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Rayleigh Mixture Model for Plaque Characterization
in Intravascular Ultrasound
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Abstract—Vulnerable plaques are the major cause of carotid
and coronary vascular problems, such as heart attack or stroke. A
correct modeling of plaque echomorphology and composition can
help the identification of such lesions. The Rayleigh distribution is
widely used to describe (nearly) homogeneous areas in ultrasound
images. Since plaques may contain tissues with heterogeneous re-
gions, more complex distributions depending on multiple parame-
ters are usually needed, such as Rice, K or Nakagami distributions.
In such cases, the problem formulation becomes more complex, and
the optimization procedure to estimate the plaque echomorphology
is more difficult. Here, we propose to model the tissue echomor-
phology by means of a mixture of Rayleigh distributions, known
as the Rayleigh mixture model (RMM). The problem formulation
is still simple, but its ability to describe complex textural patterns
is very powerful. In this paper, we present a method for the au-
tomatic estimation of the RMM mixture parameters by means of
the expectation maximization algorithm, which aims at character-
izing tissue echomorphology in ultrasound (US). The performance
of the proposed model is evaluated with a database of in vitro in-
travascular US cases. We show that the mixture coefficients and
Rayleigh parameters explicitly derived from the mixture model
are able to accurately describe different plaque types and to sig-
nificantly improve the characterization performance of an already
existing methodology.

Index Terms—Echomorphology, intravascular ultrasound
(IVUS), plaque characterization, Rayleigh mixture model (RMM),
vulnerable plaque.
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Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal (e-mail:
jmrs@isr.ist.utl.pt).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2011.2106498

I. INTRODUCTION

VULNERABLE plaques are lesions presenting high risk
of rupture, possibly leading to brain stroke or heart at-

tack [1]. Although vulnerable plaque is a concept well accepted
as a clinical entity with potential harmful consequences, from
the point of view of its echomorphology and pathological evo-
lution, it is not yet well understood. Hence, it is important to
objectively characterize the plaque echomorphology to identify
this kind of lesions, thus, allowing the development or refine-
ment of methods for risk prediction and potentially suggesting
different therapies.

In medical ultrasound (US), a transmitted ultrasonic pulse in-
teracts with an anatomical region providing information about
internal tissue structures [2]. The backscattered (received) sig-
nal is corrupted by a characteristic granular pattern noise called
speckle [3], which depends on the number of scatterers (reflec-
tors) as well as their size. As pointed out in [4], these features
can be considered as tissue histological descriptors.

Intravascular US (IVUS) is an imaging technique that al-
lows to clearly assess the arterial wall internal echomorphology.
The technical procedure of acquiring IVUS data consists in in-
troducing a catheter, carrying a rotating US emitter inside the
vessel. During rotation, a piezoelectric transducer transmits US
waves and collects the reflected components that are afterward
converted into electrical signals (A-lines) and sampled by an
analog-to-digital converter. The IVUS image obtained by pro-
cessing the received echoes is a 360◦ tomographic view of the
inner arterial walls [see Fig. 1(a)]. Thus, IVUS is considered a
suitable technique for in vivo characterization of the coronary
plaques composition.

This paper intends to model the atherosclerotic plaque
through the analysis of the envelope backscattered IVUS data.
For this purpose, an hypothetical model is considered, where a
scanned tissue sample suffers from a certain number of scatter-
ing phenomena, as depicted in Fig. 2.

The most common model for speckle formation, known as
fully developed speckle, considers a tissue or region composed
of a large number of scatterers, acting as echo reflectors. These
scatterers arise from inhomogeneity and structures approxi-
mately equal to or smaller in size than the wavelength of the US,
such as tissue parenchyma, where there are changes in acous-
tic impedance on a microscopic level within the tissue. It is
recognized that under fully developed speckle, pixel intensities
in envelope images are well modeled by Rayleigh probability
density functions (PDFs) [3], [5]. An application example is
given in [6], where the morphological properties of the arterial
vessel on IVUS images are modeled by means of a Rayleigh
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Fig. 1. (a) Cross-sectional Intravascular US (IVUS) image (in cartesian coor-
dinates) and (b) corresponding polar representation; ρ represents the depth in
the tissue and θ the position (angle) in the rotation of the probe.

Fig. 2. Tissue acoustic model (different scattering phenomena may occur).

distribution in a fully automatic method for luminal contour
segmentation. When this condition does not hold, other
more complex parametric models, such as K [7], Rician [8],
homodyned-K [9], and Nakagami [10], are suitable to describe
the data.

