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Optimal Sampling and Estimation in PASL
Perfusion Imaging

Nuno Santos, J. Miguel Sanches, Inês Sousa, and Patrı́cia Figueiredo*

Abstract—Pulsed arterial spin labeling (PASL) techniques po-
tentially allow the absolute, noninvasive quantification of brain per-
fusion using MRI. This can be achieved by fitting a kinetic model
to the data acquired at a number of sampling times. However,
the intrinsically low signal-to-noise ratio of PASL measurements
usually requires substantial signal averaging, which may result in
undesirably long scanning times. A judicious choice of the sam-
pling points is, therefore, crucial in order to minimize scanning
time, while optimizing estimation accuracy. On the other hand,
a priori information regarding the model parameters may improve
estimation performance. Here, we propose a Bayesian framework
to determine an optimal sampling strategy and estimation method
for the measurement of brain perfusion and arterial transit time
(ATT). A Bayesian Fisher information criterion is used to deter-
mine the optimal sampling points and a MAP criterion is em-
ployed for the estimation of the model parameters, both taking
into account the uncertainty in the model parameters as well as
the amount of noise in the data. By Monte Carlo simulations, we
show that using optimal compared to uniform sampling strate-
gies, as well as the Bayesian estimator relative to a standard least
squares approach, improves the accuracy of perfusion and ATT
measurements. Moreover, we also demonstrate the applicability of
the proposed approach to real data, with the advantage of reduced
intersubject variability relative to conventional sampling and
estimation approaches.

Index Terms—Bayesian, estimation, Fisher, MRI, pulsed arterial
spin labeling (PASL), sampling.

I. INTRODUCTION

P ERFUSION measures the rate at which nutrients are deliv-
ered by the blood to the tissues in the capillary bed and its
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accurate measurement is important in the diagnosis and moni-
toring of different pathological conditions. Pulsed arterial spin
labeling (PASL) MRI techniques offer a noninvasive way of
measuring perfusion by magnetically labeling the water protons
in the arterial blood through magnetization inversion and then
measuring the magnetization of the tissues after a certain period
of time, the inversion time (TI) [1]. The magnetization differ-
ence between a labeled image and a control image, as a function
of the TI, can be described by a kinetic model [2], which makes
PASL a potentially quantitative technique.

In principle, if the values of the other model parameters are
available, then the acquisition of data at a single TI point is
sufficient for the estimation of perfusion. However, there is con-
siderable uncertainty regarding the values of various model pa-
rameters, particularly in respect to the arterial transit time (ATT)
and in some pathological conditions such as cerebrovascular
disease. Therefore, in order to correctly estimate perfusion, the
ATT should also be estimated by fitting the PASL model to mag-
netization difference data sampled at multiple TI points [3]. On
the other hand, the acquisition of more sampling points can lead
to undesirably long scanning times. This is especially critical
because PASL measurements require substantial signal averag-
ing as a consequence of their intrinsically low signal-to-noise
ratio (SNR). Therefore, a compromise between the number of
TIs sampled and the total scanning time has to be made. Pre-
vious studies have shown that the distribution of the sampling
points along time has a strong effect on the accuracy of the esti-
mation of the parameters [4], [5]. Therefore, a correct choice of
the value and number of sampling points is decisive in order to
minimize scanning time, while optimizing estimation accuracy.

Optimal sampling strategies have previously been designed
based on the Fisher information matrix optimality criterion for
the simultaneous estimation of perfusion and ATT [4], [5].
However, the uncertainty associated with the remaining model
parameters was not taken into account. Here, we propose a
Bayesian framework for PASL perfusion quantification based
on the MAP criterion [6], [7] for model estimation, where the
a priori knowledge of the physiological distributions of the
model parameters, as well as the amount of noise in the data,
are taken into account. The purpose of the framework is twofold.
First, the sampling points for optimal perfusion and ATT esti-
mation based on the MAP criterion are determined (following
our previous work [8]). Second, both parameters are estimated
from the data using the same criterion (as previously presented
by Santos et al. [9]). Using both simulated and empirical data,
the proposed methodologies are compared with uniformly dis-
tributed sampling points and a standard least squares (LS) esti-
mation method.

0018-9294/$26.00 © 2011 IEEE
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II. METHODS

The two main contributions of this paper are first mathemat-
ically formulated: 1) a Bayesian algorithm to estimate model
parameters from a limited number of observations; and 2) a
strategy to determine the optimal set of sampling time points,
which minimizes the variance of the previously defined esti-
mator. The kinetic model used to describe the PASL signal is
then presented and the identifiability of the model parameters
of interest is analyzed.

