover, this method is robust
because it is able to provide similar outcomes for images acquired with different
operating settings. On the other hand, similar decompression parameters were ob-
tained for different images acquired with fixed operating settings.

The Rayleigh distribution has shown to correctly describe the ERF estimated
data which has important consequences in the assumptions made for designing the
decompression method presented in this chapter.

Finally, a study recently presented in [29] compared the compression parame-
ter estimation of the well-established method proposed in [7,8] with the approach
described in this chapter, observing that the later provides better results in terms
of parameter estimation accuracy. As pointed out in [29] this could be explained
as the decompression method proposed in this chapter is based on the statistics
for the compressed signal, while the approach presented in [7,8] uses statistics for
the uncompressed signal, and attempts to match theoretically calculated normalized
moments with those determined directly from the image. The process of fitting the
moments calculated in the image with theoretical moments ofthe exponential dis-
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tribution (cf. [8]) is extremely sensitive to the order of the momentn, and this could
create uncertainty on the decompression parameter to be estimated.
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