The motivation to use the Rayleigh, single parameter, distribu-
tion comes from the fact that the regions defining atherosclerotic
tissue are piecewise homogeneous and do not present strong
scatterers nor edges, as it happens across the rest of the image,
where other speckle conditions are verified and other statistical
models are more convenient. These other models (Rice, K, or
Nakagami distributions) depend on a large number of param-
eters, which makes the estimation of tissue echomorphology a
hard task.

Plaque echomorphology may result from different types of
components, spatial organization, and complexity, which deter-
mine different scattering phenomena, where the Rayleigh dis-
tribution would be a reasonable approximation but a compound
statistical model would be more appropriate. Hence, the descrip-
tion of tissue echomorphology may be tackled with complex
distributions, depending on multiple parameters or with a mix-
ture of simple distributions. Following the latter approach, this
paper uses a combination of Rayleigh distributions—Rayleigh
mixture model (RMM)—estimated with the expectation maxi-
mization (EM) algorithm, thus, making the modeling of tissue
echomorphology a rather simple but fast and robust process.

The RMM consists of a technique to describe a particular
data distribution by linearly combining different PDFs. Up to our
knowledge, the RMM was never used for tissue characterization
in US, although, these models have been successfully employed
in other fields, such as in underwater acoustics and speech-
processing problems [11].

The contributions of this paper can be summarized as follows.
First, in Section II-A, we provide a comprehensive mathemat-
ical formulation of the mixture model, which makes use of
the EM algorithm for estimating the coefficients and Rayleigh
parameters of the mixture PDF. Second, the adequacy of the
proposed model to describe the envelope US data is evaluated
using a validated IVUS data set of different plaque types (see
Section III-C). Moreover, the RMM is applied for modeling
plaques as monolithic objects, i.e., by considering all the pixels
enclosed in the plaque. The features explicitly obtained from
the mixture model (cf. Section II-B are used to investigate the
discriminative power of the model for identifying different tis-
sue types, namely, fibrotic, lipidic, and calcified tissues. Then,
in Section III-D, the ability of the RMM for pixelwise clas-
sification of plaque composition is evaluated when using only
the new features and when combining them with other texture
and spectral features recently proposed [12]. Finally, we investi-
gate the significance of the obtained classification improvement
when using the RMM features (cf. Section III-E and III-F).

II. METHODS

This section aims at providing the mathematical descrip-
tion for estimating the mixture coefficients (weights) and the
Rayleigh parameters associated with each mixture component
(distribution) using the EM method applied to US data.

A. Rayleigh Mixture Model

Let Y = {yi}, 1 ≤ i ≤ N , be a set of pixel intensities of
a given region of interest (plaque) from an US image. Pixel
intensities are considered random variables, which are described
by the following mixture of L distributions:

p(yi |Ψ) =
L∑

j=1

θj p(yi |σj ) (1)

where σj is the parameter of the Rayleigh PDF p(yi |σj ) given
by

p(yi |σj ) =
yi

σ2
j

e
−

y 2
i

2 σ 2
j (2)

and the parameters Ψ = (θ1 , . . . , θL , σ1 , . . . , σL ) are the co-
efficients (θj ) and Rayleigh parameters (σj ) of the mixture,
respectively. The condition

∑L
j=1 θj =1 must hold to guarantee

that p(yi |Ψ) is a true distribution function.
The parameters σj associated with the pixel intensity yi char-

acterize the acoustic properties of the tissue at the ith loca-
tion [13]. The effect of changing σ in the shape of the distribu-
tion and thus in the image intensity is illustrated in Fig. 3. The
joint distribution of the pixel intensities, considered independent
and identically distributed (i.i.d.), is given by
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Fig. 3. Rayleigh PDFs generated with parameter 102 < σ < 103 (from darker
to lighter curves).

p(Y|Ψ) =
N∏

i

p(yi |Ψ). (3)

The goal is to estimate Ψ by maximizing the likelihood func-
tion such that

Ψ̂ML = arg max
Ψ

L(Y,Ψ) (4)

where

L(Y,Ψ) = log p(Y|Ψ) =
N∑

i=1

log

⎛

⎝
L∑

j=1

θj pj (yi |σj )

⎞

⎠ . (5)

The maximization of (5) is a difficult task because it consists
of a logarithmic function of a sum of terms. To overcome this
difficulty, the EM [14] method is used, where a set of hidden
variables are introduced, K = {ki} with ki ∈ {1, . . . , L}. The
value of ki = j informs us about the mixture component j that
generated the ith pixel intensity yi , with probability p(yi |σki

)
defined in (2).