The estimation procedure is designed in a Bayesian frame-
work where an additive model for the noise is assumed and
prior information about the parameters is taken into account.
The prior term is twofold. First, the poor SNR and the nonlinear
dependence of the PASL magnetization difference on the model
parameters makes the maximum-likelihood estimation problem
(based only on the likelihood function) ill-posed [10]. The prior
term is, therefore, important to regularize the solution [11]–[13].
Second, a prior term is also used to guide the estimation toward a
physiologically plausible solution, by incorporating knowledge
about the parameter distributions.

A. Bayesian Estimator

Let us consider the function ΔM(t,θ), where θ is the vector
of P unknown parameters θ = [θ1 , θ2 , . . . , θP ], to be estimated
from a set of observations Y = [y1 , y2 , . . . , yN ] taken at the time
points t = [t1 , . . . , tN ]. Assuming an additive white Gaussian
noise (AWGN) model to describe the data generation process
[14], the observation model is given by

yi = ΔM(ti ,θ) + η , i = 1, . . . , N (1)

where η ∼ N (0, σ2
y ), with σy being the standard deviation of

the noise. Therefore, p(yi |ti ,θ) = N (ΔM(ti ,θ), σ2
y ).

The estimation of the vector θ with the MAP criterion can be
formulated as the following optimization task [15]:

θ̂ = arg min
θ

E(Y , t,θ). (2)

The energy function to be minimized is defined by

E(Y , t,θ) = − log [p(Y |t,θ)p(θ)] (3)

where p(Y |t,θ) is the likelihood function describing the acqui-
sition process, given by p(Y |t,θ) =

∏N
i=1 p(yi |ti ,θ) if statistic

independence of the observations is assumed.
Each of the P elements of θ, θi , is assumed to be independent

and Gaussian distributed with mean θ0i , and standard deviation
σi reflecting the known level of uncertainty associated with it.
Thus, the parameter vector θ is described by a multivariate nor-
mal distribution N (θ,C), where C = diag({σ2

1 , σ2
2 , . . . , σ2

P })
is a diagonal covariance matrix.

Although a Gaussian distribution does not accurately describe
the ATT, this was considered a convenient parsimonious ap-
proximation, in order to well pose the estimation problem [10].
In fact, approximately, Gaussian distributions of ATTs have
been observed (e.g., [5], [16]) and such approximation has
also been used in previous approaches to PASL model esti-
mation [14], [17].

The energy function, defined by (3), hence, contains two
terms, the data fidelity term, which depends on the observations,
and the prior term, which describes the prior knowledge about
the parameters, and it can be written as follows:

E(Y , t,θ) =
1
2
‖ΔM(t,θ) − Y ‖2

2
︸ ︷︷ ︸

Data Fidelity term

+
1
2
σ2

y (θ − θ)T C−1(θ − θ)
︸ ︷︷ ︸

Prior term

. (4)

The minimizer of (4) is computed by finding its stationary
point with respect to θ, ∇θE(Y , t,θ) = 0.

In order to assess the effectiveness of the prior information in
the estimation process, the common LS method is also applied to
estimate θ from the same set of time points. The corresponding
energy function to be minimized contains only the data fidelity
term and is given by

ELS(Y , t,θ) = ‖Y − ΔM(t,θ)‖2
2 . (5)

In these two estimation procedures (LS and Bayesian), the op-
timization is accomplished by using the Levenberg–Marquardt
(LM) algorithm [18]. For a correct comparison between the two
methods, the algorithm was implemented as described in the lit-
erature [19]. The LM algorithm is an iterative process, whereby
for each step n of the iteration the estimation of the parameters
is given by

θn+1 = θn + D−1 · ∇θE(Y , t,θn ) (6)

where ∇θE(Y , t,θ) is the gradient of E(Y , t,θ) with respect
to θ and D is given as

D = H(Y , t,θn ) + μ · diag(H(Y , t,θn )) (7)

with H(t,θ,Y ) = {Hk,r (t,θ,Y )} being the Hessian matrix
of E(Y , t,θ) with respect to the parameters

Hk,r (t,θ,Y ) =
∂2E(Y , t,θ)

∂θk∂θr
(8)

and μ is the damping factor of the LM algorithm.
When the iterative optimization LM algorithm does not con-

verge, a continuous variation method [20] is used to enforce a
priori information about the parameters and regularize the solu-
tion. In this strategy, a fudge factor greater than 1 is introduced
in (4), multiplying the prior term. This factor converges to 1
along the iterative process, guaranteeing the convergence of (6)
in the initial iterations. However, the correct solution is reached
at the end when it becomes 1.

For the synthetic data, the parameters αi = σ2
y /σ2

i are com-
puted and used in the estimation of θ with the Bayesian ap-
proach. For the empirical data, an estimation of the amount of
noise corrupting the data σ2

y is used. The uncertainty associ-
ated with the parameters σ2

i is assumed to be known, based on
published data (see Table I).
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TABLE I
PHYSIOLOGICAL PRIOR INFORMATION

B. Optimal Sampling Strategy

The selection of the N sampling time points t can be optimally
performed in order to minimize the variance of the estimator [6].
These optimal time points depend on the function ΔM(t,θ) and
the distribution of the parameters p(θ). The minimum variance
estimator is obtained by maximizing the determinant of the
Fisher information matrix [21], G(t,θ) = {Gk,r}, defined as

Gk,r (t,θ) = −EY [Hk,r (t,θ,Y )] (9)

where EY (.) denotes the expectation operator with respect to
the multivariate random variable Y , which gives

t∗(θ) = arg max
t

J (t,θ) (10)

where J (t,θ) = det G(t,θ).
Since the AWGN model is adopted here, the data are de-

scribed by a normal distribution with mean ΔM(ti ,θ) which
means EY (yi) = ΔM(ti ,θ). Taking (4) into account

∂2E

∂θk∂θr
=

N∑

i=1

[
∂ΔM(ti ,θ)

∂θk

∂ΔM(ti ,θ)
∂θr

]

+
N∑

i=1

[

(ΔM(ti ,θ) − yi)
∂2ΔM(ti ,θ)

∂θr∂θk

]

+ δk,r

σ2
y

σ2
k

(11)

where δk,r is the Kronecker delta function. By computing the
expectation of (11), (9) gives

Gk,r =
N∑

i=1

[
∂ΔM(ti ,θ)

∂θk

∂ΔM(ti ,θ)
∂θr

]

+
σ2

y

σ2
k

δk,r . (12)

Here, we propose an incremental strategy to solve (10)
whereby each time point is computed as a function of the
previously computed time points. The cost function used to
compute a new optimal time point at the nth iteration is
given by Jn (t, tn−1 ,θ) = det Gn (t, tn−1 ,θ), where tn−1 =
[t1 , t2 , . . . , tn−1 ] are the n − 1 optimal time points estimated
up to the moment and Gn is the incremental Fisher information
matrix given by

Gk,r (t, tn−1 ,θ) = Gk,r (tn−1 , tn−2 ,θ)

+
1
σ2

y

∂ΔM(t,θ)
∂θk

∂ΔM(t,θ)
∂θr

(13)

where

Gk,r (tn−1 , tn−2 ,θ) =
1
σ2

k

δk,r

+
1
σ2

y

n−1∑

i=1

[
∂ΔM(ti ,θ)

∂θk

∂ΔM(ti ,θ)
∂θr

]

(14)

was incrementally estimated in the previous n − 1 steps. Then,
the nth optimum time point tn is determined by solving the
following 1-D optimization problem:

tn = arg max
t

Jn (t, tn−1 ,θ). (15)

The optimization problem (15) is solved L times, in order to
obtain the N << L optimum time points needed to design the
acquisition experiment. This set of points satisfies (10) if the
second term of (13), (∂ΔM(ti ,θ)/∂θk )(∂ΔM(ti ,θ)/∂θr ) ≥
0, is nonnegative [22], which is the case.

The N points obtained from (10), or equivalently from (15),
depend on the parameter vector θ to be estimated, which is
obviously unknown in this step. However, its distribution p(θ) is
assumed to be known. Hence, the procedure for the identification
of the N optimal time points is the following.

1) A large number of L >> N parameter vectors θj are ob-
tained by randomly sampling p(θ).

2) For each parameter vector θj , (13), (14), and (15) are used
to obtain a set of M >> N optimal points T j .

3) Each set of M optimal time points, obtained for each
θj , are appended to a running histogram of optimal time
points h(t,T ).

4) The final N optimal time points, covering the full distribu-
tion of vector θ, are obtained from the final histogram, by
partitioning the area under the curve in N equal intervals
(through the cumulative curve).