Each nth iteration of the EM method is composed of two
steps:

1) E step: where the expectation of the new likelihood func-
tion L(Y,K,Ψ) is computed with respect to K

Q(Y,Ψn ,Ψ) = EK [L(Y,K(Ψn ),Ψ)] (6)

and
2) M step: where a new estimate of Ψ, Ψn+1 , is obtained by

maximizing the function Q

Ψn+1 = arg max
Ψ

Q(Y,Ψn ,Ψ). (7)

These two steps alternate until convergence is achieved,
which happens when |Ψn+1 − Ψn | is lower than a stopping
criterion (ξ) set to 10−3 . The new likelihood function is

L(Y,K,Ψ) = log p(Y,K|Ψ) =
N∑

i=1

log p(yi, ki |Ψ)

=
N∑

i=1

log p(yi |σki
) + log p(ki |σki

)︸ ︷︷ ︸
θk i

(8)

where p(yi |σki
)|ki =j , defined in (2), is the ki th component of the

RMM and θki
is the mixture coefficient associated with the ki th

component. The maximization of (8) is impossible because the
hidden variables K are not known. Therefore, the expectation
with respect to K is computed as follows:

Q(Ψ, Ψ̂) = EK [L(Y,K,Ψ)|Y, Ψ̂]

=
N∑

i=1

Eki
[log p(yi |σki

) + log p(ki |σki
)]

=
N∑

i=1

L∑

j=1

γi,j [log p(yi |σj ) + log θj ] (9)

where Ψ̂ = (θ̂1 , . . . , θ̂L , σ̂1 , . . . , σ̂L ) is the previous estimation
of the parameters, and γi,j is the distribution of the unobserved
variables, which is defined as follows:

γi,j =p(ki = j|yi, Ψ̂) =
p(yi |σ̂j )p(ki = j)

p(yi |Ψ̂)
(10)

where

L∑

j=1

γi,j = 1. (11)

In (10), p(yi |σ̂j ) is computed, as in (2), p(ki = j) = θ̂j , and
by definition

p(yi |Ψ̂) =
L∑

j=1

p(yi |σ̂j ). (12)

The likelihood function (9) contains two independent terms,
one depending on θj and the other on σj ; thus, the Q function
can be minimized independently with respect to each one. The
log-likelihood function in (9) can be rewritten by separating the
terms that depend exclusively on θj and σj , and considering (2)
resulting in

Q(Ψ,Ψ̂)=
N∑

i=1

L∑

j=1

γi,j log(θj )+
N∑

i=1

L∑

j=1

γi,j

[
log

(
yi

σ2
j

)
− y2

i

2σ2
j

]
.

(13)
Hence, the Q function can now be minimized independently
with respect to θj and σj . Let us focus on the term of (13), de-
pending on θ. The method of Lagrange multipliers [15], partic-
ularly useful in mathematical optimization, provides a strategy
for finding the solution of this term, subject to a normalization
constraint given by

L∑

j=1

θj = 1. (14)

Moreover, it yields a necessary condition for optimality in con-
strained problems [15]. By introducing a new variable (λ) and
solving the partial derivative of the term, depending on θ, leads
to

∂

∂θr

[
N∑

i=1

L∑

r=1

γi,r log(θr ) + λ

(
∑

r

θr − 1

)]
= 0 (15)
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which results in
N∑

i=1

γi,r = −λθr . (16)

If we sum both sides of (16) over r

N∑

i=1

L∑

r=1

γi,r

︸ ︷︷ ︸
(11)

= −λ

L∑

r=1

θr

︸ ︷︷ ︸
(14)

(17)

we get that N = −λ, which finally yields

θ̂r =
1
N

N∑

i=1

γi,r . (18)

The mixture parameters σj are found by deriving the term in
(13) that depends exclusively of σj and setting it to 0 as follows:

∂

∂σr

[
N∑

i=1

L∑

r=1

γi,r

(
log

(
yi

σ2
r

)
− y2

i

2σ2
r

)]
= 0 (19)

which is easily solved for σr to obtain

σ̂r =
∑N

i=1 γi,r (y2
i /2)

∑N
i=1 γi,r

=

√√√√ 1
N

N∑

i=1

γi,r
y2

i

2
. (20)

The EM algorithm is initialized with L uniformly weighted
coefficients Θ = {θj} = 1/L, while the mixture parameters are
assigned with the maximum likelihood (ML) estimator [16],

σ̂ML =
√

(1/2N)
∑N

i=1 y2
i . The initial choice of components

was set arbitrarily to L = 10. However, when |σm − σn | < ε =
1 (ad hoc setting), meaning that two distributions are closely
similar, with (m �= n) = {1, . . . , L}, then σj = (σm + σn )/2,
θj = θm + θn , and the number of mixture components is de-
creased by 1. This constraint assures stability of the RMM,
particularly, for modeling plaque echomorphology. Preliminary
observations allowed to verify that L = 10 is an overestimated
guess (excessive number of mixture components), which also
has implications in the computational cost of the RMM algo-
rithm. The study of an effective input value for the number of
mixture components to be used in the plaque characterization
problem is further investigated in Sections III-C and III-D.