C. Kinetic Model

The magnetization difference measured in PASL is described
by the standard kinetic model introduced by Buxton et al. [2]

ΔM(t,θ) = 2αfM0b
exp {−R1t t} exp {−D1Δt}

D1

×

⎧
⎪⎨

⎪⎩

0 t < Δt

1 − exp{−D1(t − Δt)} Δt ≤ t < Δt + τ

1 − exp{−D1τ} Δt + τ ≤ t

(16)

with

D1 = R1b − Rapp
1t , Rapp

1t =
1

T1t
+

f

λ
, R1b =

1
T1b

(17)

where θ = [f,Δt] is the vector of parameters to be estimated,
including f , the perfusion, and Δt, the ATT; and the remain-
ing constant parameters are τ , the label bolus time width; T1t ,
the tissue longitudinal relaxation time; T1b , the blood longi-
tudinal relaxation time; α, the labeling efficiency; and M0b ,
the arterial blood equilibrium magnetization. This is given by
M0b = M0t/λ, where λ is the brain–blood partition coefficient
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Fig. 1. PASL magnetization difference signal as a function of the TI, according
to the standard kinetic model.

of water and M0t is the brain tissue equilibrium magnetization,
measured experimentally [23]. As illustrated in Fig. 1, ΔM is
0 until the labeled arterial blood water arrives at the imaging
site, at time Δt, and it then increases for a period of time corre-
sponding to the time width of the labeled bolus τ . After Δt + τ ,
ΔM decays back to 0 as the label magnetization relaxes toward
equilibrium with time constant T1t .

D. Parameter Identifiability

A structural model analysis is performed here, in order to
ascertain the parameter identifiability, for the specific case of
the estimation of the parameters of interest, f and Δt, i.e.,
θ = {f,Δt}. The model is structurally identifiable if the Fisher
information matrix is nonsingular [24] and enough data are
available. However, this approach only guarantees local identi-
fiability [24]. In this particular case, J (t,θ) in (10) is

J (t,θ)=

( N∑

i=1

u2
i + αu

)( N∑

i=1

v2
i + αv

)

−
( N∑

i=1

uiv i

)2

(18)
where ui = ∂ΔM (ti ,f ,Δt)

∂f , vi = ∂ΔM (ti ,f ,Δt)
∂Δt , αu = σ2

y /σ2
f ,

and αv = σ2
y /σ2

Δt . Defining u = {u1 , u2 , . . . , uN } and v =
{v1 , v2 , . . . , vN }, (18) may be written as follows:

J (t,θ) = (‖u‖2 + αu )(‖v‖2 + αv )− < u,v >2

= ‖u‖2 + ‖v‖2− < u,v >2

︸ ︷︷ ︸
≥0

+αv‖u‖2 + αu‖v‖2

︸ ︷︷ ︸
>0

(19)

where <,> denotes the vector inner product operation.
Under the assumption of enough data, structural identifiabil-

ity holds because J (t,θ) > 0. The first term in (19), ‖u‖2 +
‖v‖2− <u,v>2 , is nonnegative by the Cauchy–Schwarz in-
equality [6] and the second, αv‖u‖2 + αu‖v‖2 , is strictly pos-
itive if at least one of ui or vi is not zero.

Practical identifiability, however, may not hold if there are
not enough data or if data were not acquired at the appropriated
locations [25]. In order for J (t,θ) in (19) to be strictly positive,
at least one sampling time point tk must be acquired at a time
instant where the partial derivatives of ΔM(tk , θ) are not null.
Fig. 2 displays the partial derivatives with respect to f and Δt
as a function of time. Both derivatives are nonzero for t > Δt,
which means that practical identifiability is guaranteed locally

Fig. 2. Partial derivatives of ΔM (t, θ) with respect to (left) f and (right) Δt
as a function of time.

if at least one sampling time point is greater than Δt for a
particular experiment.

III. RESULTS

In this section, the results obtained with both synthetic and
empirical data will be presented. First, sets of optimal sampling
points are obtained, as a function of the amount of noise in
the data and the uncertainty of the model parameters. Second,
Monte Carlo simulations at different noise levels are performed
to test the performance of the Bayesian estimation algorithm,
relative to a standard LS method, using the optimal sampling
strategy, relative to uniform sampling. Finally, empirical data
acquired with the two sampling schemes are analyzed using
both the proposed and the standard methods for estimation of
perfusion and ATT.

A. Optimal Sampling Strategy

Sets of optimal sampling points were obtained for the estima-
tion of f and Δt, using different amounts of noise corrupting
the data σY as well as different levels of parameter uncertainty
σf and σΔt in order to evaluate the sensitivity of the optimal
sampling points to errors in these factors. The noise level is
considered as a fraction β of the maximum signal (according to
empirical observation): σY = β × max[ΔM(t,θ)].

Physiologically plausible distributions of the model param-
eters, for gray matter (GM) of healthy subjects at 3 T, were
obtained from the literature [4], [26]–[28]. For pathological pop-
ulations, the parameter distributions would have to be adapted
according to the clinical hypothesis. Parameters described by
normal distributions are shown in Table I, while α and λ are
assumed to be known: α = 0.9 and λ = 0.9.

The set of optimal sampling points obtained with our pro-
posed method, using these parameter values and a noise level
of β = 125%, is illustrated by the cumulative curve shown in
Fig. 3 (red curve). In comparison with a uniform sampling strat-
egy over the same interval (black curve), the optimized sampling
set has a higher density of points around the values Δt0 = 0.7
s and Δt0 + τ0 = 1.4 s, as observed before [4].

The optimal sampling, therefore, depends essentially on the
values of Δt and τ . In our case, the value of τ can be assumed
with a high degree of certainty because we use several saturation
pulses to limit the length of the bolus, such as in the Q2TIPS
(quantitative imaging of perfusion using a single subtraction,
second version, with interleaved periodic saturation) PASL se-
quence [26]. The optimal sampling strategy is, hence, mainly
determined by Δt. Its sensitivity to this parameter is illustrated
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Fig. 3. Cumulative curves of the four sampling sets considered in the sim-
ulations (with β = 125% noise level). The optimal sampling sets that would
be obtained for Δt = 1.5 s are also shown to illustrate the sensitivity to this
parameter.

Fig. 4. Histograms and cumulative curves of optimal sampling sets with vary-
ing σf , σΔ t = 0.3 s, and β = 125%.

by comparison with the optimal sampling sets obtained with
Δt = 1.5 s, as shown in Fig. 3.

First, sensitivity to f uncertainty was ana-
lyzed by considering five uncertainty levels, σf =
[0.0001, 0.001, 0.0015, 0.004, 0.2]s−1 , while keeping Δt
uncertainty level constant at σΔt = 0.3 s, and the noise
level constant at β = 125%. The resulting histograms and
corresponding cumulative curves are shown in Fig. 4. The
values of σf were chosen so as to contain the reference value
σf = 0.004 s−1 , and to obtain a significant variation of the
resulting curves. It can be observed that, as σf decreases,
the distribution of the optimal sampling points moves toward
Δt0 = 0.7 s and away from the point Δt0 + τ0 = 1.4 s. Hence,
better knowledge of the value of parameter f will concentrate
estimation efforts on the other unknown parameter Δt.

Second, sensitivity to Δt uncertainty was analyzed by consid-
ering five uncertainty levels, σΔt = [0.001, 0.075, 0.1, 0.3, 1]s,
while keeping σf = 0.004 s−1 and β = 125%. The resulting
histograms and corresponding cumulative curves are shown in
Fig. 5. In this case, better knowledge of Δt moves the distri-
bution of optimal sampling points away from Δt0 = 0.7 s and
toward Δt0 + τ0 = 1.4 s. It should be noted that changes in
the distribution of sampling points as σΔt decreases are more
abrupt in this case relative to what was observed for σf . It is
also noted that the optimal sampling strategy approaches the
uniform scheme as σΔt increases.

Fig. 5. Histograms and cumulative curves of optimal sampling sets with vary-
ing σΔ t , σf = 0.004 s−1 , and β = 125%.

Fig. 6. Histograms and cumulative curves of optimal sampling sets with vary-
ing β , σf = 0.004 s−1 , and σΔ t = 0.3 s.

Finally, sensitivity to β was analyzed by considering five
noise levels, β = [1, 125, 200, 400, 10000]%, while keeping
σf = 0.004 s−1 and σΔt = 0.3 s. The resulting histograms and
corresponding cumulative curves are shown in Fig. 6. It can be
observed that, in this range, a change in the noise level has a
small influence on the distribution of optimal sampling points.
Nevertheless, as the level of noise increases, the distribution of
the optimal sampling points moves toward the point Δt0 = 0.7
s and away from the point Δt0 + τ0 = 1.4 s.

For the Monte Carlo simulations, sets of 100 TI sam-
pling time points were determined, for six noise levels, β =
[10, 50, 75, 100, 125, 150]%, and considering the reference σf

and σΔt values presented in Table I, using four different strate-
gies, shown in Fig. 4

1) Optimal: TIs optimally distributed in the interval
[100, 3000]ms, using the proposed method.

2) Clustered Optimal: TI points optimally distributed
in the interval [100, 3000]ms, using the proposed
method, and subsequently organized into five clus-
ters. A k-means clustering procedure was applied to
distribute the points in the optimal set among a fixed
number, 5, of mutually exclusive clusters [29], [30].
This strategy was designed in order to fulfill the
experimental requirements of arterial spin labeling
(ASL) data acquisition, imposed by the minimum
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Fig. 7. Generation of synthetic data: for each pair of parameters f and Δt,
100 synthetic datasets are generated for each sampling strategy, noise level, and
estimation method.

temporal resolution feasible and the minimum num-
ber of repetitions required to achieve a reasonable
SNR per TI.