B. RMM Features

The technique for estimating the RMM parameters and coef-
ficients using the EM method has been presented. We are further
interested in assessing the adequacy of the proposed model to
describe different types of tissue, and particularly, to character-
ize the atherosclerotic plaque.

In order to apply the RMM technique on a classification
problem, the RMM must be estimated locally, and descrip-
tive features must be extracted. Given the envelope image (cf.
Section III-A), local RMM features are computed by means of
a Ks × Ks sliding window, moved by a step of S = (3/4)Ks .
For each position, a 2L + 1 feature array is obtained and pre-
sented in the following manner: the first L positions correspond
to the Rayleigh parameters sorted in ascending order, followed

by the L respective coefficients, arranged accordingly. The last
position corresponds to the number of effective (distinct) mix-
ture components τ = {1, . . . , L}, which is found, as described
in Section II-A.

III. EXPERIMENTAL RESULTS

In this section, we first provide a description of the meth-
ods used to acquire and process the IVUS data, and we briefly
introduce the classification framework adopted for tuning the
RMM algorithm and performing plaque characterization. Then,
two distinct experiments are conducted: the first studies the ad-
equacy of the RMM for describing different tissue types. This
experiment is designated as monolithic description since the
mixture model is estimated by considering all the pixels en-
closed in the plaque. The second experiment refers to plaque
characterization made pixel-by-pixel (hence, called plaque lo-
cal characterization), where the RMM is applied not to the
entire plaque, but to each processing block centered at the pixel
to be characterized. Given this, the ability of the RMM for local
characterization of plaque composition is evaluated when using
only the RMM features and when combining them with other
texture and spectral features recently proposed in [12]. Finally,
we present a statistical analysis that supports the relevance of
the obtained classification improvement when using the RMM
features.

A. In Vitro Data Processing

The adequacy of the proposed RMM to describe real tissue
types is evaluated through an in vitro study of atherosclerotic
plaques from an IVUS database. The IVUS data set has been
recently presented in [12] and consists of eight postmortem
arteries, resulting in 45 frames with 24 fibrotic, 12 lipidic, and
31 calcified plaques. This data set, composed of 67 plaques, has
been validated by histological analysis.

Real-time RF data acquisition has been performed with the
Galaxy II IVUS Imaging System (Boston Scientific) with a
catheter Atlantis SR Pro 40 MHz (Boston Scientific). To collect
and store the RF data, the imaging system has been connected to
a workstation equipped with a 12-bit Acquiris acquisition card
with a sampling rate of 200 MHz. The RF data for each frame
is arranged in a data matrix of N × M samples, where M =
1024 is the number of samples per A-line, and N = 256 is the
number of positions assumed by the rotational US probe.

The information encoded in the visual appearance of tissues
naturally represents a relevant feature for their description. How-
ever, during acquisition, the imaging parameters of the IVUS
equipment are typically changed to enhance tissue visualization.
Hence, parameters like contrast depth and brightness can change
from patient to patient or even from image to image. When the
IVUS images are then processed for feature extraction, this fact
may generate noncomparable features.

To avoid the aforementioned errors and to produce normal-
ized data, the used data follows a rigorous acquisition protocol,
where the IVUS images have been directly reconstructed from
the raw RF signals, rather than using the ones produced by
the IVUS equipment. For this purpose, we follow an image
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Fig. 4. IVUS data processing (see text for details). RMM, textural, and spectral
features are extracted from polar image.

reconstruction algorithm [12], [17] outlined in Fig. 4. The re-
construction operations are applied to the RF data, where a
preliminary time gain compensation (TGC) function is used

TGC(r) = 1 − e−βr (21)

where β = ln 10αf /20 , α is the attenuation coefficient for bio-
logical soft tissues (α ≈ 0.8 dB/MHz·cm for f = 40MHz [18]),
f is the central frequency of the transducer in megahertz, and
r is the radial distance from the catheter in centimeters. After
signal compensation, using TGC, and envelope detection, using
the Hilbert transform, the signal-processing procedure described
in [12] is applied to get the polar representation of the IVUS
image, or simply the envelope image, resulting in a noncom-
pressed, 256 × 256 pixels image [cf. Fig. 1(b)]. We recall that
the polar image is used to estimate the RMM and to extract the
corresponding features. For the ease of visualization, the polar
image is transformed to cartesian coordinates, and its pixels in-
tensities are rescaled, thus, producing the common IVUS image.
These data are exclusively used to represent the image and not
for feature extraction.