3) Uniform: TI points uniformly distributed in the in-
terval [100, 3000]ms. This strategy was considered
for comparison between our informed method and a
completely uninformed approach.

4) Uniform Sets: 12 sets of TI points uniformly dis-
tributed in the interval [200, 2400]ms, according to a
common approach in the literature [31]. This slightly
modified uniform sampling strategy was considered
due to its relevance in the literature.

B. Monte Carlo Simulations

For the Monte Carlo simulations, the space of the parameters
under study, f and Δt, was sampled in the range of θ − 2 × σθ

to θ + 2 × σθ , where σθ is the standard deviation of the pa-
rameter θ, as illustrated in Fig. 7. For each pair of param-
eters, 100 synthetic datasets were generated using the PASL
kinetic model described in (16), with each of the six noise lev-
els, β = [10, 50, 75, 100, 125, 150]%, and with each of the four
sampling strategies (uniform, uniform sets, optimal, and clus-
tered optimal). In each case, the model parameters f and Δt
were then estimated using both the standard LS method (LS)
and our proposed Bayesian approach (Bayesian).

Two measures were obtained to evaluate the performance
of the different sampling and estimation techniques: the pa-
rameter estimation normalized mean square errors εNMS

θ ( i ) =
∑

v

(
θ

(v ,i)
true − θ

(v ,i)
est

)2
/
∑

v

(
θ

(v ,i)
true

)2
where θ

(i)
true and θ

(i)
est are the

true and estimated parameter values, respectively, and the im-

proved SNR, ISNR =
[
‖Y − ΔM‖/‖Ŷ − ΔM‖

]

dB
where

ΔM is the theoretical curve obtained with (16) for θtrue , Y rep-
resents the noisy data obtained with (1), and Ŷ is the estimated
curve. The mean NMSE and ISNR of f and Δt estimation, at a
noise level of β = 125%, are shown in Fig. 8, for each pair of
parameter values in parameter space.

As expected, the Bayesian method generally provides reduced
estimation errors and increased SNR improvement relative to
the LS approach. In Fig. 8, it can be seen that the NMSE values
produced by the Bayesian method are relatively lower compared
with the LS estimator at the center of the parameter space.
However, they increase toward the periphery as the real values of

Fig. 8. NMSE and ISNR of (top) f and Δt and (bottom) ISNR, for each pair
of parameter values, obtained with each method.

the parameters are deviated from the expected central values, as
a consequence of the influence of the prior term in the Bayesian
estimator. In general, the Bayesian approach produces greater
ISNR values than the LS approach.

In terms of the sampling strategy, the optimal and clustered
optimal strategies tend to outperform the uniform and uniform
sets strategies, in what concerns the estimation of the param-
eter Δt. In fact, the NMSE values obtained for Δt with the
two optimal sampling strategies are lower relative to the values
obtained with the two uniform strategies. As far the f is con-
cerned, however, the errors produced using optimal strategies
become degraded as Δt increases, away from the central value
assumed a priori. This observation indicates that it is critical do
adjust the prior information when transit times are expected to
be prolonged beyond normal values.

The average values of the NMSE and ISNR measurements,
across parameter space, are shown in Fig. 9, as a function of
the noise level. A repeated measures analysis of variance was
performed in order to test for any significant effects on these
measures of the three factors under study: 1) the estimation
method (LS, Bayesian); 2) the sampling strategy (uniform, uni-
form sets, optimal, and clustered optimal); and 3) the noise. A
significant main effect of each of the three factors was observed
for all measures (p < 0.001). Moreover, the interaction between
noise and estimation algorithm was also significant (p < 0.001),
with an increasing effect of the estimation method as noise in-
creases. The interaction between noise and sampling strategy
was only significant for the NMSE values of Δt. As expected,
parameter estimation errors increase with the noise level in the
data. Additionally, the improvement observed for Bayesian ver-
sus LS methods and optimal versus uniform strategies, in the
case of Δt, also increases with the noise level.

We further observe that the results obtained with two uniform
strategies are not significantly different from each other, nor are
the ones obtained with the two optimal strategies. In particular, it
is interesting to notice that clustering the optimal set of TI points
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Fig. 9. (Top) NMSE of f and Δt (mean ± SE) and (bottom) ISNR (mean ±
SE), averaged across parameter space, obtained each method, as a function of
noise level.