B. Classification Framework

As stated previously, the weights and parameters of the mix-
ture distribution, whose estimation was early described, are used
as features to describe different types of plaque. In order to eval-
uate the correct modeling, we adopt a multiclass classification
framework that has been successfully used in plaque character-
ization [12]. The role of the classification scheme is twofold:
1) it allows to evaluate the discriminative power of RMM fea-
tures; and 2) it is used to support a cross-validation process,
adopted to tune the L parameter (number of mixture compo-
nents) in RMM model and the kernel size (image window size,
where the RMM is estimated).

The classification framework is based on [12] for discrimi-
nating among fibrotic, lipidic, and calcified plaques. The multi-
class problem is tackled by combining binary classifiers in the
error-correcting output codes (ECOCs) framework [19]. In fact,
ECOC is a technique to decompose a multiclass problem into
several binary problems. Each binary problem is solved here by
using the adaptive boosting (AdaBoost) classifier [20], where
the weak classifiers are decision stumps [21].

Fig. 5. (a)–(c) RMM modeling of three tissue types. (d)–(f) three-component
mixture PDFs estimated for each tissue type, overlapped with single Rayleigh
PDFs.

The classifier performance is evaluated by means of the leave-
one-patient-out (LOPO) [17] cross-validation technique, where
the training set is built by taking at each validation fold, all
patients’ data except one, used for testing. Note that each patient
data may consist of different number of images (hence, different
number of plaques).

Performance results are given in terms of sensitivity: S =
TP/(TP + FN); specificity: K = TN/(TN + FP ); pre-
cision: P = TP/(TP + FP ); and global accuracy: A =
(TP + TN)/(TP + TN + FP + FN), where TP = true pos-
itive, TN = true negative, FP = false positive, and FN = false
negative.

C. Plaque Monolithic Description With RMM

The first experiment consists of considering a set of fibrotic,
lipidic, and calcified plaques from the entire data set, according
to histological analysis. Fig. 5(a)–(c) shows three examples of
IVUS images containing one (or more) distinct tissue types.
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TABLE I
ACCURACY VALUES FOR TUNING THE NUMBER OF MIXTURE

COMPONENTS IN RMM

TABLE II
PERFORMANCE OF RMM, SINGLE RAYLEIGH MODEL (SRM), AND MEDIAN

FEATURES FOR MONOLITHIC CLASSIFICATION

The purpose of the current study is to verify the ability of
the RMM to describe and distinguish among the three different
tissue types. In this particular experiment, the RMM algorithm
is applied to the entire set of pixels enclosed in each plaque.
Given this, the monolithic plaque area can be characterized
by a unique set of RMM features that define a unique plaque
type. Note that this situation differs from the one described in
Section II-B, where the mixture model is estimated on a sliding
window. This approach is used for local characterization and is
further presented in the next section.

The classification framework is used to tune the parameters
of the RMM method. The most critical parameter to be de-
fined is the number of components to use in the mixture model.
In order to determine the optimal L value, we use the LOPO
cross-validation method, where the classification accuracy is
considered as the parameter to maximize.

For each plaque, we apply the RMM algorithm, varying the
number of mixture components from L = 1 to L = 10. This
process results in a set of features having different lengths. For
instance, for L = 3, we get a 7-length feature vector whereas
for L = 4, we get a feature vector with 9 elements for each
plaque. The training sets composed of RMM features created
with L = (1, . . . , 10) are used in the cross-validation process.
Results, reported in Table I, show that the best accuracy is
achieved when three Rayleigh PDFs (components) are used
in the mixture model. Hence, we can affirm that, for the spe-
cific plaque modeling application, the most suitable number
of mixture components for modeling tissue echomorphology is
3. For the sake of simplicity, since classification performance
decreases substantially for L > 4, we only show the obtained
results with L varying from 1 to 4.

In order to demonstrate the effectiveness of RMM when
compared to the single distribution, here termed as single
Rayleigh model (SRM), or the median gray intensity, we show in
Table II a comparison of these three types of features for classi-
fying monolithic plaques. The single-parameter estimation of
the SRM, obtained with the ML criterion [16], is given by

σ̂ML =
√

(1/2N)
∑N

i=1 y2
i , where yi is the intensity of the ith

pixel within the plaque. It is clear that the application of RMM
outperforms the classification results obtained with the other
tested features (note that the SRM completely fails in identify-
ing calcified plaques).

TABLE III
KULLBACK–LEIBLER DIVERGENCE TESTS USING RMM AND SRM:

GEOMETRIC MEAN COMPUTED OVER 67 PLAQUES

TABLE IV
MEAN VALUES OF RAYLEIGH PARAMETERS AND MIXTURE COEFFICIENTS

ESTIMATED WITH RMM APPLIED FOR THE DATA SET OF 67 PLAQUES

Fig. 5(d)–(f) shows normalized data histograms of lipidic, fi-
brotic, and calcified tissues, together with the estimated mixture
(RMM) and single (SRM) distributions, respectively. Visually,
the mixture model composed of three components (early deter-
mined to be the best value) describes significantly better the data
when compared to the single distribution. Interestingly, as we
move from lipidic to fibrotic and calcified tissue, the difference
between the mixture distribution and the single distribution in-
creases. At this point, we quantify the adequacy of the mixture
model for describing each type of tissue. For this purpose, the
mixture and single distributions were estimated for each plaque,
and the Kullback–Leibler (KL) divergence [22] of such distribu-
tions with respect to the data was computed. Hence, the smaller
the KL divergence is between a given distribution and the data,
the more similar they are. We summarize the results by com-
puting the geometric mean of the KL divergence for RMM and
ML distributions for each plaque (see Table III).

Observations made in Fig. 5 and supported by the results pre-
sented in Table III reinforce the idea that a single distribution
is not sufficient to describe the data, suggesting that different
plaques types can be correctly described with different mix-
ture distribution (and thus different RMM parameters): this fact
justifies the usefulness of RMM in a tissue modeling problem.

The RMM estimation algorithm is applied to the entire data
set, where for each plaque, the RMM takes into account all the
pixels enclosed in it. The obtained RMM features are presented
in Table IV. Particularly, it is observed that lipidic plaques are
well described by two mixture components, while calcified and
fibrotic plaques are modeled by three components, where the
main difference lies in the range of estimated Rayleigh param-
eters (see Table IV). It is worth noting that in fibrotic tissue
estimation, the ”peakedness” of the single Rayleigh distribution
is lower than the observed histogram. There is, indeed, a consid-
erable amount of pixels with high intensity, which means that
the ML parameter of the Rayleigh distribution (computed as in
Section III-C) has a higher value than the expected. As a conse-
quence, the shape of the single Rayleigh distribution will move
slightly toward the right direction, as observed in Fig. 5(e). This
fact enforces the need for a mixture model to correctly model
tissues.
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The main conclusions that can be obtained from these results
are as follows.

1) Lipidic tissues are predominantly modeled by a single
Rayleigh distribution (Table III: KL divergence of the
same order for SRM and RMM; and Table IV: one promi-
nent mixture component).

2) Fibrotic tissues are approximately described by a mixture
model of two components.

3) Calcified tissues are better described by three Rayleigh
distributions.

4) There is no significant overlapping between the range of
Rayleigh parameters obtained for the lipidic and fibrotic
tissues when compared to calcified tissues.

D. Plaque Local Characterization

We have established the usefulness of using a mixture of
distributions to model the plaque content in a monolithic ex-
periment. It is worth to note that, in practice, plaques are not
individually segmented; thus, the RMM estimation considering
all the pixels enclosed in the plaques is not generally a feasible
method for plaque characterization. Nevertheless, a region of
interest, which includes the plaque(s), can be at least pointed
out by the physician without compromising the time of a di-
agnostic exam. Thus, a localwise characterization, made pixel
by pixel, becomes a natural and more appropriate strategy. This
strategy consists in estimating the RMM over successive pro-
cessing blocks within the plaque region and assigning the RMM
features to each center pixel. Subsequently, each pixel is classi-
fied into a specific tissue type (lipidic, fibrotic, or calcified) and
then confronted with the ground truth.

As previously mentioned in Section II-B, in order to apply
the RMM algorithm to a local analysis, we first need to define
the dimension of the kernel to be used. The computational cost
associated with the localwise estimation of RMM features using
a processing block (kernel) of size ks is O(2ks). The tuning of
this critical parameter is performed again by means of the cross-
validation process. For this purpose, the RMM-based features
are computed inside a kernel of size ks = {2, 4, 8, 16, 24, 32}.
Hence, six different data sets have been obtained, and for each
one of them, the cross validation has been performed while
varying the number of mixture components L = {2, 3, 4}. Re-
sults in terms of global accuracies are depicted in Fig. 6. Given
the obtained results, ks = 16 and L = 3 are adopted. Hence, the
length of the RMM-based feature set extracted from each kernel
is 2L + 1 = 7.

In order to assess the true contribution of the proposed RMM
algorithm, the plaque characterization problem is solved under
three different conditions, where distinct features were com-
puted from polar RF data (cf. Fig. 4). First, only the RMM
features are used for tissue discrimination in the classification
framework: the obtained classifier is here named C.1. Then,
a set of 51 textural and spectral features presented in [12] is
used to train a second classifier (C.2). Finally, RMM features
are joined to the textural and spectral features, thus, creating a
59-element feature vector, used to train a third classifier (C.3).