Fig. 10. (Top) NMSE of f and Δt (mean ± SE) and (bottom) ISNR (mean ±
SE), as a function of noise level: comparison between estimation methods for
each sampling strategy.

around five values only does not significantly impair the opti-
mality of the results. Thus, in order to more clearly understand
the main effects of the estimation algorithm and the sampling
strategy, the results of the Monte Carlo simulations obtained
with the clustered optimal and the uniform sets strategies were
selected for further analysis. The average values of NMSE and
ISNR, grouped in terms of the sampling strategy and estimation
method, are shown in Figs. 10 and 11, respectively.

In Fig. 10, it can be seen that the clustered optimal strategy
outperforms the uniform sets strategy in terms of the NMSE
values for the parameter Δt, especially at high noise levels.
Although slightly greater NMSE values are obtained for f us-

Fig. 11. (Top) NMSE of f and Δt (mean ± SE) and (bottom) ISNR (mean ±
SE), as a function of noise level: comparison between sampling strategies for
each estimation method.

ing the clustered optimal relative to the uniform sets strategy,
with the standard LS estimation method, when our proposed
Bayesian estimation method is employed this is no longer the
case. In Fig. 11, it can be seen that the proposed Bayesian es-
timation method systematically outperforms the standard LS
estimator, in terms of both measurements.

C. Empirical Results

In order to demonstrate the applicability of the proposed sam-
pling and estimation methods, the physiological parameters,
perfusion, and ATT were estimated from real multi-TI PASL
data. The uniform sets and the optimal clusters sampling strate-
gies were considered only, because of their greater practical
feasibility and our previous observation through simulation that
the results obtained with these strategies are not significantly
different from the corresponding uniform and optimal sampling
strategies.

The PASL data were collected from seven healthy volunteers
(2 males and 5 females, aged 23–26 years old) on a Siemens
Verio 3T system using a 12-channel head RF coil. Pulsed ASL
data were acquired at multiple TIs, using saturation pulses to
limit the bolus width, with a Q2TIPS-PICORE sequence [26]
(TI1/TI1s/TI2 = 750 ms/900 ms/1700 ms), with gradient-
echo echo-planar imaging readout (TR/TE = 2500 ms/19 ms),
from nine contiguous axial slices positioned parallel to the an-
terior commissure–posterior commissure line (spatial resolu-
tion of 3.5 mm × 3.5 mm × 7.0 mm). Two multiple TI datasets
were collected from each subject, at a set of TI2 points
defined by the uniform sets and the optimal clusters sam-
pling strategies, as shown in Fig. 3. Data were preprocessed
using FSL tools (www.fmrib.ox.ac.uk/fsl), including motion
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Fig. 12. Box plots of parameter estimates obtained in the subject group for
each slice, using the different sampling and estimation methods. Boxes are
delimited by 25th and 75th percentiles, whiskers extend to minimum and max-
imum nonoutliers, + indicates outliers, and red lines indicate the median.

TABLE II
GROUP MEAN ± SD OF EMPIRICAL ESTIMATED PARAMETERS: f VALUES

AVERAGED ACROSS SLICES AND Δt VALUES PRESENTED FOR EACH SLICE:
Δti FOR SLICE i

correction and high-pass temporal filtering with a 70 s fre-
quency cutoff. A T1-weighted, high-resolution structural image
was also obtained from each subject, using an MPRAGE se-
quence (TR/TE = 2250 ms/2.26 ms, 1 mm × 1 mm × 1 mm).
This image was segmented into GM, white matter (WM) and
cerebrospinal fluid, using the FSL tool FAST [32] and was sub-
sequently coregistered with the PASL images using FLIRT [33].

Magnetization difference data ΔM were obtained as the dif-
ferences between consecutive control-tag pairs of images, av-
eraged across GM in each brain slice, normalized by the mean
of all control images. The amount of noise corrupting the data
σY was obtained as the standard deviation of the ΔM data in
a region defined in the background outside the brain, with a
number of pixels comparable to that of the respective GM re-
gion. Both the LS and Bayesian methods were employed for the
estimation of the parameters f and Δt from the data collected
using the two sampling strategies. The distributions of the re-
sults obtained for the group of subjects are presented in Fig. 12
and the corresponding average values are shown in Table II.

TABLE III
INTERSUBJECT CVS

In general, the values of the estimated parameters are con-
sistent across sampling strategies and estimation methods. The
perfusion results are around the expected value of f = 0.012 s−1

and do not vary significantly across slice. Regarding the ATT,
the results are also around the expected value of Δt = 0.7 s and
increase from inferior to superior slices, due to the fact that the
blood is traveling upward across the brain. In terms of the esti-
mation method, the Bayesian approach produced slightly higher
perfusion values relative to the LS approach, as a consequence
of the influence of the prior value for this parameter (which
was higher than the values found in the data). In terms of the
sampling strategy, it can be seen that the ATT values vary more
widely when using the uniform sets approach compared with
the optimal clusters approach. This is likely the result of the
finer sampling of the curve around the relevant TI values for the
estimation of Δt, in the case of an optimal sampling scheme.