Fig. 6. Classification based on RMM features according to the kernel size and
number of mixture components.

Fig. 7. Bar graph comparing different classifiers (C.1, C.2, and C.3) according
to performance measures (Acc, Slip , Sfib , and Scal ).

The three classifiers are used to characterize the plaques of
the database according to the LOPO technique. At each fold of
both training and validation process, the data set for each kind
of plaque has been randomly down sampled up to the maximum
value of the less represented class over all the cases (around
2000 points per class) in order to obtain a balanced data set
among classes. For each cross-validation fold, we compute the
aforementioned performance criteria (cf. Section III-B); conse-
quently, for the entire LOPO experiment (eight folds), we take
the average and standard deviation of the results obtained for
each fold. Classification results have been obtained by repeat-
ing 20 times the cross validation and finally by averaging the
obtained performance parameters.

The comparison of C.1, C.2, and C.3 classifiers gives an
important evidence of the effectiveness of the RMM features
as well as their discriminative power. Classification results
achieved with the proposed classifiers are shown in Fig. 7; a
more detailed description is given in Table V.

The use of features estimated with the RMM (C.1) provides
good results in terms of calcified and fibrotic sensitivity, and
overall accuracy. A poor performance in terms of correct detec-
tion of lipidic tissue is, however, observed. Nevertheless, this
is a meaningful achievement in the context of automatic plaque
characterization if we consider that the dimension of the feature
set is small and exclusively originated from a data source (enve-
lope image, cf. Fig. 4). The combination of the proposed RMM
features (C.1) with spectral and textural features [12] (C.2) is



SEABRA et al.: RAYLEIGH MIXTURE MODEL FOR PLAQUE CHARACTERIZATION IN INTRAVASCULAR ULTRASOUND 1321

TABLE V
PERFORMANCE OF PLAQUE CHARACTERIZATION: RESULTS PRESENTED AS

MEAN (STD)

expected to produce improvements on the classification perfor-
mance. Hence, as shown in Fig. 7 and Table V, the classifier
C.3 yields the best classification accuracy, around 92.6%, and
brings the class sensitivity up to 96.1%, 88.2%, and 93.4% for
fibrotic, lipidic, and calcified plaques, respectively. This repre-
sents an improvement of more than 1% in accuracy, about 2%
in fibrotic-class, more than 1% in lipidic-class and around 2%
in calcified-class sensitivities, when compared to the classifier,
which only considers textural and spectral features (C.2). These
observations support the relevance of the RMM features for
plaque characterization.

This result shows that features extracted from RMM are com-
plementary to the rest of the features. Examples of plaque char-
acterization using the C.3 classifier are shown in Fig. 8.

E. Statistical Analysis

In order to reinforce the usefulness of the RMM approach,
we perform a test on the statistical significance of results.

To assess the statistical significance among the classifiers
performance, we apply the Friedman and Bonferroni–Dunn
test [23]. First of all, the ranking ri

j for each separate classi-
fication test i and each classifier j is computed. Then, the mean
ranking Rj for each one of the jth classifier is computed as

Rj = (1/N̂)
∑N̂

i=1 ri
j , where N̂ = MNp is the total number of

rounds. Obtained results are reported in Table VI; note that the
best rank corresponds to the C.3 classifier, i.e., the classifier
trained with the whole feature set.

In addition, in order to reject the null hypothesis that the
differences on the measured classification performance are due
to randomness, the Friedman test is performed. For this purpose,
the Friedman statistic value is computed as follows:

χ2
F =

12N̂

k(k + 1)

[∑

j

R2
j −

k(k + 1)2

4

]
(22)

where k = 3 is the number of considered classifiers. The ob-
tained value is χ2

F = 202.74. As reported in [23], given the con-
servative property of the Friedman value, the Iman–Davenport
correction value is preferred

FF =
(N̂ − 1)χ2

F

N̂(k − 1) − χ2
F

. (23)

Fig. 8. Examples of plaque classification using the C.3 classifier. (a) IVUS
images, (b) ground truth images, segmented according to the histological anal-
ysis, (c) classification. In blue (dark), green (mid gray), and yellow (light gray)
are indicated calcified, fibrotic, and lipidic tissues, respectively.

TABLE VI
MEAN RANK FOR THE ACCURACY OF EACH CLASSIFIER

The value obtained in this case is FF = 274.9. With three meth-
ods and a total of N̂ = 160 experiments, FF is distributed ac-
cording to the F distribution with 2 and 318 DOF. The critical
value of F (2,∞) for α = 0.05 is 2.99. Since the obtained value
for FF is higher than the critical value, the null hypothesis is
rejected, i.e., the differences in the obtained results are not due
to randomness.

Once the null hypothesis has been rejected, we check if the
classifier C.3, resulting in the best discriminative power, is sig-
nificantly better than the other classifiers. For this purpose, the
Bonferroni–Dunn test [23] is performed: the performance of two
classifiers is significantly different if the corresponding average
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Fig. 9. Analysis of the normalized weight for each feature of the C.3 classifier.

ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6N̂
(24)

where qα is based on the studentized range statistic divided by√
2. Since our goal is the comparison of the C.3 classifier with

respect to the others, the Bonferroni–Dunn test is suitable, and a
correction factor must be considered in the qα value (cf. [23] for
details). In our case, we obtain CD = 0.2949, which is smaller
than each difference among the mean rank of the classifier C.3
and the rank of each other classifier. For this reason, we can
infer that the classifier is significantly better than the rest with a
confidence of 95%.

F. Features Weight Analysis

Finally, we want to evaluate the importance of the included
features in the quality of the classifier C.3. The AdaBoost algo-
rithm assigns a certain weight to each weak classifier selected at
each round during the training process [20]. Since the decision
stump weak classifier is only related to a single feature [21], we
can use the weight assigned by AdaBoost to evaluate the impor-
tance of each feature during the training process. Note that each
feature can be selected more than one time: in that case, the sum
of each weight for a specific feature is considered. Let us define
NP the number of in vitro cases, NF the number of features,
K the number of binary problems, f = 1, . . . , NF the index of
each feature, k = 1, . . . ,K the index of each binary problem,
NR the number of rounds by whose the computation has been
repeated, and αf

k,p,r the weight assigned to the f th feature. The
normalized weight assigned by AdaBoost to each feature can be
computed as Wf = max{w1

f , . . . , w1
f }, where

wk
f =

1
NP NR

NP∑

p=1

NR∑

r=1

αf
k,p,r

max{α1
k,p,r , . . . , α

NF

k,p,r}
. (25)

Fig. 9 represents the normalized weights of each feature. It
is worth to note the importance given by the classifier to the
RMM features, particularly to feature 1 first Rayleigh parame-

ter), feature 6 (third mixture coefficient), and feature 7 (number
of effective mixture components). Given the high discrimina-
tive power of the C.3 classifier, the expressive weights assigned
to the RMM-based features corroborate the importance of the
RMM model as well as its capability for discriminating different
tissues. The information provided about the most discriminant
features may be used on a feature-selection procedure in future
work related to tissue characterization.

IV. CONCLUSION

This paper proposes a method for plaque characterization
in IVUS data based on a mixture of Rayleigh distributions.
The coefficients and parameters of the mixture model are
used as features for describing fibrotic, lipidic, and calcified
plaques.

The RMM algorithm was evaluated and tuned using a clas-
sification framework based on a multiclass problem applied
to a validated IVUS data set and following a cross-validation
strategy. Results suggest that the optimal RMM method for
plaque characterization consists of L = 3 mixture components
and should be computed on a kernel of size ks = 16.

First, the true value of RMM features for tissue characteriza-
tion was evaluated through a plaque monolithic problem using
a cross-validation strategy, providing a global accuracy of 86%.
This result highlights the relevance of RMM features for dis-
criminating among the three different types of tissue.

Furthermore, the method was evaluated on a localwise clas-
sification problem when using only the RMM tuned features
and when combining them with textural and spectral features
used in an authors’ previous study. The inclusion of RMM fea-
tures demonstrates to generally improve the classification per-
formance up to a global accuracy of 92.6%. According to the
most significant performance parameters, such as accuracy and
class sensitivity, fusing RMM features with textural and spectral
features represents a general improvement of more than 1%, and
in some cases about 2%.

Finally, statistical analysis using the Friedman and
Bonferroni–Dunn shows that the classifier, which includes
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RMM, and textural and spectral features, is significantly bet-
ter than the other studied ones, thus, reinforcing the significance
of the obtained improvement when using RMM features.

The method is intended to characterize tissues enclosed in a
previously segmented plaque. Moreover, automatic segmenta-
tion capabilities can be potentially achieved by classifying the
whole image and then by postprocessing the labeled regions.
Without a deep analysis on features similarities between dif-
ferent vessel areas, the classification result on regions different
from plaques cannot be stated. Indeed, it can be guessed that, at
least for what concerns the textural features, regions enclosing
struts (in presence of stent) can be classified as calcified plaque,
and the whole adventitia layer as fibrotic plaque. No guessing
can be done for the blood region.

Hence, we have shown that the RMM has a high impact on
plaque characterization and could significantly contribute to a
more accurate study of plaque composition, and consequently
to an objective identification of vulnerable plaques.
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