In order to evaluate the variability of the measurements ob-
tained with the various methodologies, the intersubject coef-
ficient of variation (CV) was determined, for each parameter
θi , sampling strategy, and estimation method, as CVθi

= σθ i

θi
,

where σθi
and θi are the standard deviation and mean of pa-

rameter θi estimates across subjects, and also across slices in
the case of parameter f , respectively. The final value of CVΔt

was calculated as the mean CVΔt values across slices, because
the value of Δt is dependent on the slice. The CV measure rep-
resents the dispersion of a probability distribution, giving the
information about the variability of the measurement [34].

The CV values obtained for the subject group are shown in
Table III. All CV values are below 33%, which is considered to
represent an acceptable variability in a normal distribution [34].
It can be observed that CVf is lower than CVΔt , which likely
results from the variation of Δt with the slice. Most interestingly,
the variability of Δt values is considerably reduced when using
the clustered optimal sampling strategy relative to the uniform
sets sampling strategy. Moreover, the variability is, in general,
reduced for the estimations using the Bayesian method relative
to the LS method.

IV. DISCUSSION AND CONCLUSION

A Bayesian framework was proposed for the optimization of
perfusion and ATT measurement using PASL, by selecting an
optimal sampling strategy and a parameter estimation method,
based on the structure of a standard kinetic model as well as
on the information about the physiological distribution of the
parameters and the measurement noise.

We showed that the optimal distribution of sampling points
depends critically on the prior knowledge of the ATTs, on the
uncertainty of the model parameters, and, to a lesser extent, on
the level of noise in the data. Through Monte Carlo simulations,
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we showed that parameter estimation errors were reduced by
combining the optimal sampling strategy with Bayesian param-
eter estimation, compared with uniform sampling and standard
least squares. When applied to real PASL data, the proposed
methodology produced the lowest intersubject CVs, which may
have great impact on the clinical applicability of the technique,
by improving its sensitivity to detect pathology and also as a
probe in longitudinal studies monitoring disease progression.

This paper adds to previous reports on the optimization of
PASL sampling schemes [4], [5], by incorporating a priori
knowledge of the model parameters within a Bayesian frame-
work. Furthermore, it adds to existing Bayesian approaches for
PASL model estimation [14], [17], [35], by addressing the sam-
pling strategy optimization within the same framework.

A major limitation of our method is that the optimal sam-
pling strategy is critically dependent on the prior knowledge of
the parameters that may change significantly in disease. Here,
the strategy is applied to a healthy population. For pathologi-
cal populations, the parameter distributions would have to be
adapted according to the specific clinical hypothesis. In order
to overcome this limitation, Xie et al. implemented a real-time
adaptive process that iteratively updates the parameter estimates
and adjusts the optimal sampling schedule accordingly, as data
are collected [5]. In this way, their method becomes applicable
in clinical situations, when no prior knowledge on perfusion and
ATT can be assumed. Our approach could also be implemented
in a similar way with the appropriate adaptations.

Another limitation is the assumption of a Gaussian distribu-
tion for the ATTs, based on considering a single tissue type. In
fact, ATTs are known to vary between GM and WM, between
watershed and central areas of the arterial territories, as well as
in pathological regions. In order to consider more than one tissue
type, a mixture of distributions could be used. In this case, the
optimal sampling strategy obtained would be a compromise be-
tween the optimal schemes for each of the individual tissue type.
Although considering a more realistic mixture model could im-
prove the methodology, we believe that in some cases it would
still be desirable to target the experimental design to one spe-
cific tissue type. In fact, the main distinctions are between GM
and WM, or between healthy and pathological tissue. Because
PASL data from WM are well known to exhibit a critically low
SNR due to lower perfusion and longer arrival times [36], [37],
in case WM perfusion is of interest it would be recommendable
to perform a separate acquisition specifically aimed at the longer
transit times of this tissue in order to optimize detection sensi-
tivity. A similar approach could be taken for patient populations
exhibiting very prolonged transit times.

In conclusion, optimal sampling and estimation methodolo-
gies were proposed for improved perfusion quantification using
PASL imaging relative to conventional approaches. It is ex-
pected that these methodologies will contribute in enhancing
the applicability of PASL perfusion imaging.
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